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Abstract
We consider abstract argumentation frameworks and, in particular, the problem of skeptical reasoning wrt.
preferred semantics, i. e., deciding whether a given argument is contained in every preferred extension of the
argumentation framework. We introduce a novel Sat-based approach, building on recent results from the
literature, that searches through complete extensions to efficiently decide this problem. It also employs effective
simplification procedures to shorten computation times. As our experimental evaluation shows, our algorithm
significantly outperforms current state-of-the-art approaches in most instances.
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1. Introduction

Formal argumentation is a research field within the area of knowledge representation and reasoning
that offers a great variety of formalisms [2], and the (abstract) argumentation framework (AF) introduced
by Dung [3] is a core area of research. In an argumentation framework, arguments are modelled
as abstract entities and we consider directed attacks between them as the only relation. Reasoning
in argumentation frameworks is via acceptability semantics, which are functions that return sets of
arguments, called extensions, considered jointly acceptable. A fundamental property of acceptable
sets is admissibility, which requires that a set of arguments is conflict-free and also defends all of its
members against attacks from the other arguments. For instance, the preferred extensions are then
simply defined as the ⊆-maximal admissible sets [3]. One can then define different reasoning problems
based on these semantics [4]. One of the most prominent ones is the problem of skeptical reasoning
wrt. some semantics, i. e., deciding whether a given argument is contained in every extension wrt. the
given semantics. In general, most of these reasoning problems are non-tractable [4]. Especially because
of that, algorithms to efficiently compute these problems are of great importance in order to apply
argumentation in practice.
A rally point for this field of research is the International Competition on Computational Models of

Argumentation (ICCMA)1, a biennial competition that evaluates solvers based on different computational
problems in abstract and assumption-based argumentation. This topic has received a lot of attention
in the literature over the years and many different problem solving paradigms have been utilised,
see Cerutti et al. [5] for a survey. The most prominent approach is based on a reduction to a satisfiability
(Sat) problem [6, 5] as is widely used by many argumentation solvers [7, 8, 9]. Another relevant
approach is using answer set programming which is, for instance, used by the ASPARTIX system [10] to
solve various tasks for abstract argumentation and other related formalisms. Lastly, there also exist
some direct approaches [11], mainly based on the labeling-based characterisation of semantics for
argumentation frameworks [12]. In general however, the Sat-based approaches have proven to be the
fastest, in particular for the problem of skeptical preferred reasoning [13].
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In this work, we introduce a novel Sat-based algorithm for solving the problem of skeptical reasoning
wrt. preferred semantics. This algorithm is built upon recent results on the characterisation of preferred
semantics as a vacuous-reduct semantics [14]. Essentially, our algorithm searches through complete
extensions and looks for one that disproves the skeptical acceptance of the query argument by being
incompatible with it. In contrast to existing work, the algorithm does not maximise each complete
extension and instead continues searching for new complete extensions containing unvisited arguments.
Our algorithm also employs effective preprocessing measures, outlined by Liao and Huang [15], to
simplify computation. Thus, our algorithm is able to solve the problem of skeptical preferred reasoning
without having to actually compute the preferred extensions, similar to the approach of Thimm et al.
[9]. Moreover, we show that our algorithm is sound and complete and our experiments show that it
significantly outperforms current state-of-the-art solvers on most benchmarks.
To summarise, the contribution of this work is twofold:

• We introduce a novel algorithm for skeptical reasoning wrt. preferred semantics and show that it
is sound and complete (Section 3),

• We implement our algorithm and evaluate it against state-of-the-art argumentation solvers
(Section 4).

In Section 2 we introduce the necessary background on abstract argumentation, in Section 5 we
discuss related work and Section 6 concludes the paper.

2. Preliminaries

We consider abstract argumentation as introduced by Dung [3]. The central notion is the abstract
argumentation framework (AF), which is a tuple F = (A,R) whereA is a finite set of arguments andR
is the attack relationR ⊆ A ×A. For any two arguments 𝑎, 𝑏 ∈ A, we say that 𝑎 attacks 𝑏 iff (𝑎, 𝑏) ∈ R,
sometimes also written as 𝑎R𝑏. For a set of arguments 𝑆 ⊆ A we denote with F |𝑆 = (𝑆,R ∩ (𝑆 × 𝑆))
the restriction of F to 𝑆. Furthermore, for a set 𝑆 ⊆ A we define the set of arguments attacked by 𝑆
(attacking 𝑆) in F respectively as

𝑆+F = {𝑎 ∈ A ∣ ∃𝑏 ∈ 𝑆 ∶ 𝑏R𝑎}, 𝑆−F = {𝑎 ∈ A ∣ ∃𝑏 ∈ 𝑆 ∶ 𝑎R𝑏}.

If 𝑆 = {𝑎} is a singleton set, we also write 𝑎+F (respectively 𝑎−F ) for readability. Moreover, we say that
𝑆 is conflict-free iff we have 𝑆 ∩ 𝑆+F = ∅. The set 𝑆 defends an argument 𝑎 ∈ A iff for all 𝑏 ∈ 𝑎−F there is
some 𝑐 ∈ 𝑆 such that 𝑐R𝑏. Furthermore, 𝑆 is called admissible iff it is conflict-free and 𝑆 defends all 𝑎 ∈ 𝑆,
i. e., we have that 𝑆 ∩ 𝑆+F = ∅ and 𝑆−F ⊆ 𝑆+F . We denote with ad(F) the admissible sets of F .

