
Preparing Usability Supporting Architectural Patterns for
Industrial Use

Pia Stoll
ABB Corporate Research

Forskargränd 6
SE 72178 Västerås, Sweden

Tel: +46 21 32 30 00

pia.stoll@se.abb.com

 Bonnie E. John, Len Bass, Elspeth Golden
Carnegie Mellon University

5000 Forbes Ave.
Pittsburgh, PA, USA 15213

Tel: 1+412 268 2000

bej@cs.cmu.edu, ljb@sei.cmu.edu,
egolden@cmu.edu

ABSTRACT
Usability supporting architectural patterns (USAPs) have been
shown to provide developers with useful guidance for producing a
software architecture design that supports usability in a laboratory
setting [7]. In close collaboration between researchers and
software developers in the real world, the concepts were proven
useful [2]. However, this process does not scale to industrial
development efforts. In particular, development teams need to be
able to use USAPs while being distributed world-wide. USAPs
also must support legacy or already partially-designed
architectures, and when using multiple USAPs there could be a
potentially overwhelming amount of information given to the
software architects. In this paper, we describe the restructuring of
USAPs using a pattern language to simplify the development and
use of multiple USAPs. We also describe a delivery mechanism
that is suitable for industrial-scale adoption of USAPs. The
delivery mechanism involves organizing responsibilities into a
hierarchy, utilizing a checklist to ensure responsibilities have
been considered, and grouping responsibilities in a fashion that
both supports use of multiple USAPs simultaneously and also
points out reuse possibilities to the architect.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques] User interfaces; D.2.11
[Software Architectures]: Patterns; H.5.2 [User Interfaces]
Theory and Methods

General Terms
Design, Human Factors.

Keywords
Software Architecture, Usability, Human-Computer Interaction,
HCI

1. INTRODUCTION
The Software Engineering community has recognized that
usability affects not only the design of user interfaces but
software system development as a whole. In particular, efforts are
focused on explaining the implications of usability on software
architecture design [3, 4, 5, 6, 10].

One effort in this area is to produce artifacts that communicate
usability requirements in a form that can be effectively used for
software architecture evaluation and design. These usability
supporting architectural patterns (USAPS) have been shown to
improve the ability of software architects to design higher quality
architectures to support usability features such as the ability to
cancel a long-running command [7, 8]. Other uses of USAPs in
industrial settings have been productive [2] but have revealed
some problems that prevent scaling USAPs to widespread
industrial use. These problems include:

1. Prior efforts have involved personal contact with USAP
researchers, either face to face or in telephone conversations.
This process does not scale to widespread industrial use.

2. The original USAPs included UML diagrams modifying the
MVC architectural pattern to better support the usability
concern. Although intended to be illustrative, not
prescriptive, software architects using other overarching
patterns (e.g., legacy systems, SOA) viewed these UML
diagrams as either unrelated to their work or as an unwanted
recommendation to totally redesign their architecture.

3. The original use of USAPs was as a collection of individual
patterns. Even using one pattern involved processing a large
amount of detailed information. Applying multiple USAPs
simultaneously is likely to overwhelm software architects
with information.

In this paper, we introduce a pattern language [1] for USAPs that
reduces the information that architects must absorb and produces
information at a level that applies to all architectures. We also
discuss the design of a delivery mechanism suitable for industrial-
scale adoption of USAPs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. 2. BACKGROUND

A USAP has six types of information. We illustrate the types with
information from the cancellation USAP [9]

I-USED’08, September 24, 2008, Pisa, Italy
 1. A brief scenario that describes the situation that the USAP is

intended to solve. For example, “The user issues a command

mailto:pia.stoll@se.abb.com
mailto:bej@cs.cmu.edu
mailto:ljb@sei.cmu.edu
mailto:egolden@cmu.edu

then changes his or her mind, wanting to stop the operation
and return the software to its pre-operation state.”

2. A description of the conditions under which the USAP is
relevant. For example, “A user is working in a system where
the software has long-running commands, i.e., more than one
second.”

3. A characterization of the user benefits from implementing
the USAP. For example, “Cancel reduces the impact of
routine user errors (slips) by allowing users to revoke
accidental commands and return to their task faster than
waiting for the erroneous command to complete.”

4. A description of the forces that impact the solution. For
example, “No one can predict when the users will want to
cancel commands”

5. An implementation-independent description of the solution,
i.e., responsibilities of the software. For example, one
implication of the force given above is the responsibility that
“The software must always listen for the cancel command.”

6. A sample solution using UML diagrams. These diagrams
were intended to be illustrative, not prescriptive, and are, by
necessity, in terms of an overarching architectural pattern
(e.g., MVC).

