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Abstract
While video platforms increasingly serve as primary learning resources during exploratory web searches, current
approaches to predicting knowledge gain largely ignore video-specific features. This paper bridges this gap by
examining how video interaction features (e.g., pausing, rewinding, forward navigation, viewing coverage) and
video resource features (e.g., words per minute in speech transcripts, complex word ratios, and video file size
density) correlate with learning outcomes. Using a publicly available dataset of 94 participants who engaged with
educational videos during their search sessions, our analysis reveals that video interaction features, particularly
those related to interaction frequency, are the strongest predictors of learning outcomes. Moreover, we analyze the
influence of individual features on classification performance, revealing distinct relationships between different
types of video interactions and knowledge gain. While our study is exploratory and based on a limited dataset, it
provides valuable first insights and a foundation for future research on video-based learning behavior in search as
learning settings. These insights can inform the design of adaptive learning systems that recognize and promote
productive video engagement behaviors. To support future research, we release our feature extraction pipeline
and analysis code1.
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1. Introduction

The internet has transformed how people acquire knowledge, with web searches playing a pivotal role
in informal learning.

Educational videos have become increasingly important in addition to traditional textual resources.
They offer learners an engaging way to process complex topics through rich visual and auditory
elements. Platforms like YouTube are crucial tools in these learning journeys. They enable users to
control the pace of their exploration and revisit challenging content sections.

The research area Search as Learning (SaL) investigates web search sessions with a learning in-
tent [1]. Recently, research on SaL has made significant strides in understanding how web searches
facilitate knowledge acquisition. A considerable body of work has explored the relationship between
learning outcomes and both user behavior (e.g., query patterns, clickstreams) [2, 3, 4] and the prop-
erties of consumed resources (e.g., textual complexity, readability) [5, 6, 7, 8]. However, while these
studies offer valuable insights into textual resources, videos—which are inherently multimodal and
interactive—remain understudied in the context of SaL.

Educational videos are uniquely suited for learning because they combine multiple forms of informa-
tion, as emphasized in the Cognitive Theory of Multimedia Learning (CTML)[9]. Interactions such as
pausing, rewinding, and forward jumping allow learners to adapt content delivery to their needs, po-
tentially enhancing comprehension and retention. Prior studies have examined how these interactions
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correlate with learning in controlled settings [10, 11], but there is limited research investigating their
role in authentic web search contexts.

This paper addresses this gap by analyzing user interactions with videos during learning-oriented
web searches. Specifically, we explore the extent to which interaction features can predict knowledge
gain (KG), providing a deeper understanding of how video consumption contributes to learning in
informal settings. The study focuses on two key research questions:

RQ1: How do user interactions (e.g., pausing, rewinding) correlate with learning outcomes
during video consumption in web search sessions?

RQ2: To what extent can these interactions predict knowledge gain in such contexts?

To answer these questions, we use the publicly available SaL-Lightning dataset [12]. We developed a
semi-automated approach for extracting detailed interaction logs from screen recordings. These logs
capture user behaviors and are analyzed to uncover their relationships with knowledge outcomes. By
focusing on videos as part of the broader SaL framework, our study expands the current understanding
of multimodal learning resources and their role in web-based knowledge acquisition.

The remainder of the paper is structured as follows: Section 2 summarizes the recent research on
SaL and video learning. Next, in Section 3, we explain how we extracted interaction logs from screen
recordings and define the extracted video features. In Section 4, we describe the evaluation process and
give insights into the relationship between video interaction and KG. Finally, in Section 5, we conclude
the results and summarize the implications for future research.

2. Related Work

Search engines are increasingly used as learning tools. Therefore, it becomes imperative to design
systems prioritizing knowledge acquisition [13]. The field of Search as Learning investigates user
behavior and system design to enhance learning outcomes during web-based searches [14, 15].

Research in SaL has explored diverse aspects of learning-related interactions. For instance,
Vakkari [16] identified features that reflect users’ learning needs and their influence on knowledge
acquisition during search activities. Similarly, Roy et al. [17] highlighted that learning is affected by
prior knowledge, emphasizing the importance of modeling users’ knowledge states and their evolution
during the search process [18, 19, 20, 21].