We can now impose further constraints on admissible sets to obtain different argumentation seman-
tics [16]. In particular, an admissible set 𝐸 ⊆ A is called a

• complete (CO) extension iff for every 𝑎 ∈ A, if 𝐸 defends 𝑎 then 𝑎 ∈ 𝐸,

• preferred (PR) extension iff there exists no admissible 𝐸′ with 𝐸 ⊊ 𝐸′,

• grounded (GR) extension iff 𝐸 is complete and there is no complete 𝐸′ with 𝐸′ ⊊ 𝐸.

For a given argumentation framework F = (A,R) and a semantics 𝜎 ∈ {CO,PR,GR}, we denote
with 𝜎(F) the set of 𝜎-extensions of F .

Example 1. Consider the argumentation framework F depicted in Figure 1. The complete extensions
of F are {𝑎}, {𝑎, 𝑐, 𝑓} and {𝑎, 𝑑, 𝑓, ℎ}. Note that, for instance, {𝑎, 𝑐} is admissible, but not complete since it
also defends 𝑓. Furthermore, {𝑎, 𝑐, 𝑓} and {𝑎, 𝑑, 𝑓, ℎ} are the preferred extensions of F . Finally, {𝑎} is the
minimal complete extension and thus the unique grounded extension of F .
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Figure 1: The argumentation framework F from Examples 1 – 6.

For each of the above introduced semantics we consider different reasoning problems known in
the literature that are relevant when working with argumentation frameworks [4]. In particular, we
consider the problems of credulous and skeptical acceptance wrt. some semantics 𝜎, denoted as DC-𝜎
and DS-𝜎 respectively. We also consider the problem of computing a single extension wrt. some
semantics 𝜎, denoted as SE-𝜎. These problems are formally defined as follows:

DC-𝜎 Given an argument 𝑎 ∈ A, decide whether there
exists some 𝜎-extension 𝐸 ∈ 𝜎(F) with 𝑎 ∈ 𝐸,

DS-𝜎 Given an argument 𝑎 ∈ A, decide whether 𝑎
is contained in all 𝜎-extensions of F ,

SE-𝜎 Return a 𝜎-extension of F .

The following example illustrates the above problems.

Example 2. Consider again the argumentation framework F in Figure 1. For complete and preferred
semantics the arguments 𝑎, 𝑐, 𝑑, 𝑓 and ℎ are credulously accepted, while 𝑏, 𝑒, 𝑔 and 𝑖 are not credulously
accepted wrt. any semantics. For the grounded semantics 𝑎 is both the only credulously and skeptically
accepted argument.
For complete and preferred semantics, 𝑎 is also skeptically accepted. Interestingly, while 𝑓 is not

skeptically acceptedwrt. complete semantics, it is however skeptically acceptedwrt. preferred semantics,
since it is contained in both preferred extensions, cf. Example 1.

The computational complexity of these problems has been well studied, we refer the interested reader
to [4] for an overview. The prevalent strategy to solve many of these problems is reducing them to
satisfiability problems (Sat) and using a dedicated Sat-solver for solving those, cf. [5, 8].
In particular, we want to highlight two results which are of importance for our work. The problem

SE-GR is in P, i. e., computing the grounded extension of an AF can be done in polynomial time. Secondly,
the problem of skeptical reasoning wrt. preferred semantics (DS-PR) is Π𝑃

2-complete. Most importantly,
that means it cannot be solved by a single Sat-call and it is one of the more difficult decision problems
in abstract argumentation. In particular, the problem DS-PR will be the main focus of this work.

3. The Vacuous Reduct-based Approach to Skeptical Preferred
Reasoning

In this section, we present our main contribution, a novel algorithm for skeptical reasoning wrt.
preferred semantics. We first outline in Section 3.1 the underlying ideas of our algorithm, which are
based on a combination of results and characterisations from the literature. Afterwards we describe
the Sat-encoding used by our approach (Section 3.2). Finally, we present our algorithm for skeptical
reasoning wrt. preferred semantics (Section 3.3) and show that it is sound and complete in Section 3.4.

Our approach is built on the concept of counterexample guided abstraction refinement (CEGAR) [17].
This concept is widely used by argumentation solvers [8, 9] and has been pioneered by the CEGARTIX
system [7] for the domain of abstract argumentation. Given an argumentation framework F and a
query argument 𝑎, the general idea is to find complete extensions of sub-frameworks of F attacking the
query argument 𝑎. The general procedure of our algorithm consists of the following steps:



(1) Simplify the argumentation framework by removing irrelevant arguments and “resolving” the
grounded extension,

(2) Iterate through complete extensions of the remaining argumentation framework in search of a
counterexample for the skeptical acceptance of the query,

(3) Combine partial results of the previous steps to a proper counterexample.

During each step, we actively check whether the query argument is attacked by the current (partial)
counterexample, which can allow us to terminate sooner.

3.1. Theoretical Background

Let us start with considering the relevant notions and results from the literature that our algorithm is
built upon. Let F = (A,R) be an arbitrary argumentation framework and 𝑎 ∈ A is the query argument
in question.

