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Abstract
Total preorders over possible worlds are often used to represent epistemic states, with the minimal worlds
representing an agent’s beliefs. Marginalization refers to reducing the signature of an epistemic state, resulting in
a smaller total preorder over possible worlds over the chosen subset of the original signature. Together with
the syntax splitting principle, which states that only syntactically relevant parts of the epistemic state should
be modified during revision, marginalization can be used to make belief revision more efficient: The original
preorder is marginalized into smaller preorders, which are revised independently, and then merged back together.
This last merging step offers a challenge, however, since some information about the original ordering may be
lost during marginalization. In this paper, we explore how this merging step may be performed while preserving
as much information as possible, in particular the original syntax splitting.
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1. Introduction

Both in belief revision and in non-monotonic reasoning, total preorders over possible worlds play an
important role as representations of an agent’s epistemic state. By ranking the possible worlds according
to their plausibility, with the minimal worlds being most plausible, they encode both propositional and
conditional beliefs.

Marginalization refers to reducing the signature of an epistemic state. The concept originates
from probability theory, where marginalization means reducing the dimensionality of a probability
distribution. Similarly, the marginalization of a total preorder is defined over a chosen subset of the
original signature, resulting in an exponentially smaller total preorder over the reduced signature. In
conjunction with the so-called syntax splitting principle, this technique can be used to make belief
revision and non-monotonic reasoning more efficient. The core idea of syntax splitting (which goes
back to Parikh [1]) is that only syntactically relevant parts of the epistemic state (resp. background
knowledge) should influence a belief revision result (resp. the answer to an inference query).

In this paper, we will focus on the application of syntax splitting to iterated belief revision of
total preorders. In [2], a weak and a strong version of Parikh’s original syntax splitting postulate
were identified, and the strong version was adapted for the iterated revision of epistemic states in
[3], resulting in two syntax splitting postulates, (MR) and (Pit), the conjunction of which guarantees
relevance-sensitive revision of epistemic states. However, while there are various revision operators
in the literature, currently there is no known operator that satisfies (MR) and (Pit). We fill this gap by
proposing a simple variation of lexicographic revision [2] complying with these postulates. Moreover,
we will investigate how these two postulates can be exploited in order to perform a global revision,
i.e. a revision of the whole total preorder, by first marginalizing it, performing local revisions on the
marginalized preorders independently, and then merging the results back together. This final merging
step is of particular interest: it is not obvious how the local preorders should be combined, since all
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information about how the local parts were originally connected is lost during the initial marginalization
and the subsequent local revisions. Towards a solution of this problem, we propose postulates for a
general approach of merging local revision results. In particular, we argue that the original syntax
splitting should be preserved by a merging operator.

In summary, the main contributions of this paper are:

• We propose a revision operator that satisfies both (Pit) and (MR).
• We propose two postulates for merging epistemic states which are defined over disjunct signatures:

(ReMarg) and (MSplit).
• We show that local revision of marginalized total preorders with an additional merging step, with

a merging operator satisfying (ReMarg) and (MSplit), amounts to a global revision satisfying the
syntax splitting postulates (Pit) and (MR).

The rest of this paper is organized as follows. In Section 2, we recall formal basics and notations.
Afterwards, related work is discussed in Section 3. In Section 4, we recall syntax splitting for iterated
belief revision, and we propose a revision operator satisfying the iterated syntax splitting postulates
in Section 5. Section 6 is the core of this paper, where we develop general merging strategies for
marginalized total preorders. Finally, Section 7 contains conclusions and pointers to future work.

2. Preliminaries

Let ℒ be a finitely generated propositional language over the alphabet Σ = {𝑎, 𝑏, 𝑐, . . .}. Formulas
𝐴,𝐵,𝐶, . . . are formed using the standard connectives ∧,∨,¬. For conciseness of notation, we will
write 𝐴𝐵 instead of 𝐴 ∧ 𝐵 for conjunctions, and overlining formulas will indicate negation, i.e. 𝐴
means ¬𝐴. The symbol ⊤ denotes an arbitrary propositional tautology. The set of all possible worlds
(propositional interpretations) over Σ′ ⊆ Σ is denoted by Ω(Σ′). If Σ′ is clear from the context we
simply write Ω. We denote with 𝜔 |= 𝐴 that the propositional formula 𝐴 ∈ ℒ holds in the possible
world 𝜔 ∈ Ω; then 𝜔 is called a model of 𝐴, and the set of all models of 𝐴 is denoted by Mod(𝐴). For
propositions 𝐴,𝐵 ∈ ℒ, 𝐴 |= 𝐵 holds iff Mod(𝐴) ⊆ Mod(𝐵), as usual. By slight abuse of notation, we
will use 𝜔 both for the model and the corresponding conjunction of all positive or negated atoms. Since
𝜔 |= 𝐴 means the same for both readings of 𝜔, no confusion will arise. For a subsignature Θ ⊆ Σ we
denote by 𝜔Θ the Θ-part of a world 𝜔 ∈ Ω, such that Ω(Θ) = {𝜔Θ | 𝜔 ∈ Ω(Σ)}.

As a structure for possible worlds we consider epistemic states represented as Ψ = (ΣΨ,ΩΨ,⪯Ψ)
with ΩΨ ⊆ Ω(ΣΨ), and ⪯Ψ ⊆ ΩΨ×ΩΨ being a total preorder (TPO), i.e., a total and transitive relation.
We assume that every epistemic state can be uniquely identified by its associated total preorder ⪯Ψ, that
is each epistemic state Ψ induces a unique total preorder ⪯Ψ, and each total preorder ⪯ induces a unique
epistemic state Ψ⪯. As usual, 𝜔1 ≺ 𝜔2 if 𝜔1 ⪯ 𝜔2, but not 𝜔2 ⪯ 𝜔1, and 𝜔1 ≈ 𝜔2 if both 𝜔1 ⪯ 𝜔2 and
𝜔2 ⪯ 𝜔1. Total preorders represent plausibility orderings, with the most plausible worlds being located
in the lowermost layer of ⪯ which we denote by min(Ω,⪯). More generally, if Ω′ ⊆ Ω is a subset of
possible worlds, min(Ω′,⪯) denotes the set of minimal worlds in Ω′ according to ⪯. The preorder ⪯ is
lifted to a relation between propositions in the usual way: 𝐴 ⪯ 𝐵 if there is 𝜔 |= 𝐴 such that 𝜔 ⪯ 𝜔′

for all 𝜔′ |= 𝐵. The minimal formulas with respect to a total preorder ⪯Ψ representing an epistemic
state Ψ are the propositional beliefs of Ψ, denoted as Bel(Ψ). Note that Mod(Bel(Ψ)) = min(Ω,⪯Ψ).

Ordinal Conditional Functions (OCFs, also called ranking functions) 𝜅 : Ω → N∪{∞}with 𝜅−1(0) ̸= ∅
[4] assign degrees of implausibility, or surprise, to possible worlds. An OCF 𝜅 is lifted to formulas by
𝜅(𝐴) := min{𝜅(𝜔) | 𝜔 |= 𝐴}. Hence, due to 𝜅−1(0) ̸= ∅, at least one of 𝜅(𝐴), 𝜅(𝐴) must be 0. Note
that these definitions are in full compliance with corresponding definitions for total preorders.