It is useful to distinguish USAPs from other patterns for software
design and implementation. USAPs are not user interface patterns,
that is, they do not represent an organization or look-and-feel of a
user interface [e.g., 11]; they are software architecture patterns
that support UI concerns. Nor are USAPs structural software
architecture patterns like MVC; they are patterns of software
responsibilities that can be applied to any structure. As such, they
can be applied to any legacy architecture and can support the
functionality called for in UI patterns.

3. A PATTERN LANGUAGE FOR USAPs
Through collaboration among academic and industrial researchers
and usability engineers, we are constructing three USAPs for
process control and robotics applications. The first author and her
colleagues in the industry research team drafted an “Alarms,
Events and Alerts” USAP while, independently, the last three
authors drafted a “User Profile” USAP and an “Environment
Configuration” USAP. When these three USAPs were considered
together, it was clear that there was an enormous amount of
redundancy in the responsibilities necessary for a good solution.
In addition, in preliminary discussions, industry software
architects reacted negatively to the large amount of information
required to implement any one of the USAPs.
Our early work [4] recognized the possibility of reusing such
software tactics as separating authoring from execution and
recording (logging), but our subsequent work had not
incorporated that notion, treating each USAP as a separate
pattern. A consequence of focusing on industrial use is that reuse
in constructing and using USAPs was no longer an academic
thought experiment, but a necessity if industrial users are to
construct and use USAPs themselves.
We observed that both the industry research team and the
academic research team independently grouped their
responsibilities into very similar categories. This led us to
construct a pattern language [2] that defines relationships between
USAPs with potentially reusable sets of responsibilities that can
lead to potentially reusable code. Our pattern language relating

“Alarms, Events and Alerts”, “User Profile” and “Environment
Configuration” is shown in Figure 1.

Figure 1 USAP Pattern Language for “User Profile”,
“Alarms, Events and Alerts”, and “Environment
Configuration”
The pattern language has two types of USAPs. “End-User
USAPs” follow the structure given in Section 2. Their purpose
from a user’s point of view can be expressed in a small scenario,
they have conditions under which they are relevant, benefits for
the user can be expressed and they require the fulfillment of
software responsibilities in the architecture design. End-User
USAPs are used by the requirements team to determine which are
applicable to the system being developed. In this example, they
are “User Profile”, “Alarms, Events and Alerts”, and
“Environment Configuration”.
The pattern language also contains what we are calling
“Foundational USAPs”. These do not have the same six portions
as the End-User USAPS. For example, there is no scenario, no
description of conditions, and no benefits to the user for the
Foundational USAPs. Rather, they act as a framework to support
the construction of the End-User USAPs that make direct contact
to user scenarios and usability benefits. For example, all of the
End-User USAPs that we present have an authoring portion and
an execution portion, that is, they are specializations of the
Authoring Foundational USAP and the Execution with Authored
Parameters Foundational USAP. These foundational USAPs make
use of other foundational USAPs, Authorization and Logging. We
abstracted the commonalities of the End-User USAPs to derive
the responsibilities of the Foundational USAPs. The
responsibilities in the Foundational USAPs are parameterized,
where the parameters reflect those aspects of the End-User
USAPs that differ.
An example of the parameterization is that the Authoring
Foundational USAP and the Execution with Authored Parameters
Foundational USAP each have a parameter called
SPECIFICATION. The value of SPECIFICATION is “Conditions
for Alarm, Event and Alerts”, “User profile”, and “Configuration
description” for the three End-User USAPs, respectively.
In addition to parameterization, End-User USAPs explicitly list
assumptions about decisions the development team must make
prior to implementing the responsibilities. For example, in the
“Alarms, Events and Alerts” End-User USAP, the development
team must define the syntax and semantics for the conditions that
will trigger alarms, events or alerts. End-User USAPs may also