Simplifying the Argumentation Framework. The first step in our approach is simplifying the
problem instance, without affecting the result, to accelerate the subsequent problem solving process.
This kind of preprocessing is an important part of many problem solving paradigms, for instance
Sat-solving [18]. In the context of abstract argumentation, this can mean replacing parts of the argu-
mentation framework with simplified structures [19] or removing parts of the framework altogether [15].
In this work, we consider only the latter approach.
The simplification performed by our algorithm consists essentially of two steps:

(1) Restrict the argumentation framework to only those arguments relevant for the query 𝑎.

(2) Compute the grounded extension 𝐸GR of the restricted argumentation framework and remove all
arguments contained in 𝐸GR and those attacked by 𝐸GR.

The first step is based on the principle of Directionality for argumentation semantics and has already
been outlined by Liao and Huang [15]. For that, for some argumentation framework F = (A,R), we
first define the set of unattacked sets of F .

UA(F) = {𝑆 ⊆ A ∣ ∄𝑎 ∈ (A ∖ 𝑆) ∶ 𝑎 ∈ 𝑆−F } (1)

Based on that, the Directionality principle has been defined [20].

Principle 1. Let 𝜎 be a semantics. We say that 𝜎 satisfiesDirectionality if and only if for all argumentation
frameworks F and every set 𝑈 ∈ UA(F) it holds that 𝜎(F |𝑈) = {𝐸 ∩ 𝑈 ∣ 𝐸 ∈ 𝜎(F)}.

Essentially, the above principle states that the computation of an extension for a semantics 𝜎 should
only depend on its attackers (and in turn on their attackers and so on). As has been shown by Baroni
and Giacomin [20], both the complete and preferred semantics satisfy Directionality.

Proposition 1. Complete and preferred semantics satisfy Directionality.

Now we can determine an unattacked set 𝑈 ∈ UA(F) that contains the query argument 𝑎 and restrict
the argumentation framework to 𝑈 to simplify the computation without affecting the acceptance status
of the query argument.
A simple but effective way to achieve this is to consider the arguments relevant for 𝑎. For two

arguments 𝑎, 𝑏 ∈ A we say that 𝑏 is relevant for 𝑎 iff there exists a directed path from 𝑏 to 𝑎. We then
define the set of arguments relevant for 𝑎 in F as follows.

RelF (𝑎) = {𝑎} ∪ {𝑏 ∈ A ∣ 𝑏 is relevant for 𝑎} (2)
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Figure 2: The reduct F {𝑎,𝑐,𝑓} of the argumentation framework F .

Example 3. Consider again the argumentation framework F in Figure 1. We examine the argument 𝑑.
It is easy to observe that RelF (𝑑) = {𝑎, 𝑏, 𝑐, 𝑑, 𝑔, ℎ, 𝑖}. Note that for both 𝑒 and 𝑓 there exists no directed
path to 𝑑 thus they are not relevant for 𝑑. Similarly, we also have RelF (𝑏) = {𝑎, 𝑏} and RelF (𝑓) = A1.

For convenience, we explicitly define that 𝑎 is always relevant for itself. Notably, this notion of
relevance has already been used in [15], but also recently been defined in the context of acceptance
explanations by Borg and Bex [21]. It is then easy to see that RelF (𝑎) is an unattacked set of F for any
argument 𝑎.

Corollary 1. For all AFs F = (A,R) and arguments 𝑎 ∈ A it holds that RelF (𝑎) ∈ UA(F).

According to the directionality property, this allows us to restrict the input argumentation framework
to just the arguments relevant for the query 𝑎 before performing further calculations. This does not
only allow us to ignore arguments that are only attacked by the query, but also enables us to disregard
unrelated components of the argumentation framework entirely.

The second simplification we perform is explicitly computing the grounded extension of the AF, which
can be done in polynomial time [4]. For that we utilise the simple iterative procedure for computing
the grounded extension that has been outlined by [3]. As we will show in the following paragraphs,
we can then remove the grounded extension and everything attacked by it from the argumentation
framework, to simplify the subsequently created Sat-encoding.

Iterating Complete Extensions We are concerned with the problem of skeptical reasoning wrt.
preferred semantics. This, however, does not mean, that we have to explicitly compute preferred
extensions to solve this problem [9]. Instead, we will primarily consider complete extensions.
The main notion underlying our algorithm is the 𝑆-reduct introduced by Baumann et al. [22].

Definition 1. Let F = (A,R) be an AF and 𝑆 ⊆ A. We define the 𝑆-reduct of F as F𝑆 = (A′,R′) with

A′ = A ∖ (𝑆 ∪ 𝑆+F ),
R′ = R ∩ (A′ ×A′).

Essentially, the reduct allows us to remove the part of the AF F that is already “resolved” by 𝑆.

Example 4. Consider again the argumentation framework F in Figure 1. Let 𝑆 = {𝑎, 𝑐, 𝑓}, then the
𝑆-reduct of F is the argumentation framework F {𝑎,𝑐,𝑓} depicted in Figure 2.

Based on this concept, the notion of vacuous reduct semantics has been introduced [14].