Efforts to study factors influencing KG during the search can be broadly categorized into two research
streams: a focus on (a) characteristics of web resources and (b) user behavior. For instance, Syed and
Collins-Thompson [22] studied document-level features to improve learning outcomes, particularly
for vocabulary acquisition. Ghafourian et al. [6] and Gritz et al. [5] explored readability metrics and
textual complexity, demonstrating their impact on user behavior and KG prediction. Yu et al. [23, 7]
utilized a wide range of features, including text and HTML statistics, to predict KG, while Otto et al. [24]
investigated how multimedia features complement readability and linguistic factors in predicting
learning outcomes. Recently, Gritz et al. [8] found a moderating influence of the visual complexity of
web pages on learning outcomes.

Furthermore, research has shown that user behavior differs across more and less successful web
searches. For example, input queries [2], navigation logs [3], and behavioral features such as time spent
on pages or click patterns [4] have been linked to learning outcomes. These studies provide insights
into how user interactions reflect and impact knowledge acquisition.

In the context of SaL, videos offer a multimodal learning experience that extends beyond traditional
textual resources. Videos enhance comprehension and retention by combining visual and auditory
elements, a principle supported by the Cognitive Theory of Multimedia Learning (CTML) [9]. User
interactions, such as pausing, rewinding, and forwarding, are critical in learners’ engagement with
video content. For example, the segmenting effect described in CTML suggests that breaking multimedia
content into smaller segments can reduce cognitive load and improve learning outcomes [25, 11]. Pausing



behavior, in particular, can reflect moments when learners process or integrate new information, aligning
with points of high complexity or meaningful content structure [10, 26].

Despite the advancements in SaL and video learning research, the role of user interactions with
videos within exploratory web searches remains relatively unexplored. Previous research has primarily
focused on textual resources, leaving a gap in understanding how video-based interactions contribute
to knowledge acquisition. Our work addresses this gap by examining video-specific user interaction
features and their influence on KG prediction. This contributes to a more holistic understanding of
learning in the context of SaL.

3. Methods

We developed systematic methods with three main components to investigate how video interactions
and resource characteristics influence learning outcomes during web searches. First, we selected a
dataset that captures both user interactions with educational videos and the measurement of knowledge
gain (Section 3.1). Next, we implemented a semi-automatic approach to extract video interaction data
from screen recordings (Section 3.2). Finally, we derived two sets of features: interaction features that
quantify user engagement patterns and resource features that characterize video content properties
(Section 3.3). This set of methods enables us to analyze how different aspects of video engagement
correlate with knowledge acquisition during exploratory searches.

3.1. Rationale for Selection of the Dataset

After reviewing datasets for exploratory web searches from the literature [4, 27, 12], we decided to use
the SaL-Lightning dataset [12]. This dataset proved optimal for our purposes for several reasons. First,
it includes pre and post-test data necessary for measuring learning gains, unlike alternatives such as
CoST [27]. Second, it captures diverse web navigation patterns with substantial video engagement, with
82% of participants (94 of 114) accessing YouTube videos. This contrasts with other datasets such as
Gadiraju et al. [4], where participants primarily accessed textual content like Wikipedia articles. While
the published dataset includes standard user actions (clicks, scrolling), it lacks interactions with videos.
We obtained access to the original screen recordings, enabling us to extract detailed video interaction
data through semi-automated processing.

3.2. Extraction of Video Interactions from Screen Recordings

The manual screen recording annotation is time-consuming and error-prone, requiring continuous
attention and precise temporal documentation. To address this, we developed a semi-automated
approach, as depicted in Figure 1. The core idea involves fine-tuning and overfitting the object detection
algorithm YOLO [28] and the OCR model TrOCR [29] on the study data to generate accurate interaction
logs.

