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Abstract

This paper presents and discusses two neuro-symbolic Al methodologies, previously published, for studying and
explaining the quality of life of individuals with intellectual disabilities, as assessed by the GENCAT scale, a tool
widely used in Catalonia’s Social Services. The first technique is based on logic-based belief merging, which
integrates expert knowledge using the Horn fragment of signed logic. The second one leverages Logic Explained
Networks, an interpretable family of deep learning models capable of generating explanations.
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1. Introduction: Bridging real-world challenges and logic-based
methods

For several years, our research group has been actively engaged with institutions focused on supporting
individuals with intellectual disabilities. A core aspect of the work of Social Services in Catalonia involves
using the GENCAT scale [1, 2] to assess and understand the quality of life (QOL) of these individuals.
Some of the main challenges are related to a comprehensive understanding of the relationships between
various dimensions of QOL, the structure of the GENCAT scale and its associated databases, and the
key factors that contribute to the varying levels of QOL of Social Services users. This paper presents
ongoing research to address these empirical problems, subsequently bridging real-world challenges and
Al symbolic or hybrid methodologies.

In line with other approaches from formal explainable artificial intelligence such as [3, 4, 5], our
proposal is fundamentally rooted in logical approaches. We argue that significant contributions can
be made from this approach and exemplify it in the social challenge of assessing and improving the
QOL of individuals with intellectual disabilities. In this way, we leverage both classical contributions in
knowledge representation, such as merging [6, 7], and more recent and hybrid advancements like Logic
Explained Networks (LENSs) [8, 9].

2. Quality of Life Assessment and the GENCAT Scale

The concept of Quality of Life (QOL) emerged in the early 1980s in various fields, including healthcare,
education, and social services [10]. During the past four decades, it has become a cornerstone in
guiding quality improvement strategies, evaluating effectiveness, and facilitating person-centered
planning [10, 2]. This evolving understanding of QOL aligns with the principles of the United Nations
Convention on the Rights of Persons with Disabilities (2006), which views disability as an aspect
of human diversity rather than a defining characteristic. Similarly, the American Association on
Intellectual and Developmental Disabilities (AAIDD) has changed its definition of disability from a

CEUR-WS.org/Vol-4069/paper4 .pdf

Workshop on the Foundations and Future of Change in Artificial Intelligence (FCAI 2025) at the 28th European Conference on
Artificial Intelligence (ECAI 2025, October 25 - 30), Bologna, Italy

R vicent@iiia.csic.es (V. Costa); pilar.dellunde@uab.cat (P. Dellunde)

@ 0000-0001-6352-7238 (V. Costa); 0000-0002-8198-5475 (P. Dellunde)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
B

CEUR
E Workshop
Proceedings

44


mailto:vicent@iiia.csic.es
mailto:pilar.dellunde@uab.cat
https://orcid.org/0000-0001-6352-7238
https://orcid.org/0000-0002-8198-5475
https://creativecommons.org/licenses/by/4.0/deed.en

Vicent Costa et al. CEUR Workshop Proceedings 44-50

Table 1
Dimensions and core indicators of quality of life
Dimensions Variable Indicators
Emotional well-being p1 Satisfaction. Self-concept. Lack of stress or negative feelings.

Questions 1-8.

Interpersonal relations | p2 Social, familiar and affective relationships. Positive and

gratifying social contacts. Satisfying sex life. Questions 9-18.

Material well-being p3 Housing, workplace, and service conditions. Employment.

Incomes/salary. Possessions. Questions 19-26.

Personal development | p4 Education. Learning opportunities. Work and functional

abilities. New technologies. Questions 27-34.

Physical well-being 5 Health care access and consequences. Functional diet, sleep,

mobility. Technical assistance. Questions 35-42.

Self-determination D6 Autonomy. Goals and personal preferences. Questions 43-51.
Social inclusion p7 Integration- Access. Supports. Questions 52-59.
Rights P8 Knowledge, defense, and exercise of rights. Privacy. Respect.