Definition 2. Let 𝜎 be a semantics and F is an AF. We say that F is 𝜎-vacuous iff 𝜎(F) ⊆ {∅}.

Definition 3. Let 𝜎, 𝜏 be argumentation semantics and F = (A,R) is an argumentation framework. A
set 𝑆 ⊆ A is a 𝜎 𝜏-extension iff 𝑆 is a 𝜎-extension and it holds that F𝑆 is 𝜏-vacuous.

Intuitively, a set 𝑆 is a 𝜎 𝜏 extension of F iff it is 𝜎-extension of F and in the reduct F𝑆 there exists no
non-empty 𝜏-extension. We denote with 𝜎 𝜏(F) the set of all 𝜎 𝜏-extensions of F .



Example 5. Consider again the argumentation framework F in Figure 1. Let us consider the vacuous
reduct semantics cfad, i. e., the conflict-free sets 𝑆 such that the reduct F𝑆 contains no non-empty
admissible sets2. Examine, for instance, the set 𝑆1 = {𝑎, 𝑐, 𝑓}. Clearly 𝑆1 is conflict-free in F . The reduct
F𝑆1 is depicted in Figure 2. It is easy to verify that ∅ is the only admissible set of F𝑆1 , thus 𝑆1 is a
cfad-extension of F . On the other hand, the conflict-free set {𝑎, 𝑑, 𝑓} is not a cfad-extension, because
there is the admissible set {ℎ} in the reduct F {𝑎,𝑑,𝑓}.

Of particular interest to us, is the fact that the preferred semantics can be characterised as a vacuous
reduct semantics, as shown by [14, 23].

Proposition 2. For any AF F = (A,R). It holds that

PR(F) = adad(F) = COCO(F).

Wewill utilise this in our algorithm for skeptical preferred reasoning to verify whether some complete
extension 𝐸 is preferred by checking whether the reduct F𝐸 is CO-vacuous.

Constructing the Counterexample In the course of executing the algorithm we construct different
complete extensions in different restrictions and reducts of the original argumentation framework.
What allows us to combine them to construct a proper counterexample for skeptical acceptance is the
concept of Modularisation of argumentation semantics introduced by Baumann et al. [24].

Principle 2. Let 𝜎 be a semantics. We say that 𝜎 satisfies Modularisation if and only if for all argumen-
tation frameworks F it holds that, if 𝐸1 ∈ 𝜎(F) and 𝐸2 ∈ 𝜎(F𝐸1) then 𝐸1 ∪ 𝐸2 ∈ 𝜎(F).

As shown by Baumann et al. [24],Modularisation is satisfied by both complete and preferred semantics.

Proposition 3. Complete and preferred semantics satisfy Modularisation.

This concept will prove useful for our algorithm and allows us to combine partial results into a proper
counterexample for skeptical acceptance.

Example 6. Consider again the argumentation framework F depicted in Figure 1. We have the
complete extension {𝑎} and in the reduct F {𝑎}, there is for instance the complete extension {𝑐, 𝑓} and, as
already seen in Example 1, the union {𝑎} ∪ {𝑐, 𝑓} is a complete extension of F . Notably, this combined
set then also serves as a counterexample for skeptical acceptance of the argument 𝑑 in F .

3.2. Sat-Encoding for Complete Semantics

Our algorithm for skeptical preferred reasoning, like most state-of-the-art approaches, utilises a reduc-
tion to Sat. In the following, we will briefly describe the Sat-encoding used for computing complete
extensions. The encodings are built on standard Sat-encodings for AFs [6, 25], used in similar fashion
by many argumentation solvers [8, 13].
Let F = (A,R) be an argumentation framework. Let us first introduce basic notion. We consider

propositional logic and wemodel the acceptance (rejection) of an argument 𝑎 ∈ Awrt. to some extension
𝐸 ⊆ A with the propositional variable in𝑎 (out𝑎). We will then define formulae over these atoms with
the usual connectives: ¬, ∧, ∨. Let 𝜔 ∶ {in𝑎}𝑎∈A ∪ {out𝑎}𝑎∈A ↦ {True, False} be some interpretation
over the arguments of F representing some extension 𝐸 ⊆ A. Then, if in𝑎 is True in 𝜔, then 𝑎 ∈ 𝐸,
otherwise 𝑎 ∉ 𝐸. Analogously, if out𝑎 is True in 𝜔, then 𝑎 ∈ 𝐸+F , otherwise 𝑎 ∉ 𝐸+F .

Our encoding for complete semantics then consists of the following components. Equation (3) models
basic conditions for acceptance: an argument cannot be accepted and rejected at the same time, if
an attacker 𝑏 of 𝑎 is accepted, then 𝑎 is rejected and if 𝑎 is rejected, then one of its attackers must be
accepted. Recall that a complete extension is conflict-free, defends all its members and includes all

2Note that the cfad-extensions have also been coined undisputed sets in [14].



arguments that it defends. Conflict-Freeness is modelled by Ψ𝑐𝑓
F in Equation (4) via the condition if 𝑏

attacks 𝑎 then if 𝑏 is accepted 𝑎 must not be accepted. Defense is modelled in Equation (5), stating that,
if an argument 𝑎 is accepted then every attacker 𝑏 must be rejected. Finally, completeness is described
in Equation (6) via the condition if 𝑎 is not accepted, then one of its attackers must not be rejected.