Every ranking function induces a unique total preorder which can be obtained via the transformation
operator 𝜏 [5] which maps an OCF 𝜅 to an epistemic state Ψ𝜅, 𝜏 : 𝜅 ↦→ Ψ𝜅 such that for all 𝜔, 𝜔′ ∈ Ω,

𝜔 ⪯Ψ𝜅 𝜔′ iff 𝜅(𝜔) ≤ 𝜅(𝜔′) (1)



holds. While each ranking function is associated with a unique total preorder there are potentially
infinitely many OCFs complying with a given total preorder. We employ a specific transformation
operator 𝜌 [5] that maps an epistemic state Ψ to an OCF 𝜅Ψ, 𝜌 : Ψ ↦→ 𝜅Ψ such that for all 𝜔 ∈ Ω

𝜅Ψ(𝜔) = min
𝜅∈𝜏−1(Ψ)

{𝜅(𝜔)} (2)

holds, i.e., 𝜌 maps Ψ to the minimal possible ranking function complying with Ψ. For a more detailed
analysis on such transformations we refer to [6].

3. Related Work

There is a fairly large body of work on the general topic of merging information in logic-based frame-
works, see e.g. [7] for an overview. There are also approaches dedicated specifically to the merging of
epistemic states, e.g. [8, 9, 10]. These works are mainly motivated by the integration of information from
different sources. Hence, they consider complicated merging scenarios where conflicting information is
expected, and conflict resolution is necessary.

We are concerned with a different scenario. When merging marginalized total preorders, the informa-
tion encoded over pairwise disjoint signatures is interpreted as independent from and irrelevant to each
other. Our focus is on constructing a coherent global revision result from the results of local revisions,
in order to make the whole process more efficient. To the best of our knowledge, there currently exist
no merging strategies for marginalized TPOs. In [3] an operator ⊕ for combining OCFs 𝜅1, . . . , 𝜅𝑛 over
pairwise disjoint signatures Σ1, . . . ,Σ𝑛 was implicitly defined:

(𝜅1 ⊕ · · · ⊕ 𝜅𝑛)(𝜔1 . . . 𝜔𝑛) = 𝜅1(𝜔1) + · · ·+ 𝜅𝑛(𝜔𝑛) . (3)

The additivity of OCFs is very similar in spirit to (and in fact our main inspiration for) what we call
level-order merging of total preorders in this paper.

4. Syntax Splitting for Epistemic States

The notion of syntax splitting we consider in this paper goes back to Parikh [1]. The main idea of
syntax splitting is to pay attention to which parts of an agent’s knowledge are syntactically relevant for
the new information during belief revision. If the agent’s knowledge is expressed over two disjoint
subsignatures, and the new information is expressed in only one of them, then the agent’s knowledge
expressed over the other subsignature should not be affected.

Parikh originally formulated this concept as an axiom (P) for propositional revision of belief sets.
In [11], two readings of this axiom, namely “weak (P)” and “strong (P)”, were identified. The strong
version of this axiom was generalized to iterated revision by sets of propositions in [3], giving rise to
two syntax splitting postulates for the revision of epistemic states: (MR) and (Pit). These postulates rely
on two important concepts: marginalization and TPO splittings.

Definition 1 (marginalization Ψ↓Θ). Let Ψ = (Σ,Ω,⪯Ψ) be an epistemic state, and let Θ ⊆ Σ. The
marginalization of Ψ on Θ is an epistemic state Ψ↓Θ = (Θ,ΩΘ,⪯Ψ↓Θ) with ΩΘ = {𝜔Θ | 𝜔 ∈ Ω} and:

𝜔Θ
1 ⪯Ψ↓Θ 𝜔Θ

2 iff 𝜔Θ
1 ⪯Ψ 𝜔Θ

2 . (4)

When the epistemic state Ψ is clear from context, or when the specific state does not matter and we
only focus on the total preorder, we sometimes write ⪯↓Θ instead of ⪯Ψ↓Θ in order to ease notation
a bit, and talk about the marginalization of the total preorder instead of the marginalization of the
corresponding epistemic state.



Definition 2 (TPO splitting [3]). Let Ψ = (Σ,Ω,⪯Ψ) be an epistemic state, and let (Σ1, . . . ,Σ𝑛)
be a partition of Σ. We say that Ψ splits over (Σ1, . . . ,Σ𝑛) if the following condition holds for all
𝑖 ∈ {1, . . . , 𝑛} and for all 𝜔1, 𝜔2 ∈ Ω with 𝜔

Σ∖Σ𝑖

1 = 𝜔
Σ∖Σ𝑖

2 :

𝜔1 ⪯Ψ 𝜔2 iff 𝜔Σ𝑖
1 ⪯Ψ↓Σ𝑖

𝜔Σ𝑖
2 . (5)

We use the symbol * to denote revision operators for epistemic states. We presuppose that * is able to
deal with epistemic states and formulas over any signature, i.e., it may be used both for global revision
(of epistemic states defined over the whole signature Σ) and local revision (of epistemic states defined
over subsignatures Σ′ ⊆ Σ). However, * does not have to make a connection between global and local
revision scenarios; (Ψ * 𝐴)↓Σ′ and Ψ↓Σ′ * 𝐴 may lead to completely different results, even if 𝐴 only
contains information about Σ′. The syntax splitting postulates from [3], which are given below, restrict
this arbitrary handling of global and local contexts.

(MR) Let Ψ be an epistemic state defined on Σ that splits over (Σ1, . . . ,Σ𝑛). Let 𝒞 = {𝐶1, . . . , 𝐶𝑛}
with 𝐶𝑖 ∈ ℒ(Σ𝑖) be the new information. Then

(Ψ * 𝒞)↓Σ𝑖
= (Ψ↓Σ𝑖

) * 𝐶𝑖 . (6)

(Pit ) Let Ψ be an epistemic state defined on Σ that splits over (Σ1, . . . ,Σ𝑛). Let 𝒞 = {𝐶1, . . . , 𝐶𝑛}
with 𝐶𝑖 ∈ ℒ(Σ𝑖) be the new information. Then Ψ * 𝒞 splits over (Σ1, . . . ,Σ𝑛).

(MR) makes an explicit connection between global and local revision scenarios, given that the new
information 𝒞 fits a syntax splitting of Ψ. More precisely, (MR) states that it should not matter whether
you first revise the whole epistemic state and then marginalize to Σ𝑖, or marginalize first and only
locally revise with the relevant information. (Pit), on the other hand, states that the splitting should be
preserved, but not how the individual 𝐶𝑖 should (or should not) influence the individual parts of the
belief state. This ensures that no unnecessary syntactical dependencies are introduced by the revision.
Hence, these two postulates formulate two different requirements for iterated revision operators, and
neither of the two postulates implies the other [3]. Therefore, proper syntax splitting for total preorders
is captured by the conjunction of (Pit) and (MR). We propose to express this by the following postulate.

(PMR) Let Ψ be an epistemic state defined on Σ that splits over (Σ1, . . . ,Σ𝑛). Let 𝒞 = {𝐶1, . . . , 𝐶𝑛}
with 𝐶𝑖 ∈ ℒ(Σ𝑖) be the new information. Then Ψ * 𝒞 splits over (Σ1, . . . ,Σ𝑛) such that

(Ψ * 𝒞)↓Σ𝑖
= (Ψ↓Σ𝑖

) * 𝐶𝑖. (7)

5. Revision Operator for Epistemic Syntax Splitting

In this section we will show that (MR) and (Pit) can indeed be brought together by defining a simple
iterated revision operator which satisfies both postulates.

First, we define a measure for how much a set of formulas 𝒞 and a possible world 𝜔 deviate from
each other as the number of formulas in 𝒞 that are not satisfied by 𝜔:

𝛿𝒞(𝜔) := |{𝐶𝑖 ∈ 𝒞 | 𝜔 ̸|= 𝐶𝑖}| . (8)

Next we define a variation of the (simplified) lexicographic revision operator proposed in [2] which
revises an epistemic state by a set of formulas (instead of a single proposition). In order to simplify the
following definition, we assume that the new information is consistent.

Definition 3 (Multiple SimpLex Revision). Let Ψ be an epistemic state over Σ, and let 𝒞 ⊆ ℒ be a
consistent set of formulas. Then the multiple SimpLex (MSL) revision operator *ℓ is defined via the
following conditions.