Questions 60-69.

static, individual trait to an interaction between an individual’s skills (performance competence) and
the support structures within their environment (integration facilities) [10].

In line with these principles, Schalock and Verdugo [10] introduced a multidimensional QOL model.
This model assesses and intervenes based on a person’s situation on eight operationally defined dimen-
sions, each with core indicators [1]. These dimensions are: emotional well-being (EW), interpersonal
relations (IR), material well-being (MW), personal development (PD), physical well-being (PW), self-
determination (SD), social inclusion (SI), and rights (RI).

In 2008, the Institute on Community Integration (University of Salamanca) and the Catalonian Institute
of Assistance and Social Services (Government of Catalonia) collaboratively developed and introduced
the GENCAT scale [1, 2]. The GENCAT scale is a widely used questionnaire designed for users of social
services. It comprises 69 questions, organized into eight blocks, with each block corresponding to one of
the aforementioned QOL dimensions. In general, the answers to the questionnaire permit five response
options: very-low, low, medium, high, and very high.

Al research using the GENCAT scale has explored various aspects of QOL. Armengol, Dellunde
and Ratto [11] employed decision trees to estimate correlations between dimensions, although this
initial work considered only 90 records. This was later expanded in [12], which used a filtered tree and
analyzed 5158 records from the GENCAT scale. This research concluded that SI, SD, and IR are the most
relevant dimensions for the level of QOL and yielded rules, such as if SD is medium or high, the QOL
level is never low. However, these studies often restricted QOL level classes to low, medium, and high,
resulting in less detailed explanations.

The GENCAT scale continues to be a subject of interdisciplinary debate and improvement efforts
[13, 14]. Furthermore, there is a growing consensus on the utility of Artificial Intelligence (Al) in psy-
chological assessment and test construction [15]. Moreover, the demand for explainable Al, particularly
in ethically sensitive domains, is undeniable.

3. Two methodologies to studying the GENCAT QOL Scale

In this section, we present the two methodologies we adopted to study the GENCAT QOL Scale.

3.1. The merging approach

As a first step, in [16], we presented some theoretical results. In particular, we introduced a set of
logical postulates for belief merging under constraints for the Horn fragment of signed logic [17] and
obtained a sufficient condition for a merging operator to satisfy these postulates. Furthermore, an

45



Vicent Costa et al. CEUR Workshop Proceedings 44-50

Table 2

GMAX-aggregation and cardinality distance (d.(w, K1), d.(w, K2), d.(w, K3), and d.(w, K4))
Models de(w, Ky) de(w, Ko) de(w, K3) do(w, Ky) GMAX
10001000 0 0 4 4 (4,4,0,0)
10001100 3 0 5 5 (5,5,3,0)
10001110 4 4 6 6 (6,6,4,4)
10001111 5 5 7 7 (7,7,5,5)
11001000 0 0 5 5 (5,5,0,0)
11001100 4 0 0 0 (4,0,0,0)
11001110 5 5 7 7 (7,7,5.,5)
11001111 6 6 8 8 (8,8,6,6)
11101000 0 0 6 6 (6,6,0,0)
11101100 0 0 7 7 (7,7,0,0)
11101110 0 0 8 8 (8,8,0,0)
11101111 0 0 9 9 (9,9,0,0)
11111000 0 0 7 7 (7,7,0,0)
11111100 0 0 8 8 (8,8,0,0)
11111110 0 0 9 9 (9,9,0,0)
11111111 0 0 10 10 (10,10,0,0)

implementation of the belief merging process in this fragment, based on the example of the GENCAT
scale, was presented. The Horn fragment of signed logic was considered as an adequate formalism to
represent the knowledge of this field and to implement the operators.