Ψ𝑟𝑒
F = ⋀

𝑎∈A
((¬in𝑎 ∨ ¬out𝑎) ∧ ⋀

𝑏∈𝑎−F

(out𝑎 ∨ ¬in𝑏) ∧ (¬out𝑎 ∨ ⋁
𝑐∈𝑎−F

in𝑐)) (3)

Ψ𝑐𝑓
F = Ψ𝑟𝑒

F ∧ ⋀
𝑎∈A

⋀
𝑏∈𝑎−F

¬in𝑎 ∨ ¬in𝑏 (4)

Ψ𝑎𝑑
F = Ψ𝑐𝑓

F ∧ ⋀
𝑎∈A

⋀
𝑏∈𝑎−F

¬in𝑎 ∨ out𝑏 (5)

ΨCO
F = Ψ𝑎𝑑

F ∧ ⋀
𝑎∈A

(in𝑎 ∨ ⋁
𝑏∈𝑎−F

¬out𝑏) (6)

As has been shown in [6], every model ofΨCO
F corresponds to a complete extension ofF . In particular,

for some argumentation framework F = (A,R) and a model 𝜔 of ΨCO
F we define the corresponding

complete extension 𝐸𝜔 of F as follows:

𝐸𝜔 = {𝑎 ∈ A ∣ 𝜔(in𝑎) = True} (7)

Beyond that, we also utilise the following clause in every Sat-call which ensures that the computed
complete extension is non-empty.

Ψ𝑛𝑒
F = ⋁

𝑎∈A
in𝑎 (8)

3.3. Algorithm for Skeptical Reasoning wrt. Preferred Semantics

First, we introduce some notation. Grounded(F) denotes the iterative algorithm computing the
grounded extension of Dung [3]. We write Sat(Ψ) for a call to the Sat-solver that returns True iff Ψ is
satisfiable and False otherwise. Furthermore, we write Witness(Ψ) for a call to the Sat-solver that
returns the set 𝐸𝜔 for some model 𝜔 of Ψ, if Ψ is satisfiable, otherwise it returns False. We also utilise a
complement clause CF (𝐸) defined as

CF (𝐸) = ⋁
𝑎∈A∖𝐸

in𝑎 (9)

for some set of arguments 𝐸 ⊆ A. This clause, for each found complete extension 𝑆, ensures not only
that the Sat-solver does not find 𝐸 as a solution again, but also that any 𝐸′ with 𝐸′ ⊆ 𝐸 is no valid
witness in any following Sat-call.

Our novel algorithm for deciding skeptical acceptance wrt. preferred semantics is shown in Algo-
rithm 1. For the inputF = (A,R) and some 𝑎 ∈ A, the algorithm returns Yes iff 𝑎 is skeptically accepted
wrt. preferred semantics in F , otherwise it returns a complete extension 𝐸 of F that serves as a witness
for the non-acceptance of 𝑎. In detail, the procedure of our algorithm works as follows:

(1) Restrict F to the arguments relevant for 𝑎 and compute the grounded extension 𝐸GR of F |RelF (𝑎)
(lines 1-2). If 𝑎 ∈ 𝐸GR terminate with Yes, if 𝑎 ∈ 𝐸+GR,F terminate with 𝐸GR as the witness for
non-acceptance. Otherwise move to (F |RelF (𝑎))𝐸GR (lines 3-7).

(2) If (F |RelF (𝑎))𝐸GR possesses no non-empty complete extensions at all, 𝐸GR is a counterexample
(lines 9-10).

(3) Compute a non-empty complete extension 𝐸 of F that does not contain 𝑎 (line 12).

(4) If no further complete extension 𝐸 is found, terminate with Yes (lines 13-14).



(5) If 𝐸 attacks 𝑎, then 𝐸GR ∪ 𝐸 is a counterexample for skeptical acceptance of 𝑎 (lines 15-16).

(6) Otherwise, check if there is a non-empty complete extension 𝐸′ in the reduct F𝐸 (lines 17-25).

a) If not, then 𝐸GR ∪𝐸 is a preferred extension of F and thus a counterexample for the skeptical
acceptance of 𝑎 (lines 18-19).

b) If there is a non-empty complete extension 𝐸′ and 𝐸′ attacks 𝑎, then 𝐸GR ∪ 𝐸 ∪ 𝐸′ is a
counterexample (lines 20-21).

c) Otherwise, add a complement clause for 𝐸 ∪ 𝐸′ and continue with (2) (lines 22-25).

Algorithm 1 Algorithm for DS-PR.