(MSL1) If 𝛿𝒞(𝜔1) = 𝛿𝒞(𝜔2), then: 𝜔1 ⪯Ψ*ℓ𝒞 𝜔2 iff 𝜔1 ⪯Ψ 𝜔2.

(MSL2) If 𝛿𝒞(𝜔1) < 𝛿𝒞(𝜔2), then: 𝜔1 ≺Ψ*ℓ𝒞 𝜔2.

The two conditions given in the definition above uniquely define the posterior TPO ⪯Ψ*ℓ𝒞 . Moreover,
it is easy to show that this operator fits into the popular AGM framework1 [12, 13, 14] since the most
plausible worlds after revision are the minimal models of the new information prior to revision.

Proposition 1. Let Ψ be an epistemic state and let 𝒞 = {𝐶1, . . . , 𝐶𝑛} ⊆ ℒ. Then Mod(Bel(Ψ *ℓ 𝒞)) =
min(Mod(𝒞),⪯Ψ).

Proof. For all 𝜔 ∈ Mod(𝒞) it holds that 𝛿𝒞(𝜔) = 0, and for all 𝜔′ /∈ Mod(𝒞) there must be some 𝐶𝑖 ∈ 𝒞
such that 𝜔′ ̸|= 𝐶𝑖, which implies 𝛿𝒞(𝜔

′) > 0. Hence 𝜔 ≺Ψ*ℓ𝒞 𝜔′ due do Definition 3. Therefore,
if a world is minimal according to ⪯Ψ*ℓ𝒞 , then it must be a model of 𝒞. Now let 𝜔1, 𝜔2 ∈ Mod(𝒞).
Then 𝛿𝒞(𝜔1) = 𝛿𝒞(𝜔2), which implies 𝜔1 ⪯Ψ*ℓ𝒞 𝜔2 iff 𝜔1 ⪯Ψ 𝜔2 according to Definition 3. Therefore,
min(Mod(𝒞),⪯Ψ*ℓ𝒞) = min(Mod(𝒞),⪯Ψ).

The following example illustrates how the MSL operator works.

Example 1. Let Ψ = (ΣΨ,ΩΨ,⪯Ψ) be an epistemic state over the signature ΣΨ = {𝑎, 𝑏, 𝑐}. The total
preorder ⪯Ψ is given below, with possible worlds represented as conjunctions of literals, and worlds in
the same column being considered equally plausible with respect to Ψ.

Ψ : 𝑎𝑏𝑐 ≺Ψ

𝑎𝑏𝑐

𝑎𝑏𝑐
𝑎𝑏𝑐

≺Ψ

𝑎𝑏𝑐
𝑎𝑏𝑐

𝑎𝑏𝑐

≺Ψ 𝑎𝑏𝑐 . (9)

Now let 𝒞 = {(¬𝑎 ∨ ¬𝑏),¬𝑐}. The revision Ψ *ℓ 𝒞 now results in the following TPO:

Ψ *ℓ 𝒞 :
𝑎𝑏𝑐
𝑎𝑏𝑐

≺Ψ*ℓ𝒞 𝑎𝑏𝑐

⏟  ⏞  
deviation 0

≺Ψ*ℓ𝒞

𝑎𝑏𝑐

𝑎𝑏𝑐
𝑎𝑏𝑐⏟ ⏞ 

deviation 1

≺Ψ*ℓ𝒞 𝑎𝑏𝑐 ≺Ψ*ℓ𝒞 𝑎𝑏𝑐

⏟  ⏞  
deviation 2

. (10)

As shown above, the possible worlds are staggered with respect to their deviation from the new
information (given by 𝛿𝒞), with equally-deviating worlds keeping their original relative ordering.

Proposition 2. The revision operator *ℓ satisfies (Pit).

Proof. Let Ψ be an epistemic state defined over Σ, and let {Σ1, . . . ,Σ𝑛} be a TPO-splitting of ⪯Ψ.
Furthermore, let 𝒞 = {𝐶1, . . . , 𝐶𝑛} ⊆ ℒ with 𝐶𝑖 ∈ ℒ(Σ𝑖). Let Φ = Ψ *ℓ 𝒞 be the revision result.

Now choose 𝑖 ∈ {1, . . . , 𝑛}, and let 𝜔1, 𝜔2 ∈ Ω with 𝜔
Σ∖Σ𝑖

1 = 𝜔
Σ∖Σ𝑖

2 . In order to prove satisfaction
of (Pit), we need to show that the equivalence

𝜔1 ⪯Φ 𝜔2 iff 𝜔Σ𝑖
1 ⪯Φ↓Σ𝑖

𝜔Σ𝑖
2 (11)

holds. We make a case distinction on whether exactly one of the two worlds 𝜔1, 𝜔2 satisfies 𝐶𝑖:
Case 1: Let 𝜔1 |= 𝐶𝑖 and 𝜔2 ̸|= 𝐶𝑖 (without loss of generality). Then 𝛿𝒞(𝜔1) < 𝛿𝒞(𝜔2), resulting in

𝜔1 ≺Φ 𝜔2. Now let 𝜔′
2 ∈ min(Mod(𝜔Σ𝑖

2 ),⪯Φ). Since 𝜔2 ̸|= 𝐶𝑖, also 𝜔′
2 ̸|= 𝐶𝑖 holds. Now let 𝜔′

1 be
defined by

𝜔′
1 := 𝜔Σ𝑖

1 ∧ (𝜔′
2)

Σ∖Σ𝑖 . (12)

Because of this construction, we have 𝛿𝒞(𝜔
′
1) < 𝛿𝒞(𝜔

′
2), resulting in 𝜔′

1 ≺Φ 𝜔′
2, i.e. there is a model of

𝜔Σ𝑖
1 that is more plausible in ⪯Φ than the minimal models of 𝜔Σ𝑖

2 . Therefore, 𝜔1 ≺Φ↓Σ𝑖
𝜔2. Hence, (11)

holds for 𝜔1, 𝜔2.
1Originally, the AGM approach only considered revision of belief sets by single propositions [12]. It has since been extended
in various ways, including revision of epistemic states [13] and revision by sets of formulas [14].



Case 2: Let either 𝜔1, 𝜔2 |= 𝐶𝑖, or 𝜔1, 𝜔2 |= ¬𝐶𝑖. Then 𝛿𝒞(𝜔1) = 𝛿𝒞(𝜔2) and 𝜔1 ⪯Φ 𝜔2 holds iff
𝜔1 ⪯Ψ 𝜔2 holds. Assume 𝜔1 ⪯Ψ 𝜔2 (without loss of generality). Using the same construction (12) as
in the previous case, it follows that the minimal models of 𝜔Σ𝑖

1 in ⪯Φ are at least as plausible as the
minimal models of 𝜔Σ𝑖

2 . Hence 𝜔1 ⪯Φ↓Σ𝑖
𝜔2, i.e., (11) holds.

Proposition 3. The revision operator *ℓ satisfies (MR).

Proof. Let Ψ be an epistemic state defined over Σ, and let {Σ1, . . . ,Σ𝑛} be a TPO-splitting of ⪯Ψ.
Furthermore, let 𝒞 = {𝐶1, . . . , 𝐶𝑛} ⊆ ℒ with 𝐶𝑖 ∈ ℒ(Σ𝑖). Let Φ = Ψ *ℓ 𝒞 be the revision result.

Now choose 𝑖 ∈ {1, . . . , 𝑛}, and let 𝜔𝑖
1, 𝜔

𝑖
2 ∈ Ω(Σ𝑖). In order to prove satisfaction of (MR), we need

to show that the equivalence

𝜔𝑖
1 ⪯Φ↓Σ𝑖

𝜔𝑖
2 iff 𝜔𝑖

1 ⪯(Ψ↓Σ𝑖
)*ℓ𝐶𝑖

𝜔𝑖
2 (13)

holds. In this proof, we will make use of Proposition 2, i.e. Ψ having a TPO-splitting implies the same
TPO-splitting for Φ.

