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Abstract

Large Language Models (LLMs) have greatly advanced the field of Natural Language Generation (NLG). Despite
their remarkable capabilities, their tendency to generate hallucinations—a phenomenon where models generate
inaccurate or misleading information continues to be a significant challenge to their broader adoption across
various domains. In this paper, we investigate the impact of instruction-tuned quantized Small Language Models
(SLMs) (defined as models with fewer than 15 billion active parameters), specifically trained on a subset of Shared-
task on Hallucinations and Related Observable Overgeneration Mistakes (SHROOM) dataset for hallucination
detection. We focus on SLMs to achieve a balance between computational efficiency and performance in
detecting hallucinations. The instruction-tuned quantized models are compared against the Generative Pre-
trained Transformer (GPT-4) and traditional “textual entailment” (entailment) based methods across various
datasets. Our findings demonstrate that the optimized SLMs achieve performance comparable to LLMs like GPT-4
and outperform traditional textual entailment-based methods in hallucination detection. This research highlights
the potential of smaller, instruction-tuned language models as practical and efficient solutions for improving the
reliability of language models, especially in resource-constrained environments.
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1. Introduction

The domain of Natural Language Generation (NLG) is witnessing a remarkable transformation with the
emergence of Large Language Models (LLMs) [1, 2]. LLMs have been shown to outperform traditional
Natural Language Processing (NLP) approaches across a wide range of applications [3, 4]. Despite
the rapid advancements in LLMs, a concerning trend has emerged where these models generate
hallucinations [5, 6], resulting in content that appears plausible but is factually unsupported. This
issue is particularly critical in sensitive domains such as healthcare, finance, and legal services, where
the accuracy of generated content is paramount. Hence, the automatic detection of hallucinated
content has become an active area of research, aiming to enhance the reliability and trustworthiness of
LLM-generated content [7, 8].

Diverse modeling strategies, ranging from Black-Box, White-Box to evidence-based approaches
[8, 7], have been investigated to develop solutions for detecting hallucinated content. Black-Box meth-
ods analyze the consistency of LLM’s outputs through follow-up questions with other LLMs [9] or
prompting the LLM for self-evaluation [10]. [11] proposed semantic-aware cross-check consistency
(SAC?), a sampling-based approach that builds upon self-consistency checks by incorporating semanti-
cally equivalent question perturbations and cross-model response consistency verification techniques.
Similarly, [12] introduced SelfCheckGPT, which detects inconsistencies by evaluating the stability of
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generated responses. These methods assume that inconsistencies arise when LLM is uncertain about a
concept. However, both approaches require multiple response generations from LLMs, making them
computationally expensive for practical applications.

The White-Box approaches explore the internal workings of LLMs to analyze factual recall. [13]
analyzed how LLMs encode factual statements with a specific structure. They proposed the multi-layer
perceptron layers store facts, and transferred through attention layers that focus on subject tokens.
Similarly, [14] leveraged the activations of hidden layers as inputs to a classifier designed to assess
the truthfulness of statements. [15] proposed constraint SATisfaction (SAT) Probe, a method probing
attention patterns, to predict factual errors and allow early error identification. While these approaches
are promising for hallucination detection, their implementation remains challenging as access to the
inner workings of LLMs is not always feasible.

Recently evidence-based fact-checking gained significant attention as an essential tool for combating
misinformation. Factual precision in Atomicity Score (FACTSCORE) by [16] evaluated the correctness
of individual facts within the generated text by referencing a knowledge source. [17] introduced a
real-world claim and evidence dataset specifically designed to enhance textual entailment models by
reducing the complexity of claims through a decomposition process. By breaking down claims into
simpler components, this approach aims to facilitate more effective entailment evaluation and thereby
improve overall model performance. [18] presented an automated pipeline for fact-checking real-world
claims by retrieving raw evidence from the web. This method retrieves a fixed number of documents for
each claim. But this predetermined approach may not always provide sufficient evidence, potentially
resulting in incomplete or biased fact-checking. To address this limitation, [19] proposed a framework
that leverages statistical decision theory and Bayesian sequential analysis, which eliminates the need
for a predetermined number of observations. The analysis proceeds sequentially, enabling a quick
decision-making process through a stop-or-continue strategy. While these evidence-based approaches
benefit from real-world knowledge, they may introduce additional sources of error and are often limited
to addressing only the fact-checking form of hallucinations.