Input: F = (A,R), 𝑎 ∈ A
Output: 𝐸 ⊆ A, otherwise Yes
1: F ← F |RelF (𝑎)
2: 𝐸GR ← Grounded(F)
3: if 𝑎 ∈ 𝐸GR then
4: return Yes
5: if 𝑎 ∈ 𝐸+GR,F then
6: return 𝐸GR
7: F ← F𝐸GR

8: Ψ ← ΨCO
F ∧ Ψ𝑛𝑒

F
9: if Sat(Ψ) = False then
10: return 𝐸GR
11: while True do
12: 𝐸 ← Witness(Ψ ∧ ¬in𝑎)
13: if 𝐸 = False then
14: return Yes
15: if 𝑎 ∈ 𝐸+F then
16: return 𝐸GR ∪ 𝐸
17: 𝐸′ ← Witness(ΨCO

F𝐸 ∧ Ψ𝑛𝑒
F𝐸)

18: if 𝐸′ = False then
19: return 𝐸GR ∪ 𝐸
20: if 𝑎 ∈ 𝐸′+F then
21: return 𝐸GR ∪ 𝐸 ∪ 𝐸′

22: if 𝑎 ∈ 𝐸′ then
23: Ψ ← Ψ ∧ CF (𝐸 ∪ 𝐸′)
24: else
25: Ψ ← Ψ ∧ CF (𝐸)

3.4. Soundness and Completeness

As the following result shows, our algorithm is indeed sound and complete. For some input (F , 𝑎), it
returns Yes if and only if the query argument 𝑎 is skeptically accepted wrt. preferred semantics in F .
The full proof of Theorem 1 can be found in the extended version of this paper [26], available online3.

Theorem 1. Algorithm 1 is sound and complete for the problem DS-PR.

Note that the algorithm is still sound and complete if we use the encoding Ψad
F for admissibility

instead of the encoding for complete semantics. This follows easily via Proposition 24.
3https://doi.org/10.5281/zenodo.16022972
4Early experiments showed however that using ΨCO

F is slightly faster in practice, see also [25] for a detailed performance
analysis of different types of semantical encodings.

https://doi.org/10.5281/zenodo.16022972


In case the query argument 𝑎 is not skeptically accepted wrt. preferred semantics, the algorithm
returns a witness that serves as a counterexample for the non-acceptance of 𝑎. As already mentioned
before, this output is not necessarily a preferred extension that does not contain the query 𝑎. Instead,
Algorithm 1 returns three different types of witnesses, depending on the situation:

(1) an admissible set of F attacking the query (lines 6, 16, 21),

(2) the grounded extension of F |RelF (𝑎) not containing the query (line 10),

(3) a preferred extension of F |RelF (𝑎) not containing the query (line 19).

Importantly, as follows from the proof of Theorem 1, the witness produced by Algorithm 1 is in any
case sufficient to prove that the query is not skeptically accepted wrt. preferred semantics.

Corollary 2. Let F = (A,R) be an argumentation framework and 𝑎 ∈ A and 𝑎 ∉ ⋂𝐸∈PR(F) 𝐸. Let 𝑆 ⊆ A
be the output of Algorithm 1 for the input F = (A,R), 𝑎 ∈ A. Then, there exists a preferred extension
𝐸 ∈ PR(F) with 𝑆 ⊂ 𝐸 and 𝑎 ∉ 𝐸.

The following section will show the feasibility of our approach in practice and that it significantly
outperforms state-of-the-art approaches in most cases.

4. Empirical Evaluation

To evaluate the performance of our novel algorithm for skeptical preferred reasoning, we conducted an
evaluation and compared its runtime to that of current state-of-the-art argumentation solvers. In the
following, we will briefly describe the implementation of our algorithm as well as the experimental setup.
Finally, we will present the results of the evaluation and provide an ablation study wrt. Sat-solvers.

4.1. System Overview

We implemented Algorithm 1 in C++ as part of an argumentation solver which we called reducto.
For all calls of the form Sat(⋅),Witness(⋅) reducto uses the Sat-solver CaDiCal 2.1.3 [27]. The
computation of F |RelF (𝑎) and the function Grounded(F) are implemented directly in C++ via simple
iterative procedures. The implementation is open source and available on GitHub5.

4.2. Experimental Setup

For the evaluation of our algorithm, we consider the benchmark datasets of the International Competition
on Computational Models of Argumentation (ICCMA). We consider the decision problem DS-PR and
make use of the appropriate datasets from all competitions, i. e., ICCMA’15 to ICCMA’23 [28, 29, 30, 13].

Table 1
Statistics for all considered benchmark datasets. #AFs is the number of instances in the dataset; |A| is
the number of arguments per instance, for which we consider average, median and standard deviation;
|R| is the number of attacks in an instance; Avg. 𝐷 is the average node degree of the whole dataset.

Dataset #AFs Avg. |A| Med. |A| Std. |A| Avg. |R| Avg. 𝐷

ICCMA’15 192 1,980 675 2,424 105,396 68

ICCMA’17 300 14,544 474 132,416 311,277 245

ICCMA’19 326 826 196 1,784 97,639 239

ICCMA’21 480 87,331 48,200 92,881 7,239,611 161

ICCMA’23 329 29,791 796 203,719 1,002,470 299

5https://github.com/aig-hagen/reducto

https://github.com/aig-hagen/reducto


Table 1 summarises some key statistics for the considered benchmark sets. Note that the ICCMA’21
dataset is comprised of particularly large instances compared to all other benchmark sets.
To evaluate the performance of our algorithm for skeptical preferred reasoning, we consider the

runtime per instance and compare it to that of current state-of-the-art argumentation solvers. Beside our
solver reducto (version 2.13), we consider all competitors from the latest ICCMA’23 for the evaluation:

𝜇-toksia [8]: written in C++, uses an iterative Sat-based CEGAR approach [7]. Available are two
versions, one with Glucose [31] and one with CryptoMiniSat [32] as the Sat-solver.