Using the provided timelines, we automatically extracted individual clips from the screen recordings,
each representing a continuous sequence of a participant watching a YouTube video. Each clip was
sampled at 10 frames per second. YOLO was used to detect the play/pause icon and the video playback
position displayed on the interface. We fine-tuned YOLO using an initial training set of 25 manually
annotated framed. Through iterative quality reviews, we addressed detected errors by expanding the
training dataset, ultimately achieving reliable performance with 79 annotated frames.

The OCR algorithm TrOCR was applied to extract video timestamps. Similarly, misrecognized
timestamps identified during quality checks were iteratively added to the training data, resulting in
a total of 344 annotations. This process yielded interaction logs at a resolution of 10 timestamps per
second, capturing whether the video was playing or paused.

The data were smoothed using a rolling maximum approach to address frame-to-frame inconsistencies
in the detection results. We applied a seven-frame sliding window (three frames before and after each
target frame) to determine the video timestamp and the playing status (paused/playing) through a
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Figure 1: The figure depicts our general semi-automatic workflow to gather interaction log data: (1) YouTube
controls in the screen recordings are extracted for the playing/paused symbol and the video timestamps using
YOLO [28]; (2) the video timestamps get recognized by an OCR model [29]; (3) the video timestamps are parsed
and the time series refined; (4) the results are manually and qualitatively judged and mistakes are added to the
training data (whether for object detection or OCR).

majority vote. To validate the resulting interaction logs, we randomly sampled clips from different
participants and manually cross-checked them against the original screen recordings until no further
errors were identified.

3.3. Feature Calculation

The primary focus of this study is to investigate user interactions with videos during learning intended
web search (see Section 3.3.1). However, we additionally experiment with video resource features,
analyzing how the selected videos themselves can influence learning (see Section 3.3.2). Table 1 shows
a complete list of extracted features.

3.3.1. Video Interaction Features

First, we define features based on accessing the videos (𝑓1-𝑓5) rather than actions on the video (e.g.,
pausing the video). Features 𝑓1 and 𝑓2 represent the number of videos and total dwell time on these
videos. Next, 𝑓3-𝑓5 indicate how much time the user spends on the video in relation to the video
duration (e.g., 80% of the videos on average). Features 𝑓6 and 𝑓7 reflect when the user interacts with
the videos within the session or clip, which expresses whether a user primarily interacts with the videos
relatively early or late. On the other hand, 𝑓8 captures the timestamp of the earliest interaction across
all watched videos. 𝑓9-𝑓12 count the absolute number of pauses, rewinds, seek forwards, and all video
interactions per user across the whole search session:

𝑓9 =
𝑉∑︁
𝑣

𝑝𝑎𝑢𝑠𝑒𝑠𝑣, 𝑓10 =
𝑉∑︁
𝑣

𝑟𝑒𝑤𝑖𝑛𝑑𝑠𝑣, 𝑓11 =
𝑉∑︁
𝑣

𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑠𝑣, 𝑓12 = 𝑓9 + 𝑓10 + 𝑓11, (1)

where 𝑉 is the set of visited videos by a learner. Additionally, we capture the interaction rate by diving
the total number of interactions by the total dwell time:

𝑓13 =
𝑓9
𝐷𝑇

, 𝑓14 =
𝑓10
𝐷𝑇

, 𝑓15 =
𝑓11
𝐷𝑇

, 𝑓16 =
𝑓12
𝐷𝑇

, 𝐷𝑇 =

𝑉∑︁
𝑣

𝑑𝑤𝑒𝑙𝑙 𝑡𝑖𝑚𝑒𝑣 (2)

where 𝐷𝑇 is the total dwell time per user on videos. These features give insights into how actively the
users interact with the videos. 𝑓17 − 𝑓19 measure the total duration of pauses, respectively, the total
rewind and forward jump distance in seconds. 𝑓20 is the average pausing length, covering whether a



Table 1
Complete list of all calculated features.