We started with rules previously obtained by machine learning techniques (see [12]) and organized
different interviews with social practitioners in which they provided their own rules, representing their
experience of decades working with people with intellectually functional diversity. Experts’ evaluations
were represented as knowledge bases. We noticed that these bases were not always consistent with
the results obtained by applying machine learning techniques. Therefore, an interesting open question
was how to merge all these possibly mutually inconsistent knowledge bases not in a purely numerical
aggregation approach but a qualitative one, which was the motivation of the research presented in [16].
There, the knowledge bases were represented by signed formulas.

As an illustrative example, let us consider the case of four practitioners analyzing the QOL of the
same Social Services user. The main goal is to merge all of the experts’ opinions in order to obtain a
consolidated evaluation (py, . . ., pg are defined in Table 1 and g, indicates the QOL level). So consider
the profile £ = { K, Ko, K3, K4}, where K1 =1 0.75 : p5V | 0.25 : ¢y, Ko =1 0.75 : p5V | 0.5 : qy,
and K3 = K4 =7 0.5 : psA | 0.5 : psA 1 0.5 : guA | 0.5 : q,. That is, in this case, the practitioners
established a relation between the dimension of physical well-being (see Table 1) and the QOL level.
Let us briefly present the semantics of the formulas in the profile and refer to [16, Section 2] for more
details. A set of values N is a nonempty finite set N = 4g,...,%y, where ip = 0 and ¢, = 1,and a
sign S is a subset of N. A signed interpretation I of the set of propositional variables P is a function
I: P — N, and a signed interpretation [ satisfies a signed literal S:p if I(p) € S. The connectives
appearing in the profile are interpreted as in classical logic.

The outcome of a merging process for the profile £ using the GMAX Horn Merging Operator [18]
was (see Table 2 and [16, Example 4.3] for more details): 1 0.25 : psA T 0.5 : psA [ 0.5 : psA } 0.75 :
psA T 0.25 0 guA L 0.5 gy ] 0.75 : gy, that is, the dimension of physical well-being is medium and
the QOL level is low or medium.

3.2. An approach from neurosymbolic Al: Logic explained networks

The need for explainability in Al, especially in domain applications with ethical implications, is beyond
doubt. In response to this need, neurosymbolic Al emerges as a highly appropriate framework to
integrate the value of symbolic Al and to overcome the limitations of deep learning that have become
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increasingly evident in recent years [19]. Within this context, Ciravegna et al. [8] introduced logic
explained networks (LENs), a family of interpretable DL models that provide explanations for their
predictions. The functions computed by LENs are of the form f : C' — F, where C' = {0, 1}¥ is the
space of activations of the k-input, E = {0, 1}" relates to the activations of the r-outputs, and so that
the inputs are cognitively understandable notions. In our case, all the explainable models perform
categorical tasks, specifically predicting the QOL level or assessing one of the eight dimensions.

Interdisciplinary debates on reviewing and improving the GENCAT scale, where societal and ethical
aspects and strands related to psychology converge, are still open ([13, 14]). Furthermore, there is
some consensus on the convenience of using Al in the psychological assessment and test construction
domains [15]. In line of these proposals, as we explain next, we studied in [20, 21] the GENCAT scale
using LENs and focused on the generation and analysis of explanations regarding the dimensions of
QOL.!

First, we used the IntDisCat database, introduced in [20], whose content was provided to us by the
Catalonian Institute of Assistance and Social Services. This database contains records corresponding
to 6104 Social Services users, indicating responses to the GENCAT scale of multiple practitioners in
diverse institutions. With these data, scores of the eight dimensions of QOL were calculated and then
categorized into the five levels mentioned above’.

In classical logic, the interpretations of the variables corresponding to the dimensions (Table 1) as well
as ¢, cannot allow the nuances of the five evaluations considered. Thus, this formalism was extended
to include the five evaluations. Hence, p1, ..., pg were extended to p11, ..., p15, 21, - - - , g5, Where g;
is related to the QOL level, the j, with 1 < 5 < 5, indicates the evaluation (1 stands for very low, and so
on), and the first subindex 7 in p, with 1 < ¢ < 8, indicates dimension. For example, p72 expresses that
social inclusion is low.

