
Verification of General Games with QBF Solvers
Yifan He1, Abdallah Saffidine2 and Michael Thielscher1

1UNSW Sydney, Australia
2Potassco Solutions, Germany

Abstract
The Game Description Language (GDL) is a lightweight formalism for representing the rules of arbitrary finite
perfect information games. Its purpose is to build general game-playing systems, that is, automated players that
can understand the rules of games and learn how to play them without human intervention. Coalition Logic (CL)
is a logical framework capable of expressing strategic behaviors of a set of players that involve finitely many
successive game states, which can formulate important properties such as whether one player can enforce a win
of the game within a certain number of steps, regardless of the actions of the other players. In this paper, we
investigate how to define the CL model-checking problem in the context of GGP and how to reason about CL
properties of general games using Quantified Boolean Formula (QBF) solvers. This work extends our earlier
AAMAS 2024 paper [1]. We evaluate the efficiency of our approach through a case study involving two-player
general games and show that it has the potential to assist general game-playing agents with endgame analysis.

Keywords
Logic Programming, Quantified Boolean Formula, Reasoning about actions, General Game Playing

1. Introduction

The Game Description Language (GDL) is a lightweight knowledge representation formalism for
describing the rules of arbitrary games [2]. GDL describes game rules in normal logic program syntax
similar to Prolog. It is used as the input language for general game-playing (GGP) systems, which can
learn to play any new game from its rules alone and without human intervention, thereby demonstrating
a form of general intelligence. As a lightweight specification language, GDL merely provides means for
representing the rules of a game. At the same time, a crucial aspect of GGP is the ability to automatically
reason about a given specification. In early years, successful GGP systems performed random simulations
to test the validity of certain properties and rely on their informed guess in case no violation could be
detected [3]. However, validating properties through random simulations can be unreliable, and the
performance of the GGP system can be affected if incorrect assumptions are made about the game.
Due to the similarity between the semantics of GDL and interpreted systems, model-checking

techniques have been introduced to support GGP systems in formally analyzing whether a GDL
description satisfies certain logical properties. Notable work in this area include using the model-
checker Mocha to reason about properties of GDL games specified in Alternating-time Temporal logic
(ATL) [4] and using Answer Set Programming to reason about General Game Temporal Logic (GTL)
properties–a logic similar to the Linear Temporal Logic with only the temporal operator “next”– of
GDL games [5]. However, model-checking against ATL typically requires expanding all game states
to construct the underlying Concurrent Game Structure, which is only practical for very small games.
While model-checking against GTL has much lower computational complexity and does not require
explicitly storing all game states in memory, GTL cannot express any strategic properties. Hence, it is
interesting to investigate whether there is some logical framework that can express strategic properties
of general games, and whose model-checker has the potential to be used by GGP systems in practice.
Coalition Logic (CL) [6], a logical fragment of ATL that includes only the temporal operator “next,”

can express strategic behaviors of groups of players over finitely many successive game states. For
instance, it can capture important solution concepts such as bounded-depth strong winnability, which
asks whether a player can enforce a win within a certain number of steps, regardless of the actions of

23rd International Workshop on Nonmonotonic Reasoning, November 11-13, 2025, Melbourne, Australia
Envelope-Open yifan.he1@unsw.edu.au (Y. He); abdallah.saffidine@gmail.com (A. Saffidine); mit@unsw.edu.au (M. Thielscher)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:yifan.he1@unsw.edu.au
mailto:abdallah.saffidine@gmail.com
mailto:mit@unsw.edu.au
https://creativecommons.org/licenses/by/4.0/deed.en

the other players. Importantly, model checking for CL has significantly lower computational complexity
than for ATL, making it a more practical choice for use in GGP systems.
In this paper, we establish a concrete link between GDL and CL and present a potentially practical

approach to reasoning about CL properties of GDL games. To this end, we define the syntax and
semantics of CL for general games (GCL). We present the complexity of GCL model-checking and show
how some important game properties of GDL games can be formulated with GCL. We present a sound
and complete method of GCL model-checking leveraging Quantified Boolean Formula (QBF) solvers [7].
We briefly report the efficiency of our method with a case study on solving two-player games.