have additional responsibilities beyond those of the Foundational
USAPs they use. For example, the “Alarms, Events and Alerts”
End-User USAP has an additional responsibility that the system
must have the ability to translate the names/ids of externally
generated signals (e.g., from a sensor) into the defined concepts.
Both the assumptions and additional responsibilities will differ for
the different End-User USAPs.
There are three types of relationships among the Foundational
USAPs and these are shown in Figure 1 as different color arrows.
The Generalization relationship (turquoise) says that the
Foundational USAP is a generalization of part of the End-User
USAP. The End-User USAP passes parameters to that
Foundational USAP and, if there are any conditionals in the
responsibilities of the Foundational USAP, the End-User USAP
may define the values of those conditionals. The Uses relationship
(black) also passes parameters, but the USAPs are at the same
level of abstraction (the foundational level). The Depends-On
relationship (red) implies a temporal relationship. For example,
the system cannot execute with authored parameters unless those
parameters have first been authored. The double headed arrow
between authoring and logging reflects the possibility that the
items being logged may be authored and the possibility that the
identity of the author of some items may be logged.
Foundational USAPs each have a manageable set of
responsibilities (Authorization has 11; Authoring, 12; Execution
with authored parameters, 9; and Logging 5), as opposed to the 21
responsibilities of the Cancel USAP that seemed to be too much
for our experiment participants to absorb in one sitting [7]. These
responsibilities are further divided into groups for ease of
understanding, e.g., Authoring is separated into Create, Save,
Modify, Delete and Exit the authoring system. This division into
manageable Foundational USAPs simplifies the creation of future
USAPs that use them. For example, the User Profile End-User
USAP requires only the definition of parameters and the values
for one conditional, and pointers to the Authoring and Execution
Foundational USAPs.

4. DELIVERING A SINGLE USAP TO
SOFTWARE ARCHITECTS

The roadblocks to widespread use of USAPs in industry identified
in the introduction were (1) the need for contact with USAP
researchers in the development process, (2) reactions to examples
using a particular overarching architectural pattern (MVC) and (3)
an overwhelming amount of information delivered to the software
architect. Data from our laboratory study and the pattern language
outlined above put us in a position to solve these problems.
Our laboratory study [7] showed that a paper-based USAP could
be used by software engineers1 without researcher intervention, to
significantly improve their design of an architecture to support the
users’ need to cancel long-running commands. Although
significantly better than without a USAP, these software
engineers seemed to disregard many of the responsibilities listed
in the USAP in their designs. To enhance attention to all
responsibilities, we have chosen to design a web-based system
that presents responsibilities in an interactive checklist (Figure 2).

1 The participants in our lab study had a Masters in SE or IT, were

trained in software architecture design, and had an average of
over 21 months in industry.

The design includes a set of radio buttons for each responsibility
that are initially set to “Not yet considered.” The architect reads
each responsibility and determines whether it is not applicable to
the system being designed, already accounted for in the
architecture, or that the architecture must be modified to fulfill the
responsibility. If “Not applicable”, “Must modify architecture to
address this” or “Architecture addresses this” is selected, then the
responsibility’s checkbox is automatically checked. If “Not
considered”, “Must modify architecture or “Discuss status of
responsibility”, is selected, the responsibility will be recorded in
To-Do list generated from the website (Figure 3). We expect this
lightweight reminder to consider each and every responsibility
will not be too much of a burden for the architect, but will
increase the coverage of responsibilities, which is correlated with
the quality of the architecture solution [8].
As Figure 2 show, the responsibilities are arranged in a hierarchy,
which reflects both the relationship of End-User and Foundational
USAPs and the internal structure within a Foundational USAP.
This hierarchy divides the responsibilities into manageable sub-
parts. The checkboxes enforce this structure by automatically
checking off a higher-level box when all its children have been
checked off, and conversely, not allowing a higher-level box to be
checked when one or more of its children are not. Thus, this
mechanism simultaneously addresses the problems of providing
guidance without intervention by USAP researchers and
simplifying the information provided to the software architect.
Another mechanism for simplifying the information delivered to
an architect is that each responsibility has additional details
available only by request of the architect. These details include
more explanation, rationale about the need for the responsibility
and the forces that generated it, and some implementation details.
This information is easily available, but not “in the face” of the
software architect. As well as simplifying the presentation, this
mechanism de-emphasizes the role of illustrative examples
situated in reference architecture like MVC. We expect that this
presentation decision will reduce the negative reactions to generic
example UML diagrams. When using the tool in-house in
industry, the reference architecture used in example solutions
could be changed to an architecture used by that industry. This
would both accelerate understanding of the examples and increase
the possibility of re-using the sample solution. This presumes that
the tool is constantly managed and updated by in-house usability
experts and software architects, a presumption facilitated by
delivering the examples in separate web pages.
Although the hierarchy of responsibilities reflects the relationship
of the End-User USAPs and the Foundational USAPs, the
difference between the types of USAPs is not evident in the
presentation of responsibilities. It was a deliberate design choice
to express each responsibility in terms of the End-User USAP’s
vocabulary. Thus, the responsibilities in Figure 2 are couched in
terms of “User Profile”, “Configuration Description”, “Conditions
for Alarms, Events, and Alerts” and this string replaces the
parameter SPECIFICATION in the Foundational Authoring
USAP.

Figure 2: Prototype of a web-based interface for delivering USAP responsibilities to industry software architects.