# Description
vi
de

o
in
te
ra
ct
io
n
fe
at
ur

es
𝑓1 Number of accessed YouTube videos
𝑓2 Total sum of dwell times on YouTube videos
𝑓3 Average percentage of the videos that have been viewed
𝑓4 Highest percentage of the videos that have been viewed
𝑓5 Total percentage of the videos that have been viewed
𝑓6 Average time to interaction within a session
𝑓7 Average time to interaction within a clip
𝑓8 Earliest interaction within a clip
𝑓9 Number of forward jump actions across a session
𝑓10 Number of pauses across a session
𝑓11 Number of rewind actions across a session
𝑓12 Number of user interactions across a session
𝑓13 Forward jumps per minute of total dwell time
𝑓14 Pauses per minute of total dwell time
𝑓15 Rewind actions per minute of total dwell time
𝑓16 Interactions per minute of total dwell time
𝑓17 Total sum of all pause duration
𝑓18 Total sum of rewind distances
𝑓19 Total sum of forward jump distances
𝑓20 Ratio of total pausing duration and total dwell time
𝑓21 Ratio of total rewind distance and total dwell time
𝑓22 Ratio of total forward jump distance and total dwell time
𝑓23 Average pausing duration
𝑓24 Average rewind distance
𝑓25 Average forward jump distance
𝑓26 Ratio of the total rewinds to total forward jump actions
𝑓27 Ratio of the total rewind distance to the total forward jump distance
𝑓28 Ratio of the total forward jump actions to the sum of pauses and rewinds
𝑓29 Relative time until interaction in relation to the total video duration
𝑓30 Relative time until pause action in relation to the total video duration
𝑓31 Relative time until rewind action in relation to the total video duration
𝑓32 Relative time until forward jump action in relation to the total video duration

vi
de

o
re
so
ur

ce
fe
at
ur

es 𝑓33 Weighted average of characters in speech transcripts
𝑓34 Weighted average of syllables in speech transcripts
𝑓35 Weighted average of words in speech transcripts
𝑓36 Weighted average of complex words in speech transcripts
𝑓37 Weighted average of characters per minute in speech transcripts
𝑓38 Weighted average of syllables per minute in speech transcripts
𝑓39 Weighted average of words per minute in speech transcripts
𝑓40 Weighted average of complex words per minute in speech transcripts
𝑓41 Weighted average of video file size per frame per pixel

learner takes short or longer pauses. Further, 𝑓21 is the average rewind distance and reflects whether a
user rewinds relatively small portions of the video or repeats whole videos. On the other hand, 𝑓22 is
the average forward jump distance and indicates whether a user searches thoroughly or broadly for
information. Similarly, 𝑓23 − 𝑓25 measure the average pausing duration, rewind, and forward jump
distance, independent of the dwell time. 𝑓26-𝑓28 measures the relationship between rewinds (and pauses)
and forward jumps, indicating whether a user is profoundly engaging with videos or broadly scanning
(e.g., searching for specific information). Finally, 𝑓29-𝑓32 reflect at which average percentage of the
video the user performs an action (e.g., on average, after 20% of the video a user pauses the video).



3.3.2. Video Resource Features

Using the tool yt-dlp [30], we downloaded each accessed video along with its associated metadata (e.g.,
video length, file size). Next, we used Whisper [31] (version large-v3) to get speech transcripts of
the videos. Inspired by text complexity and readability research, we extracted the number of characters,
syllables, words, and complex words from every speech transcript with the Python tool readability [32].
Moreover, similar to Gritz et al. [8], we used file size per frame per pixel as a proxy for visual complexity
based on the principle that more complex visual content typically results in larger compressed file sizes.

Since every learner can access multiple videos, we calculate the average of the features per search
session, weighted by the dwell time per video length:

𝐹 (𝑥) =

∑︀𝑉
𝑣 𝑥𝑣 · 𝑑𝑤𝑒𝑙𝑙 𝑡𝑖𝑚𝑒𝑣

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑣∑︀𝑉
𝑣=1 𝑑𝑤𝑒𝑙𝑙 𝑡𝑖𝑚𝑒𝑣

, (3)

where 𝑉 is the set of videos accessed by a learner and 𝑥 ∈ {characters, syllables, words, complex words}.
Subsequently, we define the features as follows:

𝑓33 = 𝐹 (characters), 𝑓34 = 𝐹 (syllables), 𝑓35 = 𝐹 (words), 𝑓36 = 𝐹 (complex words). (4)