Our work is related to the QBF-based approach of reasoning about bounded-depth strong winnability
of specific perfect information games such as Generalized Tic-Tac-Toe and Hex [8]. Such an approach
usually involves encoding the bounded-depth strong winnability of some specific strategic games
with QBF based on human interpretation of the game rules and calling a QBF solver to evaluate the
expression. It has been shown in Generalized Tic-Tac-Toe that QBF solvers can prove bounded-depth
strong winnability faster than proof number search solvers [9]. Since bounded-depth strong winnability
is just one property that can be expressed in GCL, and GDL can express all finite perfect information
games, our work is a generalization of existing literature.

2. Preliminaries

We assume readers to be familiar with basic concepts of logic programming with negation, Answer Set
Programming (ASP) [10], and Quantified Boolean Formula (QBF) [7].

2.1. Game Description Language

The Game Description Language (GDL) can be used to describe the rules of any finite game with
concurrent moves. GDL uses a normal logic program syntax along with the following preserved
keywords used to describe the different elements of a game [2]:

role(𝑃) 𝑃 is a player
base(𝐹) 𝐹 is a base proposition for game positions

input(𝑃, 𝐴) Action 𝐴 is in the move domain of player 𝑃
init(𝐹) base proposition 𝐹 holds in the initial position
true(𝐹) base proposition 𝐹 holds in the current position

legal(𝑃,𝑀) 𝑃 can do move 𝑀 in the current position
does(𝑃,𝑀) player 𝑃 does move 𝑀
next(𝐹) 𝐹 holds in the next position
terminal the current position is terminal
goal(𝑃, 𝑁) 𝑃 gets 𝑁 points in the current position

There are further restrictions for a set of GDL rules to be valid [2]: role can appear only in facts; init
and next can only appear as heads of rules; true and does can only appear in rule bodies. Moreover,
init cannot depend on true, does, legal, next , terminal, or goal while legal, terminal, and goal cannot
depend on does. Finally, valid game descriptions must be stratified and allowed—such logic programs
always admit a finite grounding and a unique stable model.
A valid GDL game description 𝐺 over ground terms Σ can be interpreted as a multi-agent state

transition system: Let 𝛽 = {𝑓 ∈ Σ | 𝐺 ⊧ 𝑏𝑎𝑠𝑒(𝑓)} be the base propositions and 𝛾 = {(𝑝, 𝑎) ∈ Σ × Σ | 𝐺 ⊧
𝑖𝑛𝑝𝑢𝑡(𝑝, 𝑎)} themove domain for the players. Suppose that 𝑆 = {𝑓1, ... , 𝑓𝑛} ⊆ 𝛽 is any given position
and 𝐴 = {𝑝1, ... , 𝑝𝑘} → Σ any function that assigns to each of 𝑘 ≥ 1 players an action from their move
domain. In order to use the game rules 𝐺 to determine the state update, 𝑆 needs to be encoded as a set
of facts using keyword true: 𝑆 𝑡𝑟𝑢𝑒 = {𝑡𝑟𝑢𝑒(𝑓1)., ... , 𝑡𝑟𝑢𝑒(𝑓𝑛).} and the joint action 𝐴 by a set of facts using
keyword does: 𝐴𝑑𝑜𝑒𝑠 = {𝑑𝑜𝑒𝑠(𝑝1, 𝐴(𝑝1))., ..., 𝑑𝑜𝑒𝑠(𝑝𝑘, 𝐴(𝑝𝑘)).}.

Definition 1 ([11]). The semantics of a valid GDL description 𝐺 is the transition system (𝑅, 𝑆0, 𝑇 , 𝑙, 𝑢, 𝑔)

• 𝑅 = {𝑝 ∈ Σ | 𝐺 ⊧ role(𝑝)} (player names)

• 𝑆0 = {𝑓 ∈ 𝛽 | 𝐺 ⊧ init(𝑓)} (initial state)

• 𝑇 = {𝑆 ⊆ 𝛽 | 𝐺 ∪ 𝑆 𝑡𝑟𝑢𝑒 ⊧ terminal} (terminal states)

• 𝑙 = {(𝑝, 𝑎, 𝑆) | 𝐺 ∪ 𝑆 𝑡𝑟𝑢𝑒 ⊧ legal(𝑝, 𝑎)} (legal moves)