Figure 3: Prototype “to do” list produced from those responsibilities that are marked as requiring architectural modification.

In the next section, we discuss how we anticipate managing the
situation when the architect chooses multiple USAPs as being
relevant to the system under construction. This will allow
distribute architecture teams both to record rationale for their
choice and to discuss potential solutions. Attaching design
rationale and discussion is optional so our delivery tool will
support discussion, but not require it, keeping the tool
lightweight.
At any point in the process of considering the different
responsibilities, the architect can generate a “to do” list. This is
a list of all of the responsibilities that have been checked as “Not
yet considered” or “Must modify architecture”. See Figure 3 for
an example. The list can then be entered into the architect’s
normal task list and will be considered as other tasks are
considered.
Supporting world wide distribution of the architecture team in
the use of USAPs has two facets.

• Enable world wide access

• Reduce the problems associated with simultaneous updates
by different members of the team.

The use of the World Wide Web for delivery allows world wide
access with appropriate access control. Standard browsers
support the concept of check lists and producing the “to do”
lists.
Allowing simultaneous updates is not supported by standard
browsers. Some Wikis do support simultaneous updates, e.g.
MediaWiki [www.mediawiki.org], but we do not yet know
whether these wikis directly support checklists and the
generation of “to do” lists. We are currently investigating which
tool or combination of tools will be adequate for our needs and
what modifications might have to be made to those tools.

5. DELIVERING MULTIPLE USAPS TO
SOFTWARE ARCHITECTS

Our motivation for developing the USAP Pattern Language was
partially to simplify the delivery of USAPs when multiple
USAPs are relevant to a particular system. We also want to
indicate to the architect the possibilities for reuse. In this
section, we describe how we anticipate accomplishing these two
goals.
Recall that the Foundational USAPs are parameterized and each
End User USAP provides a string that is used to replace the
parameter. For instance, consider a responsibility from the
Authoring Foundational USAP “The system must provide a way
for an authorized user to create a SPECIFICATION”. When
three End User USAPs are relevant to the system under design,
such as “User Profile”, “Environment Configuration”, and
“Alarms, Events and Alerts”, the three responsibilities are
displayed to the architect as “The system must provide a way for
an authorized user to create a [User Profile, Configuration
description, Conditions for Alarm, Event and Alerts].
This presentation satisfies two goals and introduces one
problem. Presenting three responsibilities as one reduces the
amount of information displayed to the architect since every
Foundational USAP responsibility is displayed only once, albeit
with multiple pieces of information. This presentation also
indicates to the architect the similarity of these three

responsibilities and hence the reuse possibilities of fulfilling
them through a single piece of parameterized code.
The problem introduced by this form of the presentation is that
now the radio buttons becomes ambiguous. Does the entry
“Architecture addresses this” mean that all of the three
responsibilities have been addressed or only some of them? We
resolve this ambiguity by repeating the radio buttons three
times, once for each occurrence of the responsibility. Thus, the
three responsibilities will be combined into one textual
description of the responsibility but three occurrences of the
radio buttons.

6. CURRENT STATUS AND FUTURE
WORK

At this writing, we have developed the pattern language for
three End User USAPs and four Foundational USAPs (Figure 1)
and have fleshed out all the responsibilities for these seven
USAPs. We have constructed a prototype delivery tools for a
browser based checklist and “to do” list generator.
We plan to test the delivery mechanism in an ongoing industrial
development effort. This will demonstrate strengths and
weaknesses of our approach and we will iterate to resolve any
problems or capitalize on any opportunities. One suggestion put
forth in early industry feedback is to enhance the to-do list by
assigning expected effort to each responsibility. One
requirements engineer at ABB said that her perception of the
effort needed to implement a scenario had been thoroughly
revised just be looking at the to-do list. By adding estimated
hours to the responsibilities, industry would get a better estimate
of the usability improvements’ translation into software
implementation cost. These estimates would vary depending on
many factors such as underlying architectural style,
implementation language, skill of programmers, etc. but a large
organization may have enough data from previous projects to
make such estimates for their organization. In addition, such a
feature could emphasize the savings realized by reuse;
responsibility-implementations that serve multiple End-User
USAPs would show up as requiring very little effort after the
first implementation.
The delivery platform that we have described here, to be used by
software architects, is envisioned to be the final portion of a tool
chain. There are two additional roles involved in the
development and use of USAPs. First, USAP developers will
have to create USAPs within the stylized context of the USAP
Pattern Language. Tool support for USAP developers will
greatly simplify the creation of USAPs.
The second role is the requirements definers; often a team
comprised of technologists and human factors engineers,
usability engineers, designers, or other users or user advocates.
Figure 4 shows how we envision a tool supporting this role.

http://www.mediawiki.org/

[2] Adams, R. J., Bass, L., & John, B. E. (2005) Applying
general usability scenarios to the design of the software
architecture of a collaborative workspace. In A. Seffah, J.
Gulliksen and M. Desmarais (Eds.) Human-Centered
Software Engineering: Frameworks for HCI/HCD and
Software Engineering Integration. Kluwer Academic
Publishers.