This paper examines a specific scenario of hallucination detection, where the objective is to predict
which hypothesis is a hallucination given a triplet consisting of a source input and two hypotheses.
The contribution of this study is twofold.

« We explore the impact of instruction-tuned, quantized SLMs and compare their performance
against both textual entailment models and GPT-4.

+ Our results demonstrate that instruction-tuned, quantized SLMs achieve performance comparable
to GPT-4 while offering significant advantages in terms of computational efficiency.

2. Datasets

This section describes the datasets used for instruction-tuning and evaluating our hallucination detection
model. The number of training and testing samples are shown in Table 1.

Table 1
Training and testing data splits across all the datasets

Dataset Training | Testing
SHROOM 538 115
HaluEval - 1000

2.1. SHROOM

The SHROOM dataset is released as part of the SemFEval-2024 shared task for hallucination detection. It
contains data from three distinct NLG tasks: Machine Translation (MT) and Paraphrase Generation (PG).



Table 2
Examples of source and hypotheses triplets from the SHROOM dataset.

’ Input Label

source: | didn’t give you enough credit. hypothesis 2
hypothesis 1: | didn’t give you enough credit.
hypothesis 2: | gave you enough credit.

source: Tokyo ekozala engumba moko pamba ya Asie oyo eyambi masano ya Oympique ya eleko | hypothesis 2
ya mibale, eyambaki ya liboso na 1964.

hypothesis 1: Tokyo will be the only Asian city to have hosted two summer Olympics, having
hosted the games in 1964.

hypothesis 2: Tokyo will be the only Asian city to host the second Olympic Games, the first being
in 1964.

source: Medas de sas traditziones a inghA-riu de sa festa sunt istadas adotadas fintzas dae sos chi | hypothesis 1
non creent in sos paisos cristianos e dae sos non cristianos in totu su mundu.

hypothesis 1: Many of the traditions surrounding the festival have been adopted by non-Christian
people in their Christian countries and by non-Christian people around the world.

hypothesis 2: Many of the traditions surrounding the holiday have been adopted also by non-
believers in Christian countries and non-Christians around the world.

source: James, we shouldn’t be here. hypothesis 1
hypothesis 1: James, we’re supposed to be out of here.
hypothesis 2: We shouldn’t be in this situation.

More details about the dataset can be found in the SemEval-2024 shared task 6 overview paper [20]. For
this work, we consider data from MT and PG tasks with source, target, hypothesis, and label details . To
enable the model to simultaneously learn the characteristics of hallucinations while also identifying the
patterns that differentiate them from non-hallucinations, we transform the data into triplets. Each triplet
consists of an original input sentence (source) paired with two hypotheses (hypothesis 1, hypothesis 2):
one representing the correct output (target) and the other a hallucinated output (hypothesis labeled as
a hallucination in the original data). The order of the hypotheses is randomized to prevent bias. This
transformation resulted in a training set of 538 samples and a testing set of 115 samples. Table 2 shows
few samples from training set. This is the only data we used to instruction-tune SLMs in our approach.

2.2. HaluEval

HaluEval [21] is a large-scale hallucination evaluation benchmark that offers a collection of generated
and human-annotated hallucinated samples to evaluate the performance of LLMs in detecting halluci-
nations. It includes data from three NLP tasks: question answering, knowledge-grounded dialogue, and
text summarization.

To test our approach, we exclusively focused on data from the text summarization task as it is inline
with the PG data used in the SHROOM training set. This dataset is comprised of columns such as
document, right summary, and hallucinated summary. As the dataset contains more than 10k samples,
we randomly sampled 1,000 examples for our experiments. To create triplets, we used the document as
the source, and included the right summary and hallucinated summary as the hypotheses.