• 𝑢(𝐴, 𝑆)={𝑓 ∈ 𝛽 | 𝐺 ∪ 𝑆 𝑡𝑟𝑢𝑒 ∪ 𝐴𝑑𝑜𝑒𝑠 ⊧next(𝑓)}(update)

• 𝑔 = {(𝑝, 𝑣 , 𝑆) | 𝐺 ∪ 𝑆 𝑡𝑟𝑢𝑒 ⊧ goal(𝑝, 𝑣) and 𝑣 ∈ ℕ and 0 ≤ 𝑣 ≤ 100} (goal value)

Based on the above definition, we represent a valid game playing sequence of 𝑛 steps as follows.

𝑆0
𝐴1−−→ 𝑆1

𝐴2−−→ ... 𝑆𝑛−1
𝐴𝑛−−→ 𝑆𝑛

In the above game sequence, we write 𝑆𝑖
𝐴𝑖+1−−−→ 𝑆𝑖+1 if 𝑆𝑖 ∉ 𝑇 and all moves are legal in the state in

which they are taken, that is, (𝑟 , 𝐴𝑖+1(𝑟), 𝑆𝑖) ∈ 𝑙 for each 𝑟 ∈ 𝑅. We say a valid game playing sequence
terminates in 𝑛 steps if 𝑆𝑛 ∈ 𝑇 [5].

2.2. Quantified Answer Set Programming

Similar to the difference between QBF and SAT [12], allowing quantifiers in ASP programs can provide
a more expressive language. The resulting language is called Quantified Answer Set Programming
(QASP). Its semantics is defined as follows.

Definition 2 ([13]). Let 𝑃 be a logic program with ground atoms A. A QASP over A has the form

𝑄1 𝑋1 ... 𝑄𝑛 𝑋𝑛 𝑃

where 𝑋𝑖 are pairwise disjoint subsets of A, every 𝑄𝑖 is either ∃ or ∀, and 𝑃 is a logic program over A. We
define fix(𝑋 , 𝑌), where 𝑌 ⊆ 𝑋 ⊆ A, as the logic program: {:- 𝑛𝑜𝑡 𝑥. | 𝑥 ∈ 𝑌 } ∪ {:- 𝑥. | 𝑥 ∈ 𝑋 \ 𝑌 }.
A normal logic program P is satisfiable iff it has a stable model. Satisfiability of a QASP is recursively

defined as follows.

1. If the QASP has form ∃ 𝑋 𝑃 (resp. ∀ 𝑋 𝑃), the program is satisfiable iff there exists (resp. for all)
𝑌 ⊆ 𝑋 such that the program 𝑃 ∪ fix(𝑋 , 𝑌) is satisfiable.

2. If the QASP has form ∃ 𝑋 Q 𝑃 (resp. ∀ 𝑋 Q 𝑃), the program is satisfiable iff there exists (resp. for all)
𝑌 ⊆ 𝑋 such that the program Q (𝑃 ∪ 𝑓 𝑖𝑥(𝑋 , 𝑌)) is satisfiable.

QASP has the same expressive power as QBF. A QASP can be solved by converting it to an equal-
satisfiable QBF expression using tools like qasp2qbf [13] and calling a QBF solver to evaluate the
satisfiability of the converted expression.

3. Coalition Logic For General Games

We define the Coalition Logic for General Games (GCL) that can model the strategic behavior of different
players that involve finitely many successive game states.

Definition 3 (GCL Syntax). The Coalition Logic for General Games is defined over a valid GDL description
𝐺 that has the following grammar:

𝜑 ∶∶= 𝑞 ∣ 𝜑 ∧ 𝜑 ∣ ¬𝜑 ∣ ⟨⟨𝐶⟩⟩X𝜑

where 𝑞 is a ground atom of 𝐺 that is not an instance of the predicate symbol init, next and does not
depend on does. 𝐶 is a subset of players in 𝐺 (i.e., 𝐶 ⊆ 𝑅). Standard propositional operators ∨ and→ are
also allowed and defined as usual.