Direction “⇒”: Let 𝜔𝑖
1 ⪯Φ↓Σ𝑖

𝜔𝑖
2. We make a case distinction with respect to 𝐶𝑖.

• Case 1: 𝜔𝑖
1 |= 𝐶𝑖 and 𝜔𝑖

2 ̸|= 𝐶𝑖. Because of 𝛿𝒞(𝜔𝑖
1) < 𝛿𝒞(𝜔

𝑖
2), it follows directly from (MSL2) that

𝜔𝑖
1 ≺(Ψ↓Σ𝑖

)*ℓ𝐶𝑖
𝜔𝑖
2.

• Case 2: 𝜔𝑖
1 ̸|= 𝐶𝑖 and 𝜔𝑖

2 |= 𝐶𝑖. This would mean 𝛿𝒞(𝜔
𝑖
1) > 𝛿𝒞(𝜔

𝑖
2), which would imply

𝜔𝑖
1 ≻Φ↓Σ𝑖

𝜔𝑖
2 due to (MSL2), contradicting the assumption that 𝜔𝑖

1 ⪯Φ↓Σ𝑖
𝜔𝑖
2. Therefore, this case

is impossible.
• Case 3: Both 𝜔𝑖

1, 𝜔
𝑖
2 |= 𝐶𝑖, or both 𝜔𝑖

1, 𝜔
𝑖
2 |= ¬𝐶𝑖. Because we have a TPO-splitting, 𝜔𝑖

1 ⪯Φ↓Σ𝑖
𝜔𝑖
2

implies that 𝜔1 ⪯Φ 𝜔2 for all 𝜔1, 𝜔2 ∈ Ω with 𝜔Σ𝑖
1 = 𝜔𝑖

1, 𝜔Σ𝑖
2 = 𝜔𝑖

2, and 𝜔
Σ∖Σ𝑖

1 = 𝜔
Σ∖Σ𝑖

2 . Now
choose 𝜔2 ∈ min(Mod(𝜔𝑖

2),⪯Ψ), and let 𝜔1 be defined by

𝜔1 := 𝜔𝑖
1 ∧ 𝜔

Σ∖Σ𝑖

2 . (14)

Then 𝛿𝒞(𝜔1) = 𝛿𝒞(𝜔2), and we have 𝜔1 ⪯Ψ 𝜔2 according to (MSL1). Since 𝜔2 is a minimal model
of 𝜔𝑖

2 in ⪯Ψ, it follows that 𝜔𝑖
1 ⪯Ψ↓Σ𝑖

𝜔𝑖
2. Therefore, (MSL1) requires that 𝜔𝑖

1 ⪯(Ψ↓Σ𝑖
)*ℓ𝐶𝑖

𝜔𝑖
2.

Direction “⇐”: Let 𝜔𝑖
1 ⪯(Ψ↓Σ𝑖

)*ℓ𝐶𝑖
𝜔𝑖
2. We make a case distinction with respect to 𝐶𝑖.

• Case 1: 𝜔𝑖
1 |= 𝐶𝑖 and 𝜔𝑖

2 ̸|= 𝐶𝑖. Let 𝜔2 ∈ min(Mod(𝜔𝑖
2),⪯Φ), and let 𝜔1 be defined by

𝜔1 := 𝜔𝑖
1 ∧ 𝜔

Σ∖Σ𝑖

2 . (15)

Then 𝛿𝒞(𝜔1) < 𝛿𝒞(𝜔2) and, therefore, 𝜔1 ≺Φ 𝜔2 due to (MSL2). Since 𝜔2 is a minimal model of
𝜔𝑖
2 in ⪯Φ, it follows that 𝜔𝑖

1 ≺Φ↓Σ𝑖
𝜔𝑖
2.

• Case 2: 𝜔𝑖
1 ̸|= 𝐶𝑖 and 𝜔𝑖

2 |= 𝐶𝑖. This would mean 𝛿𝒞(𝜔
𝑖
1) > 𝛿𝒞(𝜔

𝑖
2), which would imply

𝜔𝑖
1 ≻(Ψ↓Σ𝑖

)*ℓ𝐶𝑖
𝜔𝑖
2 due to (MSL2), contradicting the assumption that𝜔𝑖

1 ⪯(Ψ↓Σ𝑖
)*ℓ𝐶𝑖

𝜔𝑖
2. Therefore,

this case is impossible.
• Case 3: Both 𝜔𝑖

1, 𝜔
𝑖
2 |= 𝐶𝑖, or both 𝜔𝑖

1, 𝜔
𝑖
2 |= ¬𝐶𝑖. Then 𝜔𝑖

1 ⪯Ψ↓Σ𝑖
𝜔𝑖
2 follows directly from

𝜔𝑖
1 ⪯(Ψ↓Σ𝑖

)*ℓ𝐶𝑖
𝜔𝑖
2 according to (MSL1). Because we have a TPO-splitting, it follows that 𝜔1 ⪯Ψ

𝜔2 for all 𝜔1, 𝜔2 ∈ Ω with 𝜔Σ𝑖
1 = 𝜔𝑖

1, 𝜔Σ𝑖
2 = 𝜔𝑖

2, and 𝜔
Σ∖Σ𝑖

1 = 𝜔
Σ∖Σ𝑖

2 . Now choose 𝜔2 ∈
min(Mod(𝜔𝑖

2),⪯Φ), and let 𝜔1 be defined by

𝜔1 := 𝜔𝑖
1 ∧ 𝜔

Σ∖Σ𝑖

2 . (16)

Then 𝛿𝒞(𝜔1) = 𝛿𝒞(𝜔2), and 𝜔1 ⪯Φ 𝜔2 follows from 𝜔1 ⪯Ψ 𝜔2 due to (MSL1). Since 𝜔2 is a
minimal model of 𝜔𝑖

2 in ⪯Φ, it follows that 𝜔𝑖
1 ⪯Φ↓Σ𝑖

𝜔𝑖
2.

In order to summarize the main result of this section, we combine Propositions 2 and 3 into the
following theorem.

Theorem 4. The revision operator *ℓ satisfies both (MR) and (Pit), and thus (PMR).



6. Merging of Marginalized Total Preorders

In the previous section, we showed that there is a revision operator which satisfies both (MR) and (Pit).
In this section, we want to build upon the concept of marginalized revision to obtain more general
localized revision operators complying with the syntax splitting postulates. The idea is to first revise
the marginalized epistemic states independently from each other, and then merge the results together.

6.1. Postulates for Merging Total Preorders over Disjoint Signatures

In this paper, we use the symbol △ to denote merging operators for epistemic states that take two
epistemic states as input and produce one merged epistemic state as output. In order to simplify
notation, we stipulate that △ is left-associative, i.e. Ψ1 △ Ψ2 △ Ψ3 = (Ψ1 △ Ψ2) △ Ψ3. Note that △
may be commutative, but does not have to be; i.e., we may have Ψ1 △ Ψ2 ̸= Ψ2 △ Ψ1. For most of
the results in this section, this does not make a big difference, since we do not consider any additional
preferences over the epistemic states themselves during merging. However, we will briefly talk about
non-commutative merging towards the end of this section.

Because we are mainly interested in syntax splitting properties, we want to merge marginalized
epistemic states defined over disjoint signatures. This means that the possible worlds which the
epistemic states respectively talk about do not share any atoms, whereas the merged epistemic state’s
possible worlds should be defined over the combined signature. Therefore, we define the set of possible
worlds over the combined signature as follows.