We further divide all features by the total dwell time on videos, ensuring that our features capture
interaction patterns rather than time spent on videos. Additionally, we then recalculate these features
relative to video duration rather than total word count, yielding measures of speech rate (e.g., words
per minute):

𝐺(𝑥) =

∑︀𝑉
𝑣=1

𝑥𝑣
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑣

· 𝑑𝑤𝑒𝑙𝑙 𝑡𝑖𝑚𝑒𝑣
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑣∑︀𝑉

𝑣 𝑑𝑤𝑒𝑙𝑙 𝑡𝑖𝑚𝑒𝑣
(5)

Again, we define the features as follows:

𝑓37 = 𝐺(characters)𝑓38 = 𝐺(syllables), 𝑓39 = 𝐺(words), 𝑓40 = 𝐺(complex words). (6)

Finally, we use the file size of the MP4 files, normalized by the number of frames and per pixel:

𝑓41 =

∑︀𝑉
𝑣

𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒𝑣
𝑓𝑟𝑎𝑚𝑒𝑠𝑣

· 𝑑𝑤𝑒𝑙𝑙 𝑡𝑖𝑚𝑒𝑣
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑣∑︀𝑉

𝑣=1 𝑑𝑤𝑒𝑙𝑙 𝑡𝑖𝑚𝑒𝑣
. (7)

4. Evaluation

In this section, we assess the effectiveness of our features by analyzing their performance for the
task of knowledge gain prediction. We begin by introducing the dataset used in our experiments
(see Section 4.1), followed by a detailed explanation of the knowledge gain (see Section 4.2) and the
evaluation metrics (see Section 4.3). For evaluation, we formulate the knowledge gain prediction as
a classification task. In this regard, we present the experimental setup (see Section 4.4), including
the classifiers, baselines, and feature selection methodology, and conclude with a discussion of the
results (see Section 4.4.4) and an analysis of feature importance (see Section 4.5). This comprehensive
evaluation aims to shed light on the role of video interactions in predicting learning outcomes and to
identify the most relevant features contributing to classification performance.

4.1. Dataset

For our evaluation, we utilized the publicly available SaL-Lightning dataset, which focuses on exploratory
web searches [12]. A total of 130 university students took part in the study, of which the data of 114
learners remained after filtering by the authors. Participants in this study were instructed to learn as
much as they could about the generation of lightning and thunder within a time limit of 30 minutes. Still,
they were allowed to finish whenever they wanted. Despite the time limit, the search was unrestricted,



meaning that any search engine and any web page on the Internet could be accessed, resulting in 808
unique visited URLs. To assess learning, the participants completed identical 10-question multiple-
choice tests both one week before and immediately following the search sessions. Compensation was
provided to all participants for their participation.

Since we are interested in the interactions with videos in this study, we filtered the participants
according to the criterion that they accessed at least one YouTube video (N=94). The remaining
participants were predominantly female (79 female, 15 male) and 22.8 ± 2.8 years old. On overage,
the participants visited 4.5 ± 2.6 (1-17) videos for a total duration of 598 s ± 338 s (82 s-1728 s). The
participants had 14.5± 18.8 (0-135) interactions (pause, rewind, jump forward), while 7 did not interact
with the videos at all.

4.2. Definition of Knowledge Gain

In recent works, knowledge gain was primarily measured as the difference between post-test and
pre-test scores (correctly answered items). However, this does not consider the learner’s confidence
(e.g., guessing the answer). Therefore, we define a new measure to incorporate confidence. In the first
step, we weigh the pre and post-tests with confidence.

𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡 =

𝑛∑︁
𝑖=1

(2 * 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠𝑖 − 1) · 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑖
3

, (8)

where 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 ∈ {0, 1} represents whether an answer was correct and 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ∈ {0, 1, 2, 3}
the submitted confidence in the correctness for item 𝑖 for n=10 items. This results in a score for each
item between −1 (very confident but wrong) and 1 (very confident and correct). We combine 𝑝𝑟𝑒 and
𝑝𝑜𝑠𝑡 and define the knowledge gain as:

𝐾𝐺 = 𝑚𝑎𝑥(
1 + 𝑝𝑜𝑠𝑡− 𝑝𝑟𝑒

1 + 𝑛− 𝑝𝑟𝑒
, 0). (9)

We assume the learner’s knowledge cannot decrease through a web search. Thus, the values can range
between 0 and 1, where 0 means that nothing was learned and 1 that everything was correct in the
post-test with full confidence.