GCL is based on the Coalition Logic [6] and similar to the Alternating Temporal Logic with finite
traces [14], with only the primitive temporal operator ⟨⟨𝐶⟩⟩X𝜑 (read “the current state is non-terminal
and the players in 𝐶 can enforce 𝜑 to hold next”). We introduce the abbreviation [[𝐶]] X̃¬𝜑 ∶∶= ¬⟨⟨𝐶⟩⟩X𝜑
(read “the current state is terminal or no matter what the players in 𝐶 do, players in 𝑅 ∖ 𝐶 have a set of
legal joint moves to ensure 𝜑 does not hold next”).
For a GDL description and any subset of players 𝐶 = {𝑝1, … , 𝑝|𝐶|} (𝐶 ⊆ 𝑅), we define the notation

𝐿(𝐶, 𝑆) = {{𝑑𝑜𝑒𝑠(𝑝1, 𝑎1)., … , 𝑑𝑜𝑒𝑠(𝑝|𝐶|, 𝑎|𝐶|).} ∣ ∀ 𝑝𝑖 ∈ 𝐶, 𝐺 ∪ 𝑆 𝑡𝑟𝑢𝑒 ⊧ 𝑙𝑒𝑔𝑎𝑙(𝑝𝑖, 𝑎𝑖)}, which denotes the set of
all possible legal joint actions of players in a coalition 𝐶 at state 𝑆. The semantics of GCL is given as
follows.

Definition 4 (GCL Semantics). Let 𝐺 be a valid GDL description, and 𝜑 is a GCL formula over 𝐺. Then,
we say 𝐺 satisfies 𝜑 at 𝑆 (written 𝐺, 𝑆 ⊧𝑡 𝜑) as per the following inductive definition:

𝐺, 𝑆 ⊧𝑡 𝑞 iff 𝐺 ∪ 𝑆 𝑡𝑟𝑢𝑒 ⊧ 𝑞 (𝑞 𝑔𝑟𝑜𝑢𝑛𝑑 𝑎𝑡𝑜𝑚)
𝐺, 𝑆 ⊧𝑡 ¬𝜑 iff 𝐺, 𝑆 ̸⊧𝑡 𝜑
𝐺, 𝑆 ⊧𝑡 𝜑1 ∧ 𝜑2 iff 𝐺, 𝑆 ⊧𝑡 𝜑1 and 𝐺, 𝑆 ⊧𝑡 𝜑2
𝐺, 𝑆 ⊧𝑡 ⟨⟨𝐶⟩⟩X𝜑 iff 𝐺 ∪ 𝑆 𝑡𝑟𝑢𝑒 ̸⊧ 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 and ∃𝐴𝑒 ∈ 𝐿(𝐶, 𝑆). such that ∀𝐴𝑢 ∈ 𝐿(𝑅 ∖ 𝐶, 𝑆). 𝐺, 𝑆′ ⊧𝑡 𝜑

where 𝑆′ = {𝑓 ∈ 𝛽 ∣ 𝐺 ∪ 𝐴𝑒 ∪ 𝐴𝑢 ∪ 𝑆 𝑡𝑟𝑢𝑒 ⊧ 𝑛𝑒𝑥𝑡(𝑓)}

For a GDL description 𝐺 and a formula 𝜑, the GCL model-checking task decides if 𝐺, 𝑆0 ⊧𝑡 𝜑 holds,
which is abbreviated as 𝐺 ⊧𝑡 𝜑.

We now show how some general game properties can be expressed as GCL formulas. First, similar to
GTL, GCL can express non-strategic properties that involve finitely many successive game states. For
example, universal termination within 𝑛 steps can be expressed as follows.

• 𝜑𝑡𝑒𝑟𝑚(𝑛) ≡ 𝜑𝑡𝑒𝑟𝑚(0) ∨ [[𝑅]] X̃ 𝜑𝑡𝑒𝑟𝑚(𝑛 − 1), where 𝜑𝑡𝑒𝑟𝑚(0) ≡ 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙.

Turn-taking is another important non-strategic property, which requires that at every step of the game,
exactly one player is allowed to take a turn—i.e., has more than one legal action. For games that are
guaranteed to terminate within 𝑛 steps, this property can be expressed using the following GCL formula.