Definition 4 (Combined Possible Worlds). Let Σ1,Σ2 be signatures with Σ1∩Σ2 = ∅. Let Ω1 ⊆ Ω(Σ1),
and Ω2 ⊆ Ω(Σ2). Then the combined set of possible worlds Ω1 ⊗ Ω2 ⊆ Ω(Σ1 ∪ Σ2) is defined by:

(Ω1 ⊗ Ω2) := {𝜔1𝜔2 | (𝜔1, 𝜔2) ∈ (Ω1 × Ω2)} . (17)

Let Ψ1, . . . ,Ψ𝑛 be epistemic states represented by total preorders over sets of possible worlds
Ω1, . . . ,Ω𝑛, which are respectively defined over pairwise disjoint signatures Σ1, . . . ,Σ𝑛. As the result
of merging Ψ1, . . . ,Ψ𝑛 we henceforth expect an epistemic state represented by a total preorder over the
combined possible worlds. More precisely, (Ψ1 △ . . . △ Ψ𝑛) := (Σ△,Ω△,⪯△) such that Σ△ =

⋃︀𝑛
𝑖=1Σ𝑖,

Ω△ = Ω1⊗ . . .⊗Ω𝑛, and ⪯△ ⊆ Ω△×Ω△. We can now define revision via merging of localized revision
results as follows.

Definition 5 (⊛△). Let Ψ be an epistemic state, let {Σ1, . . . ,Σ𝑛} be a splitting of ⪯Ψ, and let 𝒞 =
{𝐶1, . . . , 𝐶𝑛} with 𝐶𝑖 ∈ ℒ(Σ𝑖) for 𝑖 ∈ {1, . . . , 𝑛}. Let * be a revision operator, and let △ be a merging
operator. Then the revision operator ⊛△ is defined by

Ψ⊛△ 𝒞 = (Ψ↓Σ1 * 𝐶1) △ . . . △ (Ψ↓Σ𝑛 * 𝐶𝑛). (18)

When merging Ψ1, . . . ,Ψ𝑛, there should be no information conflicts since every epistemic state is
concerned with a domain that is different from all others. Therefore, we expect that the merging is
performed such that the individual Ψ𝑖 can be recovered via marginalization. This is expressed by the
following property:

(ReMarg) (Ψ1 △ . . . △ Ψ𝑛)↓Σ𝑖
= Ψ𝑖

Moreover, the merging should not introduce any dependencies between atoms from different Σ𝑖.
Hence, the merged epistemic state should split over the original signatures.

(MSplit) (Ψ1 △ . . . △ Ψ𝑛) splits over (Σ1, . . .Σ𝑛).

Just like (MR) and (Pit), these two merging postulates do not imply each other, i.e. they indeed specify
different requirements of merging operators. Counterexamples would be very similar to the ones
provided in [3].



Theorem 5. Let * be a revision operator, let △ be a merging operator, and let ⊛△ be the revision operator
constructed from (*,△) via Definition 5. Then the following propositions holds:

• If △ satisfies (ReMarg), then ⊛△ satisfies (MR).
• If △ satisfies (MSplit), then ⊛△ satisfies (Pit).

Proof. Let Ψ be an epistemic state that splits over {Σ1, . . . ,Σ𝑛}. Let 𝒞 = {𝐶1, . . . , 𝐶𝑛} with 𝐶𝑖 ∈
ℒ(Σ𝑖). For (Pit), assume that △ satisfies (MSplit). Then Ψ⊛△ 𝒞 splits over {Σ1, . . . ,Σ𝑛}, i.e. (Pit) holds.
For (MR), let △ satisfy (ReMarg) and observe that

(Ψ⊛△ 𝒞)↓Σ𝑖
=

(︀
(Ψ↓Σ1 * 𝐶1) △ . . . △ (Ψ↓Σ𝑛 * 𝐶𝑛)

)︀
↓Σ𝑖

. (19)

With (ReMarg), it follows that (Ψ⊛△ 𝒞)↓Σ𝑖
= (Ψ↓Σ𝑖

*𝐶𝑖). The state Ψ↓Σ𝑖
trivially splits over {Σ𝑖}. In

this case ⊛△ and * coincide. Thus (Ψ⊛△ 𝒞)↓Σ𝑖
= Ψ↓Σ𝑖

⊛△ 𝐶𝑖 and we are done.

As an easy consequence of Theorem 5, the revision operator ⊛△ from Definition 5 satisfies (PMR) if
the utilized merging operator △ satisfies (ReMarg) and (MSplit). Next we are going to investigate how
such a merging operator △ can be designed.

6.2. Product Combinations and Faithful Extensions

The first basic step towards merging total preorders, which are defined over disjoint subsignatures, is
to define how relationships between possible worlds from the individual ⪯𝑖 should be adopted into the
merged relation ⪯△. The following definition gives us the core of the merged relation, i.e., it captures
the relationships which we want to hold in any version of ⪯△.

Definition 6 (Product Combination of TPOs). Let ⪯1, . . . ,⪯𝑛 be total preorders over Ω1, . . . ,Ω𝑛,
respectively, with Ω𝑖 ⊆ Ω(Σ𝑖) for all 𝑖 ∈ {1, . . . , 𝑛}, and Σ𝑖 ∩ Σ𝑗 = ∅ for all 𝑖 ̸= 𝑗. The product
combination of these TPOs, denoted as ⪯⊗ = (⪯1 ⊗ . . .⊗⪯𝑛), is a relation over Ω1 ⊗ . . .⊗ Ω𝑛, such
that for all (𝜔1, . . . , 𝜔𝑛), (𝜔

′
1, . . . , 𝜔

′
𝑛) ∈ (Ω1 × . . .× Ω𝑛):

𝜔1 . . . 𝜔𝑛 ⪯⊗ 𝜔′
1 . . . 𝜔

′
𝑛 iff 𝜔𝑖 ⪯𝑖 𝜔

′
𝑖 for all 𝑖 ∈ {1, . . . , 𝑛}. (20)

In essence, the product combination is what is called a product order in order theory (see e.g. [15]),
except that it is defined on Ω1⊗ . . .⊗Ω𝑛 instead of the Cartesian product Ω1× . . .×Ω𝑛. The resulting
order ⪯⊗ is a preorder, i.e. a reflexive and transitive relation, but it is usually not total: if there are
𝜔𝑖, 𝜔

′
𝑖 ∈ Ω𝑖 and 𝜔𝑗 , 𝜔

′
𝑗 ∈ Ω𝑗 (𝑖, 𝑗 ∈ {1, . . . , 𝑛}) such that 𝜔𝑖 ≺𝑖 𝜔

′
𝑖 and 𝜔𝑗 ≺𝑗 𝜔

′
𝑗 , then 𝜔𝑖𝜔

′
𝑗 and 𝜔′

𝑖𝜔𝑗

are incomparable with respect to ⪯⊗. Since we assume in this paper that epistemic states are uniquely
identified by TPOs, we will also talk about the “product combination of epistemic states Ψ1,Ψ2” when
we mean the product combination of ⪯Ψ1 and ⪯Ψ2 .

Example 2. Let Ψ1,Ψ2 be defined by the following total preorders:

Ψ1 : 𝑎𝑏 ≺1 𝑎𝑏 ≺1 𝑎𝑏 ≺1 𝑎𝑏 ,

Ψ2 : 𝑐𝑑 ≺2 𝑐𝑑 ≺2 𝑐𝑑 ≺2 𝑐𝑑 .
(21)

The product combination of Ψ1 and Ψ2 as given by Definition 6, i.e. the preorder ⪯⊗ = (⪯1 ⊗⪯2), is
visualized in Figure 1. Note that the elements along the diagonals in “antidiagonal” direction, e.g. 𝑎𝑏𝑐𝑑
and 𝑎𝑏𝑐𝑑, are incomparable with respect to ⪯⊗.