Based on the literature, the actual values are less important than the classification of whether a web
search leads to low, moderate, or high knowledge gain. Therefore, we define three categories—low,
moderate, and high—and assign participants to these categories based on their KG as follows:

𝑧(𝐾𝐺) =
𝐾𝐺

𝜎
, (10)

where 𝜇 represents the mean and 𝜎 the standard deviation of the knowledge gains.
This results in the following distribution:

• low: 33 participants
• moderate: 25 participants
• high: 36 participants

4.3. Metrics

To evaluate the classification performance of the models and thus the predictive power of the features,
we utilize the metrics Precision (𝑝), Recall (𝑟), F1-score (𝐹1), and Accuracy (𝑎𝑐𝑐)). These metrics are
defined as follows:

𝑝 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 𝑟 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, (11)

𝐹1 =
2 · 𝑝 · 𝑟
𝑝+ 𝑟

, (12)



Table 2
Precision (𝑝), recall (𝑟), and 𝐹1-scores (𝐹1) for the three classes low,moderate, and high. Additionally macro scores
and micro accuracy (𝑎𝑐𝑐) for all classifiers and averaged. Results are grouped by baselines, video interaction
features, video resource features, and the combination of both. Significant better results than baselines are
highlighted in bold.

low moderate high macro
estimator 𝑝 𝑟 𝐹1 𝑝 𝑟 𝐹1 𝑝 𝑟 𝐹1 𝑝 𝑟 𝐹1 𝑎𝑐𝑐

ba
se
lin

es majority 0.0 0.0 0.0 0.0 0.0 0.0 38.3 100.0 55.4 12.8 33.3 18.5 38.3
stratified 25.3 23.0 24.1 26.0 31.2 28.4 35.9 33.9 34.9 29.1 29.4 29.1 29.4
uniform 28.0 25.5 26.7 24.0 9.6 13.7 33.3 50.0 40.0 28.4 28.4 26.8 30.6
max. 28.0 25.5 26.7 26.0 31.2 28.4 38.3 100.0 55.4 29.1 33.3 29.1 38.3

re
so
ur

ce

ada 26.1 21.2 23.4 23.4 26.4 24.8 35.4 38.3 36.8 28.3 28.6 28.3 29.1
dt 26.8 22.4 24.4 18.9 18.4 18.6 34.3 40.0 36.9 26.6 26.9 26.7 28.1
nb 26.8 18.2 21.7 32.0 24.8 27.9 34.1 49.4 40.4 30.9 30.8 30.0 31.9
gboost 26.7 23.6 25.1 12.8 9.6 11.0 32.2 41.1 36.1 23.9 24.8 24.0 26.6
knn 30.2 29.1 29.6 33.3 26.4 29.5 39.6 46.7 42.9 34.4 34.1 34.0 35.1
mlp 31.1 31.5 31.3 24.3 20.8 22.4 36.7 40.0 38.3 30.7 30.8 30.7 31.9
rf 31.7 26.7 28.9 18.3 16.0 17.1 30.6 37.8 33.8 26.9 26.8 26.6 28.1
svm 31.2 41.8 35.8 36.0 24.8 29.4 37.4 33.9 35.6 34.9 33.5 33.6 34.3
average 28.8 26.8 27.5 24.9 20.9 22.6 35.0 40.9 37.6 29.6 29.5 29.2 30.6