We designed a LEN-based model for each QOL level®, using the entropy-based LEN framework
proposed in [9]. This enabled us to obtain a global explanation for each QOL level considered. Recall
that a global explanation [22] is defined as the disjunction of the most frequent local explanations in
the training set. Next, we present the two illustrative global explanations obtained using the IntDisCat
database.

QOL level very low
A very low value for IR or PD, or the absence of a high value for SI together with meeting one of the
following conditions: the EW is very low, the IR is very low, or the MW is low. That is:

P21 V pa1 V (4p7a A p11 A pai1 A pi2).

QOL level very high
MW and RI are medium, EW is not low, and SD and PW are at least high. That is:

D33 A pg3 A —p12 A (psa V ss) A (Pea V Des).

In [21], we extended our analysis of the GENCAT scale by using LENSs to study the relationships
between the QOL dimensions In this way, we applied the previously explained formalism to design
different models aimed at generating global explanations of the correlations among these dimensions.
To this end, each model was designed to predict one dimension from the remaining seven. As a result,
the experimentation produced 37 global explanations; no explanations resulted for the level very high
of MW, PD, and RI dimensions since the data from the IntDisCat database were insufficient to generate
an explanation. Next, we present some illustrative examples of the global explanations obtained.

'In parallel, we proposed a first step towards designing a reduced version of the GENCAT scale with 23 questions (from
the original 69) and made a twofold analysis of it (regarding the accuracy metrics, and comparing the global explanations
generated when using the two questionnaires). Certainly, let us observe that practitioners using the scale at present have to
answer 69 questions for each interviewee to obtain the QOL level, so in some situations (depending on the time resources
and labor force available), it could be desirable to have a reduced, and thus faster-to-do (see [20] for more details on this
reduction).

%See https://github.com/dfp97/LENsIntDisCatQOLDimensions.

*See https://github.com/dfp97/LENsQoLIntDisability_ReducedGencat.
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Medium level of emotional well-being (p;).
Interpersonal relations are low, self-determination is very low, social inclusion is very high, and rights are
low. That is:

P22 N\ Pe1 A Prs N\ —Ds2.

Very low level of interpersonal relations (p2).
Self-determination is very low, emotional well-being, material well-being, and personal development are
low, and physical well-being and social inclusion are medium. That is:

D61 A P12 A P32 A paz2 A ps3 A prs.

Very high level of self-determination (pg).
Personal development and social inclusion are high, physical well-being is not high, rights are not low, and
interpersonal relations are not medium. That is:
D45 A P75 A 7psg A —ps2 A Tpas.

4. Discussion, conclusions, and future lines of research

This research underscores the critical importance of practically applying existing Al techniques to
real-world problems, moving beyond theoretical toy examples. Our work with the GENCAT scale
and individuals with intellectual disabilities presented numerous challenges, from the complexities of
understanding quality of life dimensions to navigating the intricacies of real-world data. Instead of
confining ourselves to a single, specific technique, we learned the need for adopting a multi-faceted
approach, exploring and implementing various methods.

For the sake of clarity, this paper focuses on a real-world application concerning the quality of life of
individuals with intellectual disabilities. Nonetheless, it is worth noting that we have also developed
explainable models for a different application domain, namely, the categorization of art paintings by
style and genre, using a range of symbolic and neurosymbolic approaches, including logic-based systems
[23, 24, 25, 26], logic aggregators [27], and logic explained networks [28].

Ultimately, engaging with these complex, real-world scenarios is essential not only for achieving
tangible social impact but also for driving the advancement of Al itself. Such applications inevitably
give rise to new theoretical questions and push the boundaries of current methodologies. To truly
elevate the role and relevance of Al, we find that the field must continue to embrace these practical
deployments as well as rigorously testing and comparing diverse Al approaches on the same real-world
problems.
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