Since ⪯⊗ is not necessarily a total order, we need to extend this relation in order to represent a full
epistemic state.

Definition 7 (faithful extension). Let ⪯ be a preorder, i.e. a reflexive and transitive relation, over some
set 𝑀 . Let ⪯′ be a preorder over 𝑀 that extends ⪯, i.e. ⪯ ⊆ ⪯′. We call this extension faithful if for all
𝑥, 𝑦 ∈ 𝑀 , it holds that: 𝑥 ≺ 𝑦 implies 𝑥 ≺′ 𝑦.
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Figure 1: Product combination of two total preorders (defined over Σ1 = {𝑎, 𝑏} resp. Σ2 = {𝑐, 𝑑}) from
Example 2. The symbol ≺ stands for ≺⊗. The arrows indicate the influence of ⪯1 and ⪯2, respectively, on the
resulting preorder ⪯⊗.

In other words, a faithful extension of a preorder preserves all strict preferences and all equalities.
This means that the only additional preferences introduced by a faithful extension are preferences
among elements which were incomparable before. Clearly, every preorder is a faithful extension of
itself. Moreover, all faithful extensions of a preorder have the same minimal (and maximal) worlds as
the original preorder they extend. For product combinations, this property can be generalized to the
Lemma below.

Lemma 6. Let Ψ1, . . . ,Ψ𝑛 be epistemic states with Ψ𝑖 = (Σ𝑖,Ω𝑖,⪯𝑖) for all 𝑖 ∈ {1, . . . , 𝑛}, and
Σ𝑖 ∩ Σ𝑗 = ∅ for all 𝑖 ̸= 𝑗. Let ⪯△ be a faithful extension of ⪯⊗ = (⪯1 ⊗ . . . ⊗ ⪯𝑛). Then for all
𝑖 ∈ {1, . . . , 𝑛} and 𝜔𝑖 ∈ Ω𝑖, the following holds:

min(Mod(𝜔𝑖),⪯△) = {𝜔1 . . . 𝜔(𝑖−1)𝜔𝑖𝜔(𝑖+1) . . . 𝜔𝑛 | 𝜔𝑗 ∈ min(Mod(Ω𝑗),⪯𝑗) for all 𝑗 ̸= 𝑖} . (22)

Proof. First we show the direction “⊆”: Let 𝜔 ∈ min(Mod(𝜔𝑖),⪯△). By construction, 𝜔 has the form
𝜔 = 𝜔1 . . . 𝜔(𝑖−1)𝜔𝑖𝜔(𝑖+1) . . . 𝜔𝑛 with 𝜔𝑗 ∈ Ω𝑗 for all 𝑗 ∈ {1, . . . , 𝑛}. Suppose that there was some 𝜔𝑗

such that 𝜔𝑗 /∈ min(Mod(Ω𝑗),⪯𝑗). Then there is 𝜔′
𝑗 ∈ Ω𝑗 with 𝜔′

𝑗 ≺𝑗 𝜔𝑗 . Let 𝜔′ be the world obtained
by replacing 𝜔𝑗 with 𝜔′

𝑗 in 𝜔. Then 𝜔′ ≺⊗ 𝜔 according to Definition 6, which implies 𝜔′ ≺△ 𝜔 due to
Definition 7. This means that 𝜔 cannot be a minimal model of 𝜔𝑖 in ⪯△, which contradicts the initial
assumption that 𝜔 ∈ min(Mod(𝜔𝑖),⪯△).

“⊇”: Let 𝜔𝑗 ∈ min(Mod(Ω𝑗),⪯𝑗) for all 𝑗 ̸= 𝑖, and let 𝜔 = 𝜔1 . . . 𝜔(𝑖−1)𝜔𝑖𝜔(𝑖+1) . . . 𝜔𝑛. Suppose
that there was some 𝜔′ |= 𝜔𝑖 such that 𝜔′ ≺△ 𝜔. Then, due to Definition 7, either 𝜔′ ≺⊗ 𝜔 or 𝜔, 𝜔′ are
incomparable w.r.t. ⪯⊗.

Case 1: 𝜔′ ≺⊗ 𝜔. Then 𝜔′
𝑗 ⪯𝑗 𝜔𝑗 for all 𝜔𝑗 , 𝜔

′
𝑗 ∈ Ω𝑗 such that 𝜔 |= 𝜔𝑗 and 𝜔′ |= 𝜔′

𝑗 . Moreover, there
must be at least one such pair𝜔𝑘, 𝜔

′
𝑘 ∈ Ω𝑘 with𝜔 |= 𝜔𝑘 and𝜔′ |= 𝜔′

𝑘 such that𝜔′
𝑘 ≺𝑘 𝜔𝑘 . However, that

means 𝜔𝑘 /∈ min(Mod(Ω𝑘),⪯𝑘), contradicting the initial assumption that 𝜔𝑗 ∈ min(Mod(Ω𝑗),⪯𝑗)
for all 𝑗 ̸= 𝑖.

Case 2: 𝜔, 𝜔′ are incomparable w.r.t. ⪯⊗. Then there must be 𝜔𝑗 , 𝜔
′
𝑗 ∈ Ω𝑗 and 𝜔𝑘, 𝜔

′
𝑘 ∈ Ω𝑘

(𝑗, 𝑘 ∈ {1, . . . , 𝑛}) with such that 𝜔 |= 𝜔𝑗𝜔𝑘 and 𝜔′ |= 𝜔′
𝑗𝜔

′
𝑘 such that 𝜔𝑗 ≺𝑗 𝜔′

𝑗 and 𝜔′
𝑘 ≺𝑗 𝜔𝑘.

However, that means again 𝜔𝑘 /∈ min(Mod(Ω𝑘),⪯𝑘), causing a contradiction.

Lemma 6 essentially states that the minimal models of every 𝜔𝑖 ∈ Ω𝑖 according to ⪯△ are those
constructed from 𝜔𝑖 and minimal worlds in all other Ψ𝑗 with 𝑗 ̸= 𝑖. As a consequence, marginalization
is preserved.



Proposition 7. Let Ψ1, . . . ,Ψ𝑛 be epistemic states with Ψ𝑖 = (Σ𝑖,Ω𝑖,⪯𝑖) for all 𝑖, and Σ𝑖 ∩ Σ𝑗 = ∅
for all 𝑖 ̸= 𝑗. Let ⪯△ be a faithful extension of ⪯⊗ = (⪯1 ⊗ . . .⊗⪯𝑛). Then for all 𝑖 ∈ {1, . . . , 𝑛} the
following holds:

⪯△
↓Σ𝑖

= ⪯⊗
↓Σ𝑖

= ⪯𝑖 . (23)

Proof. Lemma 6 directly implies that the minimal models of 𝜔𝑖 are the same in ⪯△ and ⪯⊗, because
⪯⊗ is a faithful extension of itself. Hence, the equality ⪯△

↓Σ𝑖
= ⪯⊗

↓Σ𝑖
holds.

Let 𝜔𝑖, 𝜔
′
𝑖 ∈ Ω𝑖. According to Lemma 7, the minimal models of 𝜔𝑖 and 𝜔′

𝑖 in ⪯⊗ have the form 𝜔𝑖𝜇
and 𝜔′

𝑖𝜇, respectively, with 𝜇 ∈ (Ω1 ⊗ . . .⊗ Ω(𝑖−1) ⊗ Ω(𝑖+1) ⊗ . . .⊗ Ω𝑛). It follows with Definition 6
that 𝜔𝑖𝜇 ⪯⊗ 𝜔′

𝑖𝜇 iff 𝜔𝑖 ⪯𝑖 𝜔
′
𝑖. Therefore, the equality ⪯⊗

↓Σ𝑖
= ⪯𝑖 holds.