in
te
ra
ct
io
n

ada 45.2 42.4 43.8 37.0 32.0 34.3 43.0 49.4 46.0 41.7 41.3 41.4 42.3
dt 40.9 42.4 41.7 38.3 36.8 37.6 48.6 48.3 48.5 42.6 42.5 42.6 43.2
nb 56.1 38.8 45.9 33.1 72.0 45.3 36.9 17.2 23.5 42.0 42.7 38.2 39.4
gboost 45.2 42.4 43.8 34.6 29.6 31.9 43.8 50.6 46.9 41.2 40.9 40.9 42.1
knn 45.5 39.4 42.2 42.6 36.8 39.5 42.9 52.2 47.1 43.7 42.8 42.9 43.6
mlp 45.5 51.5 48.3 36.5 18.4 24.5 43.6 53.3 48.0 41.9 41.1 40.3 43.4
rf 56.8 60.6 58.7 46.3 49.6 47.9 54.4 48.3 51.2 52.5 52.8 52.6 53.0
svm 51.3 46.7 48.9 35.8 30.4 32.9 47.7 56.7 51.8 44.9 44.6 44.5 46.2
average 48.3 45.5 46.6 38.0 38.2 36.7 45.1 47.0 45.4 43.8 43.6 42.9 44.1

co
m
bi
ne

d

ada 43.9 41.8 42.9 39.4 32.8 35.8 44.0 51.1 47.3 42.5 41.9 42.0 43.0
dt 42.8 43.0 42.9 37.8 36.0 36.9 48.1 49.4 48.8 42.9 42.8 42.9 43.6
nb 56.2 38.2 45.5 33.1 70.4 45.0 38.0 19.4 25.7 42.5 42.7 38.7 39.6
gboost 44.6 42.4 43.5 35.6 29.6 32.3 43.5 50.6 46.8 41.2 40.9 40.9 42.1
knn 44.2 39.4 41.7 40.4 35.2 37.6 42.5 50.6 46.2 42.4 41.7 41.8 42.6
mlp 44.9 53.9 49.0 34.3 19.2 24.6 42.1 47.2 44.5 40.4 40.1 39.4 42.1
rf 56.6 59.4 58.0 45.7 51.2 48.3 54.1 47.2 50.4 52.2 52.6 52.2 52.6
svm 50.0 43.0 46.3 33.6 28.8 31.0 45.2 55.6 49.9 43.0 42.5 42.4 44.0
average 47.9 45.2 46.2 37.5 37.9 36.4 44.7 46.4 45.0 43.4 43.1 42.5 43.7

𝑎𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
, (13)

where 𝑇𝑃 , 𝐹𝑃 , 𝑇𝑁 , and 𝐹𝑁 denote the number of true positives, false positives, true negatives, and
false negatives, respectively. A true positive would mean that a model predicted the same KG class (e.g.,
high) for a learner as in ground truth.

4.4. Knowledge Gain Prediction

We perform a knowledge gain prediction to assess the influence of the video interaction features on the
knowledge gain. We use a recently published evaluation script for the same task [8]. The evaluation
script consists of a stratified 10-fold cross-validation for eight classifiers, including hyperparameter
optimization and feature selection. To increase the robustness of our results, we repeat the 10-fold
cross-validation 5 times with different random states and calculate the metrics based on all predictions.



4.4.1. Classifiers

The classifiers consist of adaboost (ada) [33], decision tree (dt) [34], naive bayes (nb) [35], gradient
boosting (gboost) [36], k-nearest neighbors (knn) [37], multilayer perceptron (mlp) [38], random forest
(rf) [39], and support vector machine (svm) [40].

4.4.2. Baselines

Additionally to the two feature sets and eight classifiers, we define three baselines that predict (1) the
majority class, (2) a stratified distribution, and (3) a uniform distribution based on the training set.
These form the lower limit for evaluating the classification results since an equal or lower value would
indicate that the features are not better suited as predictors than guessing.

4.4.3. Feature Selection

When dealing with limited data, feature selection is a fundamental preprocessing step. Feature selection
is part of hyperparameter optimization; the ideal value is determined based on the validation data in
each cross-validation iteration. As the authors in [8], we use the top 𝑛 features to correlate with the
knowledge gain.

4.4.4. Results

The complete classification results are presented in Table 2.
Initially, we observed that video resource features appear to be poor predictors of knowledge gain.