Fudge [9]: written in C++, Sat-based approach with CaDiCal [27] as the Sat-solver that solves the
problem by computing admissible sets attacking admissible sets that contain the query argument.

Crustabri [33]: written in Rust, iterative Sat-based approach with CaDiCal [27] as the Sat-solver.

PORTSAT [34]: written in Rust, enumerates preferred extensions with the help of a portfolio of
different Sat-solvers.

The experimental evaluation has been conducted with the probo2 benchmarking suite for argumenta-
tion solvers [35]. All experiments where executed on a machine running Ubuntu 20.04 with an Intel
Xeon E5 3.4 GHz CPU and 192 GB of RAM. We used a per-instance time-out of 1200 seconds.

4.3. Results

The results of our experiments are summarised in Table 2. For each benchmark set, we also consider
the virtual best solver (VBS), which is computed by taking the best runtime for each instance from
all competing solvers. Solvers are ranked in increasing order according to the number of unsolved
instances and in case of ties by total runtime.
In general, reducto solves the most instances out of all the considered solvers for the ICCMA’15,

ICCMA’17, ICCMA’19 and ICCMA’23 benchmark sets. On all of these datasets reducto also has the
best PAR2 score and contributes the most instances to the VBS, i. e., it has the fastest runtime of any
solver on the most instances. The total runtime is also generally the lowest, only for ICCMA’17 is it
higher than that of 𝜇-toksia (Glucose) and Crustabri.
This is simply due to the fact that reducto solves significantly more instances of the dataset.

Especially on the easier benchmark sets ICCMA’15 and ICCMA’19, where most solvers are able to
solve all instances, the total runtime and PAR2 score of reducto is significantly lower than that of all
competitors.

Only on the ICCMA’21 dataset, 𝜇-toksia (Glucose) solves more instances than reducto and is also
faster on almost all instances. The ICCMA’21 dataset generally consists of only very large instances,
compared to the other benchmark sets (cf. Table 1). In addition to that, for all of the instances the
simplification steps employed by our approach are not applicable, i. e., the AFs have the empty set as the
grounded extension and all arguments in the AF are relevant for the query argument. We presume this
is the reason for the worse performance of reducto, in combination with a less efficient Sat-encoding
compared to 𝜇-toksia. Notably, all other solvers, apart from 𝜇-toksia (Glucose), including 𝜇-toksia
(CMSat), still perform significantly worse than reducto on the ICCMA’21 dataset.

Let us take a closer look at the most recent ICCMA’23 dataset. The simplification steps outlined
in Section 3.1 allow us to reduce the size |A| of an instance by 58.2% on average. More specifically,
restricting the AF to the arguments relevant for the query removes on average 38.2% of the arguments,
and “resolving” the grounded extension removes another 31.7% of the remaining arguments. Figure 3a
visualises the performance of each solver on the ICCMA’23 dataset. In particular, it shows the number
of solved instances of each solver given the per-instance runtime. As one can see, reducto performs
significantly better than all other solvers on this dataset. Moreover, Figure 3b gives a direct comparison
of reducto and 𝜇-toksia (Glucose), the two best ranked solvers, on the ICCMA’23 dataset. Markers
above the diagonal line are instances where reducto is faster and below 𝜇-toksia is faster. As we can
see, the performance of both solvers is within one order of magnitude of each other for the majority of



Table 2
Results for all ICCMA datasets. #TO gives the number of time-outs; RT gives the total runtime on all correctly
solved instances; PAR2 gives the average runtime where time-outs are counted double, i. e., 2,400 seconds; #VBS
gives the number of instances contributed to the virtual best solver (VBS).

(a) Results for ICCMA’23 (329 instances).

Solver #TO RT PAR2 #VBS

VBS 18 3,281.75 141.28 –
reducto 23 5,198.47 183.58 182
𝜇-toksia (Glucose) 30 6,795.78 239.50 44
Crustabri 33 11,295.75 275.06 17
𝜇-toksia (CMSat) 39 12,202.34 321.59 21
Fudge 59 10,885.23 463.48 45
PORTSAT 171 11,620.18 1,282.74 2

(b) Results for ICCMA’21 (480 instances).

Solver #TO RT PAR2 #VBS

VBS 100 93,733.47 695.28 -
𝜇-toksia (Glucose) 102 92,458.95 702.62 361
reducto 190 86,159.50 1,129.50 19
Crustabri 246 87,110.60 1,411.48 0
𝜇-toksia (CMSat) 344 51,107.46 1,826.47 0
Fudge 390 41,360.11 2,036.17 0
PORTSAT 480 0.00 2,400.00 0

(c) Results for ICCMA’19 (326 instances).

Solver #TO RT PAR2 #VBS

VBS 0 54.66 0.17 –
reducto 0 85.71 0.26 126
𝜇-toksia (Glucose) 0 169.91 0.52 72
Crustabri 0 190.89 0.59 6
𝜇-toksia (CMSat) 0 264.18 0.81 48
Fudge 4 343.72 30.50 68
PORTSAT 23 7,826.34 193.33 6

(d) Results for ICCMA’17 (350 instances).