Besides the marginalizations, faithful extension also preserve the splitting over the original signatures.

Proposition 8. Let Ψ1, . . . ,Ψ𝑛 be epistemic states with Ψ𝑖 = (Σ𝑖,Ω𝑖,⪯𝑖) for all 𝑖, and Σ𝑖 ∩Σ𝑗 = ∅ for
all 𝑖 ̸= 𝑗. Let ⪯△ be a faithful extension of ⪯⊗ = (⪯1 ⊗ . . .⊗⪯𝑛). Then ⪯△ splits over {Σ1, . . . ,Σ𝑛}.

Proof. Let 𝜔, 𝜔′ ∈ Ω△ and let 𝑖 ∈ {1, . . . , 𝑛}. Note that 𝜔Σ𝑖 = 𝜔𝑖 and (𝜔′)Σ𝑖 = 𝜔′
𝑖 for some 𝜔𝑖, 𝜔

′
𝑖 ∈ Ω𝑖

due to Definition 6. Therefore, we have to show that 𝜔𝑖𝜇 ⪯△ 𝜔′
𝑖𝜇 iff 𝜔𝑖 ⪯△

↓Σ𝑖
𝜔′
𝑖 holds for all 𝜇 ∈

(Ω1 ⊗ . . .⊗ Ω(𝑖−1) ⊗ Ω(𝑖+1) ⊗ . . .⊗ Ω𝑛).
“⇒”: Assume w.l.o.g. that 𝜔𝑖𝜇 ⪯△ 𝜔′

𝑖𝜇. Then 𝜔′
𝑖𝜇 ⊀△ 𝜔𝑖𝜇. Due to Definition 7, this means

𝜔′
𝑖𝜇 ⊀⊗ 𝜔𝑖𝜇. Hence 𝜔′

𝑖 ⊀𝑖 𝜔𝑖, which is equivalent to 𝜔𝑖 ⪯𝑖 𝜔
′
𝑖. Therefore, 𝜔𝑖 ⪯△

↓Σ𝑖
𝜔′
𝑖 follows with

Proposition 7.
“⇐”: Assume w.l.o.g. that 𝜔𝑖 ⪯△

↓Σ𝑖
𝜔′
𝑖. Due to Proposition 7, this is equivalent to 𝜔𝑖 ⪯𝑖 𝜔

′
𝑖. Then by

Definition 6, 𝜔𝑖𝜇 ⪯⊗ 𝜔′
𝑖𝜇 holds for all 𝜇 ∈ (Ω1 ⊗ . . . ⊗ Ω(𝑖−1) ⊗ Ω(𝑖+1) ⊗ . . . ⊗ Ω𝑛), which implies

𝜔𝑖𝜇 ⪯△ 𝜔′
𝑖𝜇 since ⪯△ extends ⪯⊗.

Propositions 7 and 8 together directly imply the following theorem.

Theorem 9. Let Ψ1, . . . ,Ψ𝑛 be epistemic states with Ψ𝑖 = (Σ𝑖,Ω𝑖,⪯𝑖) for all 𝑖 ∈ {1, . . . , 𝑛}, and
Σ𝑖 ∩ Σ𝑗 = ∅ for all 𝑖 ̸= 𝑗. Let Ψ△ = (Σ△,Ω△,⪯△) = Ψ1 △ . . . △ Ψ𝑛 be the result of merging these
epistemic states via a merging operator △. If ⪯△ is a faithful extension of ⪯⊗ = (⪯1 ⊗ . . .⊗⪯𝑛), then △
satisfies both (ReMarg) and (MSplit).

6.3. Example Merging Operators

Theorem 9 provides us with a blueprint for TPO merging operators that satisfy (ReMarg) and (MSplit).
We will now define a concrete merging operator that satisfies this property, i.e., one that merges TPOs
by creating a faithful extension of their product combination.

Definition 8 (level-order merging operator). Let Ψ1 = (Σ1,Ω1,⪯1),Ψ2 = (Σ2,Ω2,⪯2) be epistemic
states with Σ1 ∩Σ2 = ∅. Let 𝜅1 = 𝜌(⪯1) and 𝜅2 = 𝜌(⪯2). Then the level-order merging operator △lvl is
defined by

𝜔1𝜔2 ⪯Ψ1△lvlΨ2
𝜔′
1𝜔

′
2 iff 𝜅1(𝜔1) + 𝜅2(𝜔2) ≤ 𝜅1(𝜔

′
1) + 𝜅2(𝜔

′
2) (24)

for all 𝜔1, 𝜔
′
1 ∈ Ω1 and 𝜔2, 𝜔

′
2 ∈ Ω2.

The level-order2 merging operator combines worlds into one layer3 based on their distance from the
lowermost layer in the product combination. To illustrate this, look again at Figure 1: each incomparable
diagonal (see Example 2) becomes one layer in the merging result. Therefore, all strict preferences
and equalities from the product combination are respected in the level-order merging result. Since
level-order merging is based on addition of natural numbers, it is clear that it is both commutative and
associative. Hence, Definition 8 can easily be generalized to merging an arbitrary number of epistemic
states.
2The name is inspired by level-order traversal on graphs (breadth-first search).
3The layers of a TPO ⪯Ψ are the equivalence classes of worlds with respect to ≈Ψ.



Proposition 10. The level-order merging operator satisfies both (ReMarg) and (MSplit).

Proof. We prove the proposition via Theorem 9 by showing that ⪯△ = ⪯Ψ1△lvlΨ2
is a faithful extension

of the product combination ⪯⊗ = (⪯1⊗⪯2). First observe that 𝜔1 ⪯1 𝜔
′
1 and 𝜔2 ⪯2 𝜔

′
2 together imply

𝜅1(𝜔1) + 𝜅2(𝜔2) ≤ 𝜅1(𝜔
′
1) + 𝜅2(𝜔

′
2). Hence ⪯⊗ ⊆ ⪯△. Moreover, 𝜔1 ≺1 𝜔′

1 and 𝜔2 ⪯2 𝜔′
2 (w.l.o.g.)

together imply 𝜅1(𝜔1)+𝜅2(𝜔2) < 𝜅1(𝜔
′
1)+𝜅2(𝜔

′
2). Therefore, 𝜔1𝜔2 ≺⊗ 𝜔′

1𝜔
′
2 implies 𝜔1𝜔2 ≺△ 𝜔′

1𝜔
′
2.

This means that ⪯△ is a faithful extension of ⪯⊗, and the proposition follows via Theorem 9.

Of course, level-order merging is not the only possible merging operator based on faithful extensions.
A classic way of extending a product order to a total order is to construct a so-called lexicographic order
[15], which could also be used for merging. However, note that the merging operator defined below is
not commutative, i.e., the order of the epistemic states matters for the merging result.

Definition 9 (lexicographic merging operator). Let Ψ1 = (Σ1,Ω1,⪯1),Ψ2 = (Σ2,Ω2,⪯2) be epis-
temic states with Σ1 ∩ Σ2 = ∅. The lexicographic merging operator △lex is defined by

𝜔1𝜔2 ⪯Ψ1△lexΨ2
𝜔′
1𝜔

′
2 iff (𝜔1 ≺1 𝜔

′
1) or (𝜔1 ≈1 𝜔

′
1 and 𝜔2 ⪯2 𝜔

′
2) (25)

for all 𝜔1, 𝜔
′
1 ∈ Ω1 and 𝜔2, 𝜔

′
2 ∈ Ω2.

Despite not being commutative, the lexicographic merging operator defines a faithful extension of
the product combination, and thus also preserves marginalization and splitting of the marginalized
total preorders.

Proposition 11. The lexicographic merging operator satisfies both (ReMarg) and (MSplit).