3. Approach

The choice of SLMs in this study is motivated by the necessity for resource efficiency. Smaller models
provide significant benefits in terms of reduced computational cost, lower memory requirements, and
faster inference speed. These advantages make them more feasible for practical applications, particularly
in resource-constrained environments, while maintaining competitive performance.

We explored several SLMs and finally selected Mixtral 8x7B [22] and SOLAR 10.7B [23] as the base
models in our approach as illustrated in Figure 1. These models were chosen due to their strong
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Figure 1: Instruction tuning LLMs

Table 3
Instruction tuning prompt

Given the following information:

source: original input sentence

hypothesis: manipulation of the source

Determine which hypothesis is a hallucination. A hallucination is any hypothesis
that contains information not supported by the source.

source: {}

hypothesis 1: {}

hypothesis 2: {}

Answer 1 if hypothesis 1 is a hallucination, or 2 if hypothesis 2 is a hallucination:
label: {}

performance on the SHROOM test set. Mixtral 8x7B uses a Mixture of Experts (MoE) architecture.
This design allows the model to dynamically select different subsets of parameters for different inputs,
enhancing its ability to handle diverse linguistic tasks efficiently. Additionally, the model has been
trained on a multilingual dataset, enhancing its ability to capture language nuances and understand
semantic relationships across languages. SOLAR 10.7B on the other hand, utilizes Depth Up-Scaling
(DUS), which combines multiple base models into a unified framework. This approach enhances
the model’s capacity for complex language analysis, making it particularly effective for detecting
hallucinations and other intricate language phenomena.

We performed instruction-tuning on the quantized versions of both Mixtral and SOLAR to further
optimize their computational efficiency. Both models were quantized to 4-bits significantly lowering the
computational requirements and subsequently instruction-tuned using Quantized Weight-Decomposed
Low-Rank Adaptation (QDoRA) technique [24]. We selected QDoRA due to the greater efficiency it
offers in terms of speed, robustness to rank selection, and faster learning. It accelerates the fine-tuning
process, allowing for quicker adaptation to specific tasks, and is less sensitive to the choice of rank
during the decomposition process, ensuring stable performance across different configurations. Each
LLM was instruction-tuned with the prompt shown in Table 3.

4. Results

This section details the experimental evaluation of our approach. To assess the effectiveness of our
method, we employed established classification metrics like accuracy (Acc), macro F1 score (Fiqc),
precision (Prec), and recall (Rec). Additionally, we compared our model’s performance against GPT-4



Table 4
Impact of quantization and instruction-tuning across various LLMs on SHROOM testset

Base Quantized (Q) Quantized
Instruction-Tuned
(QIT)
Model Prec Rec Frac Prec Rec Flac Prec Rec Frac
Mixtral 8x7B 0.66 0.64 0.64 0.52 0.52 0.49 0.88 0.88 0.88
SOLAR 10.7B 0.39 0.47 0.35 0.36 0.45 0.35 0.87 0.87 0.87

and two baseline entailment models on all test sets: i) SelfcheckGPT-NLI [12] which is a sample-
based detection method that relies on the consistency of generated responses ii) Hughes Hallucination
Evaluation Model (HHEM) [25] which examines the structure, logic, and factual grounding within the
text that identify instances where the LLM might have generated incorrect or unsupported claims. We
specifically chose entailment models because their training objective aligns closely with the type of
hallucination we targeted in this work. To adapt these models to our triplet setting, we calculated the
entailment score between the source sentence and each hypothesis. The hypothesis with the lowest
entailment score was then classified as the hallucination.