• 𝜑𝑡𝑢𝑟𝑛(𝑛) ≡ 𝜑𝑡𝑢𝑟𝑛(0) ∧ [[𝑅]] X̃ 𝜑𝑡𝑢𝑟𝑛(𝑛 − 1), where 𝜑𝑡𝑢𝑟𝑛(0) ≡ ¬⋁𝑟𝑖∈𝑅∧𝑟𝑗∈𝑅∧𝑟𝑖≠𝑟𝑗(𝜑𝑡𝑤𝑜(𝑟𝑖) ∧ 𝜑𝑡𝑤𝑜(𝑟𝑗)), and

• 𝜑𝑡𝑤𝑜(𝑟) ≡ ⋁(𝑟 ,𝑎)∈𝛾∧(𝑟 ,𝑏)∈𝛾∧𝑎≠𝑏 𝑙𝑒𝑔𝑎𝑙(𝑟 , 𝑎) ∧ 𝑙𝑒𝑔𝑎𝑙(𝑟 , 𝑏) (recall that 𝛾 is the move domain of all players)

Besides non-strategic properties, GCL can also formulate strategic properties. A general game player
might be concerned about whether it can win the game within 𝑛 steps (aka. bounded-depth strong
winnability) regardless of the actions of the remaining players. This can be expressed as follows:

• 𝜑𝑤𝑖𝑛(𝑝, 𝑛) ≡ 𝜑𝑤𝑖𝑛(𝑝, 0) ∨ ⟨⟨{𝑝}⟩⟩X 𝜑𝑤𝑖𝑛(𝑝, 𝑛 − 1), where 𝜑𝑤𝑖𝑛(𝑝, 0) ≡ 𝑔𝑜𝑎𝑙(𝑝, 100) ∧ 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙.

The existence of a threatening move is another interesting strategic property. In a two-player turn-taking
game, if the players take alternating moves (i.e., one player might have more than 1 legal action in odd
steps and the other player might have more than 1 legal action in even steps), then, we say that a player
𝑝 that is taking turn has a threatening move if there exists a legal action for 𝑝 in the current state such
that, in the next state, the opponent has at most one legal response that prevents 𝑝 from winning the
game within 𝑘 steps (for some small value of 𝑘). For example, in Tic-Tac-Toe, player 𝑥 has a threatening
move in step 1 by marking the corner-cell (1, 1). Because the only not losing move for 𝑜 in the next
state is to mark the center cell (2, 2). For all the other 7 possible moves for 𝑜, 𝑥 can force a win within 5
additional steps. To express the existence of a threatening move for player 𝑝 in GCL, we must augment
the original GCL game description 𝐺 with the following rule, which says that if a player 𝑅 plays the
action 𝐴 in the current state, 𝑡𝑟𝑢𝑒(𝑑𝑜𝑛𝑒(𝑅, 𝐴)) holds in the next state.

• 𝑛𝑒𝑥𝑡(𝑑𝑜𝑛𝑒(𝑅, 𝐴)) :- 𝑑𝑜𝑒𝑠(𝑅, 𝐴).

With this new rule, we can express the existence of a threatening move for player 𝑝 as follows:

• 𝜑𝑡ℎ𝑟𝑒𝑎𝑡(𝑝, 𝑘) ≡ ⟨⟨{𝑝}⟩⟩X(𝜑𝑤𝑖𝑛(𝑝, 0) ∨ 𝜑𝑜𝑛𝑒(𝑞, 𝑘)), where

• 𝜑𝑜𝑛𝑒(𝑞, 𝑘) ≡ ⋀(𝑞,𝑎),(𝑞,𝑏)∈𝛾∧𝑎≠𝑏 𝜑𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑞, 𝑎, 𝑘) ∨ 𝜑𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑞, 𝑏, 𝑘),

• 𝜑𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑞, 𝑎, 𝑘) ≡ [[𝑞]] X̃¬𝑡𝑟𝑢𝑒(𝑑𝑜𝑛𝑒(𝑞, 𝑎)) ∨ 𝜑𝑤𝑖𝑛(𝑝, 𝑘)