None of the classifiers significantly outperforms the baselines, which correspond to (weighted) random
guessing. On average, the classifiers achieve a similar 𝐹1-score to the stratified baseline, indicating that
these features alone do not provide meaningful predictive power.

In contrast, classification based on interaction features outperforms all baselines. The 𝐹1-score is, on
average, 13.7% higher than the best baseline, suggesting that user interactions with the videos capture
some aspects of learning success. To confirm the robustness of these results, we conducted significance
tests on the 𝐹1-score and accuracy across all classifiers based on the baselines for the three different
settings, applying Bonferroni correction for multiple comparisons. For a result to be deemed significant,
the 𝑝-value must satisfy the condition:

𝑝 <
𝛼

3
=

0.05

3
≈ 0.0167, where 𝛼 = 0.05. (14)

The 𝐹1-score and accuracy for interaction features were significantly better than those of the baselines.
Ultimately, the results for the combined features highlight the positive impact of interaction features

on classification performance. This finding is somewhat surprising since the interaction features were
calculated independently of the videos’ content and design. A plausible hypothesis suggests that
interaction features may indirectly capture video content elements. For example, successful users might
instinctively pause or rewind during challenging or crucial moments, aligning their actions with the
video’s complexity or significance. The following experiment will examine which features contributed
most significantly to achieving the best classification results.

4.5. Feature Importance

In this experiment, we aim to identify which features contribute most to the best classification example.
We use the code provided in Gritz et al. [8] to perform a permutation feature importance analysis.
We choose random forest for the interaction features that achieved 52.6% accuracy and repeat the
evaluation with the corresponding hyperparameters and features from the experiment before. In every
iteration of the cross-validation, each feature is discarded 100 times, and the decrease in accuracy is
measured. Figure 2 shows the result.
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Figure 2: Descending sorted permutation feature importance for the random forest classifier. The number of
selections across the cross-validation (max. 50) is displayed on the x-axis in brackets.

The most important feature is the interaction rate, which reflects how actively a learner engages
with the videos. Surprisingly, we found a weak negative correlation (Pearson 𝑟 = −0.20) between this
feature and the continuous knowledge gain value. The second to fifth important features (although
not all selected in every iteration) depend on the rewind interactions. We also found a weak negative
correlation (Pearson 𝑟 = −0.29) between the rewind rate and knowledge gain. One possible explanation
is that these interactions indicate challenges in learning with videos rather than deeper engagement.

5. Conclusions

In this paper, we investigated the relationship between video interaction features and knowledge gain
during a learning intended web search on the SaL-Lightning dataset [12]. First, we derived interaction
logs from screen recordings through a semi-automatic procedure. Next, we developed both (1) features
representing the user interactions with the videos seen across the web searches and (2) features
indicating the speech rate and (visual) complexity of the video resources. We performed a knowledge
gain prediction based on the classification framework provided by recent research [8]. Finally, we
analyzed the importance of the individual features in the best classification result.

Surprisingly, the classification results based on the video resource features did not show better
values than random guessing. These characteristics may be insufficient to capture the diversity of
educational videos and require further research. On the other hand, we observed a 13.7% significantly
increased 𝐹1-score for the video interaction features, showing that the learning outcomes can be
partially explained by the users’ interaction with the videos in the learning sessions. Additionally, we
found that the interaction rate, especially the rewind rate, is the most important predictor for knowledge
gain. These features revealed a weak negative correlation with knowledge gain, indicating that these
values might indicate difficulties in learning with videos. However, a limitation of the results is that
they were obtained using data from a single study with a single learning task and require verification.
Nevertheless, our analysis provides a basis for further research on video-based learning in real-life
settings.



These results could be considered when designing assistive tools (e.g., browser add-ons) to support
learners actively experiencing difficulties. Furthermore, video designers could adjust their videos
accordingly when many users exhibit this behavior (if the information is available). Future research
could investigate which aspects of a video lead to increased interaction rates. An additional step could
be to predict specific moments in a video that trigger interactions to provide further support (e.g., extra
information or system pauses).
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