[3] Bass, L., John, B., & J. Kates, (2001), “Achieving Usability
through Software Architecture,” Technical Report
CMU/SEI-2001-TR-005, Software Eng. Inst., Carnegie
Mellon Univ., 2001.

Figure 4: Tool to support the requirements elicitation
process

[4] Bass, L., & John, B. (2003) “Linking Usability to Software
Architecture Patterns through General Scenarios,” The J.
Systems and Software, vol. 66, no. 3, pp. 187-197, 2003. The requirements team has available to them a repository of

USAPs. They select the ones that are appropriate for the system
being constructed. In our experience, the USAP end-user
scenarios are very general and can be used to invoke ideas about
how they apply to the system at hand. However, industrial teams
would like to tailor these scenarios to match their everyday
usability issues. Thus, the tool supporting requirements definers
will allow them to re-write the general scenarios to suit their
specific application.

[5] Folmer, E. (2005) Software Architecture Analysis of
Usability, Ph.D. thesis. Department of Computer Science,
University of Groningen, Groningen.

[6] Folmer, E., van Gurp, J., Bosch, J. (2003) A Framework for
capturing the relationship between usability and software
architecture; Software Process: Improvement and Practice,
Volume 8, Issue 2. Pages 67-87. April/June 2003.

[7] Golden, E, John, B. E., & Bass, L. (2005) The value of a
usability-supporting architectural pattern in software
architecture design: A controlled experiment. Proceedings
of the 27th International Conference on Software
Engineering, ICSE 2005 (St. Louis, Missouri, May, 2005).

The tool then creates input for the delivery tool while
simultaneously combining redundant responsibilities. The
output of the requirements definition process will then be
presented to software architects, as described in this paper, to
aid in their architecture design process.

[8] Golden, E., John, B. E., Bass, L. (2005) Quality vs.
quantity: Comparing evaluation methods in a usability-
focused software architecture modification task.
Proceedings of the 4th International Symposium on
Empirical Software Engineering (Noosa Heads, Australia,
November 17-18 2005).

In summary, USAPs have been proven to be useful to software
architects but have also demonstrated some problems that hinder
industrial use. Definition of a USAP Pattern Language and an
appropriate selection of tools supporting the roles involved in
the creation and use of USAPs should simplify industrial use.
We are currently constructing versions of these tools and testing
the extent to which they do, in fact, enable the industrial use of
USAPs.

[9] John, B. E., Bass, L. J., Sanchez-Segura, M-I. & Adams,
R. J. (2004) Bringing usability concerns to the design of
software architecture. Proceedings of The 9th IFIP Working
Conference on Engineering for Human-Computer
Interaction and the 11th International Workshop on
Design, Specification and Verification of Interactive
Systems, (Hamburg, Germany, July 11-13, 2004).

7. ACKNOWLEDGMENTS
We would like to thank Fredrik Alfredsson and Sara Lövemark
for their contributions to the “Alarms, Events and Alerts”
USAP. This work was supported in part by funds from ABB Inc.
The views and conclusions in this paper are those of the authors
and should not be interpreted as representing the official
policies, either expressed or implied, of ABB.

[10] Juristo, N., Moreno, A. M., Sanchez-Segura, M. (2007),
“Guidelines for Eliciting Usability Functionalities”, IEEE
Transactions on Software Engineering, Vol. 33, No. 11,
November 2007, pp. 744-758.

8. REFERENCES [11] Tidwell, J. (2006), Designing Interfaces: Patterns for
Effective Interaction Design. O’Reilly Media: Sebastopol,
CA.

[1] Alexander, C. (1977). A Pattern Language: Towns,
Buildings, Construction. USA: Oxford University Press.
ISBN 978-0195019193.

	1. INTRODUCTION
	2. BACKGROUND
	3. A PATTERN LANGUAGE FOR USAPs
	4. DELIVERING A SINGLE USAP TO SOFTWARE ARCHITECTS
	5. DELIVERING MULTIPLE USAPS TO SOFTWARE ARCHITECTS
	6. CURRENT STATUS AND FUTURE WORK
	7. ACKNOWLEDGMENTS
	8. REFERENCES