Solver #TO RT PAR2 #VBS

VBS 24 12,777.54 201.08 –
reducto 26 13,583.26 217.10 188
𝜇-toksia (Glucose) 41 11,884.86 315.10 49
𝜇-toksia (CMSat) 42 14,875.78 330.50 32
Crustabri 50 12,681.05 379.09 3
Fudge 52 17,769.32 407.34 54
PORTSAT 212 15,869.49 1,499.06 0

(e) Results for ICCMA’15 (192 instances).

Solver #TO RT PAR2 #VBS

VBS 0 291.15 1.52 –
reducto 0 309.23 1.61 106
𝜇-toksia (Glucose) 0 831.21 4.33 18
Crustabri 0 1,233.27 6.42 1
𝜇-toksia (CMSat) 0 1,805.81 9.41 10
Fudge 3 1,738.81 46.56 57
PORTSAT 5 9,883.08 113.97 0
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Figure 3: Evaluation results for the ICCMA’23 dataset.

instances. However, reducto is clearly faster for almost all instances. That is also consistent with the
fact that reducto contributes the most instances to the VBS for all datasets except ICCMA’21.

4.4. Ablation study wrt. Sat-Solvers

To evaluate the impact of the utilised Sat-solver we conducted a small ablation study on the ICCMA’23
benchmark set. Besides CaDiCal 2.1.3 [27], we also considered the Sat-solvers Glucose 4.2.1 [31],



Table 3
Results for reducto with different Sat-Solvers on the ICCMA’23 dataset.

Solver #TO RT PAR2 #VBS

reducto (CaDiCal) 23 5,198.47 183.58 94

reducto (CMSat) 25 9,313.60 210.68 89

reducto (MergeSat) 26 7,599.64 212.76 64

reducto (Glucose) 29 6,101.97 230.10 82

CryptoMiniSat (CMSat) 5.11.21 [32] and MergeSat 4.0 [36]. In Table 3 we summarise the results
for reducto based on the different Sat-solvers on the ICCMA’23 dataset. As we can see, CaDiCal
significantly outperforms the other Sat-solvers. While the CMSat and MergeSat versions of reducto
perform quite similarly, the Glucose version clearly performs worse than the others. This is in contrast
to 𝜇-toksia, where Glucose performs clearly better than CMSat on all benchmarks. Interestingly, all
versions contribute a significant amount of instances to the VBS, however CaDiCal contributes the
most. It should also be noted that all versions of reducto are faster than all other solvers, cf. Table 2a.

5. Discussion

The problem of skeptical reasoning wrt. preferred semantics is a focal point of argumentation research,
and there exist many different approaches in the literature to tackle it. Like our approach, many of
them are based on CEGAR [17]. The 𝜇-toksia solver [8] uses the same approach as CEGARTIX [7],
without shortcuts. Given an argumentation framework F and some argument 𝑎, it searches for a
complete extension 𝐸 of F that does not contain 𝑎. It then iteratively maximises 𝐸 to try and obtain a
preferred extension 𝐸′ with 𝐸′ ⊇ 𝐸 and 𝑎 ∉ 𝐸′. If no such 𝐸′ exists, a complement clause is added to
the Sat-encoding and the search for complete extensions without 𝑎 continues. Simplifications are not
applied in the latest version.
While our approach is fairly similar, there are some important differences. First of all, we employ

simplifications, as outlined in Section 3.1. We also utilise shortcuts by checking whether the query
argument 𝑎 is attacked by some found non-empty complete extension 𝐸, similar to CEGARTIX. We also
additionally use a clause to ensure non-emptiness, which is not used in other approaches. However, the
key difference is that for each found complete extension 𝐸, we only check once whether there is a larger
complete extension (by searching for a non-empty complete extension in the reduct F𝐸). Meaning, we
effectively search through different complete extensions that each contain at least one never before
visited argument, instead of trying to maximise each one. Thus, we narrow down the search field with
each iteration but grant more freedom for the complete extensions to be computed.
A quite different approach is employed by the Fudge solver [9]. It uses a conflict-driven approach

and directly searches for admissible sets that attack admissible set that contain the query argument.
As already mentioned before, this is different to our approach, since we do not actively search for
acceptable sets that attack the query, but rather check if that is the case during the search.

6. Conclusion

In this work, we considered the problem of skeptical reasoning wrt. preferred semantics, i. e., deciding
whether every preferred extension of an argumentation framework contains some specific argument.
We introduced a novel algorithm that first simplifies the problem instance and subsequently searches
through non-empty complete extensions of the simplified argumentation framework. Instead of max-
imising these extensions, our approach checks whether they directly attack the query argument and
continues searching for extensions that contain unvisited arguments. We implemented this approach in
the solver reducto. As our experimental results show, the combination of these simplifications and the
search procedure allows reducto to outperform current state-of-the-art solvers on most benchmarks.



Regarding future work, we intent to further refine the underlying Sat-encoding, cf. the work
of [25]. Furthermore, the simplification steps offer an interesting point for further research. First of all,
there are other possibilities for more sophisticated preprocessing [19] that could be of use. Moreover,
preprocessing is not used at all by many of the existing solvers and thus it would be interesting to study
its effectiveness in the context of the other algorithms for skeptical preferred reasoning.
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