Proof. Similar to the previous result, we prove the proposition by showing that ⪯△ = ⪯Ψ1△lexΨ2
is

a faithful extension of ⪯⊗ = (⪯1 ⊗ ⪯2). Observe that 𝜔1 ⪯1 𝜔′
1 and 𝜔2 ⪯2 𝜔′

2 together imply
𝜔1𝜔2 ⪯Ψ1△lexΨ2

𝜔′
1𝜔

′
2, i.e. ⪯⊗ ⊆ ⪯△. If 𝜔1𝜔2 ≺⊗ 𝜔′

1𝜔
′
2, then (𝜔1 ≺1 𝜔′

1 and 𝜔2 ⪯2 𝜔′
2), or (𝜔1 ⪯1 𝜔′

1

and 𝜔2 ≺2 𝜔′
2). If 𝜔1 ≺1 𝜔′

1, then 𝜔1𝜔2 ≺△ 𝜔′
1𝜔

′
2 follows directly from Definition 9. Otherwise, if

(𝜔1 ⪯1 𝜔′
1 and 𝜔2 ≺2 𝜔′

2) still holds, we must have 𝜔1 ≈1 𝜔′
1. Then 𝜔1𝜔2 ≺△ 𝜔′

1𝜔
′
2 also follows via

Definition 9. Therefore, ⪯△ is a faithful extension of ⪯⊗, and the proposition follows via Theorem 9.

Illustrating lexicographic merging again with Figure 1, the operator essentially proceeds “column-
wise” from left to right, by appending the relative order between the 𝑎𝑏-worlds to the relative order
between the 𝑎𝑏-worlds and so on. This makes the first epistemic state take priority over the second
one, which might make sense in some scenarios. For example, if the TPOs represent plausibilities on
different scales, i.e., if 𝑎𝑏 is vastly more plausible than 𝑎𝑏, but 𝑐𝑑 is only slightly more plausible than 𝑐𝑑,
then one might desire to have all 𝑎𝑏-worlds be more plausible than all 𝑎𝑏-worlds.

In terms of propositional beliefs, however, the order in which the epistemic states are merged does
not matter even when using non-commutative merging operators like lexicographic merging, as long as
they are based on faithful extensions of product combinations. Since propositional beliefs only depend
on the minimal worlds in the final merging result, and all faithful extensions have the same minimal
worlds, they must share the same propositional beliefs as well.

We finish this section with the following example, which shows how the two merging operators △lvl

and △lex may be used in a belief revision scenario in order to implement syntax splitting.

Example 3. Consider again the total preorder ⪯Ψ from Example 1, Equation (9). Instead of revising
the complete TPO, we now want to revise Ψ↓Σ1 and Ψ↓Σ2 with Σ1 = {𝑎, 𝑏},Σ2 = {𝑐} independently,
and merge the results together afterwards. These marginalizations of Ψ are given as follows:

Ψ↓Σ1 : 𝑎𝑏 ≺Ψ*
1

𝑎𝑏

𝑎𝑏
≺Ψ*

1
𝑎𝑏 . Ψ↓Σ2 : 𝑐 ≺Ψ*

2
𝑐 . (26)



(𝑎𝑏𝑐 ≈ 𝑎𝑏𝑐)

(𝑎𝑏𝑐 ≈ 𝑎𝑏𝑐)

𝑎𝑏𝑐

𝑎𝑏𝑐

𝑎𝑏𝑐

𝑎𝑏𝑐

≺

≺

≺

≺

≺ ≺ ≺

𝑐

𝑐

𝑎𝑏 ≈1 𝑎𝑏 𝑎𝑏 𝑎𝑏

Figure 2: Product combination of Ψ*
1 and Ψ*

2 for Example 3. The symbol ≺ stands for ≺⊗. The arrows indicate
the influence of ⪯Ψ*

1
and ⪯Ψ*

1
, respectively, on the resulting preorder ⪯⊗.

Now we revise these marginalized TPOs with 𝐶1 = (¬𝑎 ∨ ¬𝑏) resp. 𝐶2 = ¬𝑐 using the MSL-revision
operator4. Let Ψ*

1 = Ψ↓Σ1 *ℓ 𝐶1 and Ψ*
2 = Ψ↓Σ2 *ℓ 𝐶2. Then the revisions result in the following TPOs:

Ψ*
1 :

𝑎𝑏

𝑎𝑏
≺Ψ*

1
𝑎𝑏 ≺Ψ*

1
𝑎𝑏 . Ψ*

2 : 𝑐 ≺Ψ*
2

𝑐 . (27)

Next, we use the merging operators presented in this section in order to obtain global revision results
by 𝒞 = {𝐶1, 𝐶2} (in the spirit of Definition 5). The product combination of Ψ*

1 and Ψ*
2 is shown in

Figure 2. First with △lvl, merging Ψ*
1 and Ψ*

2 leads to the following result:

Ψ*
1 △

lvl Ψ*
2 :

𝑎𝑏𝑐

𝑎𝑏𝑐
≺△

𝑎𝑏𝑐
𝑎𝑏𝑐

𝑎𝑏𝑐

≺△ 𝑎𝑏𝑐

𝑎𝑏𝑐
≺△ 𝑎𝑏𝑐 . (28)

For the use of △lex, there are two possible results depending on which epistemic state is given priority:

Ψ*
1 △

lex Ψ*
2 :

𝑎𝑏𝑐

𝑎𝑏𝑐
≺△ 𝑎𝑏𝑐 ≺△ 𝑎𝑏𝑐 ≺△ 𝑎𝑏𝑐

𝑎𝑏𝑐
≺△ 𝑎𝑏𝑐 ≺△ 𝑎𝑏𝑐 , (29)

Ψ*
2 △

lex Ψ*
1 :

𝑎𝑏𝑐

𝑎𝑏𝑐
≺△ 𝑎𝑏𝑐

𝑎𝑏𝑐
≺△ 𝑎𝑏𝑐 ≺△ 𝑎𝑏𝑐 ≺△ 𝑎𝑏𝑐 ≺△ 𝑎𝑏𝑐 . (30)

Clearly, all three global results shown above are different from each other. Depending on the specific
use case, one may prefer one of them, or accept any result (e.g. if only propositional beliefs are relevant).
As expected (because of Theorem 5 and Theorem 9), all three revision results adhere to the syntax
splitting postulate (PMR). As a further remark, none of these results coincides with the MSL-revision
result from Example 1, Equation (10). This is also expected since the MSL-revision operator *ℓ uses some
information from Ψ which is lost during marginalization. Nevertheless, the TPO given in Equation (10)
is also a faithful extension of the product combination of Ψ*

1 and Ψ*
2.

7. Conclusions and Future Work

In this paper, we have shown how total preorders defined over disjoint signatures can be combined
while preserving desirable properties which we have introduced via the postulates (ReMarg) and
(MSplit). These postulates are satisfied if the merged total preorder is a faithful extension of the product
combination of the original TPOs. Performing localized revision on marginalized epistemic states, and
merging afterwards with an appropriate merging operator satisfying (ReMarg) and (MSplit), yields
a global revision operator that satisfies the iterated syntax splitting postulates (Pit) and (MR). We
have investigated two such merging operators, namely the level-order and the lexicographic merging
operator, and have shown that they satisfy (ReMarg) and (MSplit). In future work we will investigate
merging in cases where the signatures of the marginalized total preorders are not disjoint but may

4Technically, MSL revision with a single formula coincides with regular lexicographic revision [2].



share some elements which is the case in, e.g., [16]. We also plan to extend our results and postulates
to revision with not just propositions but also conditionals such as in the case of c-revisions [17].
Finally we plan to investigate connections between the postulates (Pit) respectively (MR) and their
OCF-counterparts (Pocf ) respectively (MRocf ) as introduced in [3].
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