Table 5
Performance comparison of baselines and instruction-tuned SLMs on various datasets

HaluE-
SHROOM val
Model Prec | Rec Friae | Prec | Rec Frrae
SelfcheckGPT-NLI 0.65 0.65 0.65 0.64 0.64 0.64
HHEM 0.70 0.70 0.70 0.62 0.62 0.62
GPT-4 0.80 0.80 0.80 0.79 0.74 0.75
Mix-QIT 088 | 0.88 | 0.88 | 0.70 | 0.67 | 0.66
s-QIT 087 | 087 | 087 |065 | 065 | 0.65

To justify the emphasis on smaller language models, it is essential to evaluate their resource efficiency
in comparision to larger models like GPT-4. With an estimation of 1.8 trillion parameters, GPT-4 requires
substantial computational resources for training and inference [1]. In contrast, the smaller language
models examined in this study, Mixtral 8x7B and SOLAR 10.7B, contain fewer parameters (less than
15 billion active parameters). This significant reduction in model size results in lower computational
requirements, making these smaller models more practical for deployment in resource-constrained
settings.

We compared the performance of Mixtral 8x7B and SOLAR 10.7B across three configurations: Base
(B), Quantized (Q), and Quantized Instruction-Tuned (QIT) as shown in the Table 4. From the results,
it is observed that the F), 4. scores of the quantized models are lower compared to their base models.
However, after performing instruction-tuning on the quantized models, we observed a significant
improvement in Fj, . scores of 0.88, 0.87 for Mixtral 8x7B + QIT (Mix-QIT), SOLAR 10.7B + QIT (S-QIT)
respectively. These scores represent an increase of 20% to 50% compared to the base model’s Fqc
scores, highlighting the effectiveness of instruction-tuning in enhancing the ability of quantized LLMs
to detect hallucinations.

To benchmark our approach against other established methods, we compared its performance with
two entailment baselines as shown in Table 5. The results demonstrate that our instruction-tuned SLMs
consistently outperformed both the SelfCheckGPT-NLI and HHEM baselines across the datasets. This
highlights the effectiveness of instruction-tuning for hallucination detection across different domains.
Further to evaluate our approach and highlight the efficiency with SLMs, we compared the results with
the standard, non-fine-tuned GPT-4 model rather than fine-tuned version of GPT-4. Fine-tuning larger
models like GPT-4 is a highly resource-intensive process, often require several days of computation on



high-end hardware due to their larger parameter size [1]. On the other hand, fine-tuning smaller models
like Mixtral 8x7B and SOLAR 10.7B is more efficient, both in terms of time and resource consumption.
Having fewer parameters (less than 15 billion active parameters), it is quicker to train them with lower
memory footprint and reduced energy usage.

We also note the results are not consistent across the datasets when we compare instruction-tuned
SLMs with GPT-4. On the SHROOM dataset, both Mix-QIT and S-QIT achieved impressive Fi,4. scores
of 0.88 and 0.87, exceeding GPT-4 by 8%. These results show that, inorder to detect the hallucinations,
instruction-tuning the smaller models can achieve performance comparable to a larger model like
GPT-4. However, the performance was not consistent on HaluEval dataset where both Mix-QIT and
S-QIT Fjpqc scores (0.66 and 0.65) fell short of GPT-4 by around 10%. While GPT-4 offers superior
performance due to its size, the trade-off in computational efficiency makes smaller language models a
viable alternative for many use cases.

5. Conclusion

In this paper, we explored the effectiveness of instruction-tuning on the quantized versions of SLMs
for hallucination detection. We compared these instruction-tuned models against established methods,
including GPT-4 and entailment models, and found consistent improvement across various datasets.
While our instruction-tuned models achieved performance comparable to GPT-4 on SHROOM datasets,
a discrepancy emerged on the HaluEval dataset. This highlights the need for further research to enhance
the robustness and generalizability of instruction tuning for hallucination detection. Smaller language
models, defined as those with fewer than 15 billion active parameters, offer significant advantages in
terms of computational cost, memory usage, and inference speed, making them more accessible for
practical applications, especially in resource-constrained environments.

As future work, we plan to investigate methods not only to detect hallucinations but also to understand
the underlying reasoning behind them, potentially leading to effective correction strategies.
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