Here, 𝜑𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑞, 𝑎, 𝑘) checks that for all legal moves of player 𝑞, either 𝑞 does not perform action 𝑎 or
player 𝑝 can force a win within 𝑘 steps. In other words, 𝜑𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑞, 𝑎, 𝑘) does not hold if and only if
player 𝑞 can play action 𝑎 to ensure that 𝑝 cannot force a win within 𝑘 steps. 𝜑𝑜𝑛𝑒(𝑞, 𝑘) ensures that
every pair of actions 𝑎 and 𝑏 in the move domain of 𝑞, either 𝜑𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑞, 𝑎, 𝑘) or 𝜑𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑞, 𝑏, 𝑘) hold.
This means that 𝑞 has at most 1 legal action in the next state to ensure that 𝑝 cannot enforce a win
within 𝑘 steps. We end this section by stating the complexity result of GCL model-checking.

Theorem 1. GCL model-checking over a ground GDL description 𝐺 and a formula 𝜑 is PSPACE-complete.

Proof. GCL model-checking is in PSPACE because one can perform model-checking by following the
semantics definition 4, and the trivial recursive algorithm uses a polynomial amount of space. The
hardness result is based on the fact that verifying bounded-depth strong winnability for two-player
games when the depth is encoded in unary is PSPACE-hard [15].

Readers familiar with CL might wonder why the complexity of model-checking against a ground GDL
description is PSPACE instead of PTIME when applied to Concurrent Game Structures. This is because
GDL can represent game models that are exponentially larger than the size of the GDL description.

4. QASP Encoding for GCL Model-Checking

One can perform GCL model-checking naively by following its semantics definition; however, it is
inefficient (see Section 5 for more details). Due to the PSPACE-completeness of GCL model-checking,
using a QBF solver to perform the task is a viable option. We now discuss how to perform GCL
model-checking with QBF solvers. GDL and QASP utilize stable models for their semantics, whereas
QBF is based on classical models. Encoding the GCL model-checking task in QBF directly is therefore
challenging as it would require some form of completion technique [16]. Thanks to work on converting
from QASP to QBF [13], dealing with the completion task from scratch is unnecessary as long as we
can encode GCL model-checking in QASP.

To perform GCL model-checking expressions with QASP, we need to convert the GCL formula into
negation normal form (NNF), where the negation symbol only appears in front of ground atoms of 𝐺
(i.e., we substitute ¬𝜑 in Definition 9 with ¬𝑞). The only other allowed operators are ∨, ∧, [[𝐶]] X̃, and
⟨⟨𝐶⟩⟩X. The procedure of rewriting GCL formulas to NNF is similar to rewriting other modal logics
to NNF, which is based on the elimination of →, the definition of [[𝐶]] X̃, and the use of De Morgan’s
laws [17]. Similar to other modal logics, if the input GCL only contains the operators ¬, ∨, ∧, →, ⟨⟨𝐶⟩⟩X,
and [[𝐶]] X̃, we can ensure that the converted NNF has at most a linear growth in the formula size [17].

Based on the semantics of GCL, we know that whether 𝐺 ⊧𝑡 𝜑 depends on the truth value of each of
the subformulas of 𝜑 at different states of 𝐺. We now introduce the concept of subformula positions,
which is a mapping from subformulas of 𝜑 to their unique operator prefix in the syntax tree.

Definition 5 (Subformula Position). Given a GCL formula 𝜑, the position of each subformula 𝜓 in 𝜑
(denoted as 𝑝𝑜𝑠(𝜓)) is recursively defined as follows:

• If 𝑝𝑜𝑠(¬𝜓) = 𝜋, then 𝑝𝑜𝑠(𝜓) = 𝜋¬ (similarly for [[𝐶]] X̃ and ⟨⟨𝐶⟩⟩X).

• If 𝑝𝑜𝑠(𝜓1 ∧ 𝜓2) = 𝜋, then 𝑝𝑜𝑠(𝜓1) = 𝜋∧1 and 𝑝𝑜𝑠(𝜓2) = 𝜋∧2 (similarly for 𝜓1 ∨ 𝜓2).

We define 𝑝𝑜𝑠(𝜑) = 𝜖 and denote 𝑃𝑜𝑠𝜑 as the set of all positions of all subformulas of 𝜑.

Although each subformula of a GCL expression 𝜑 has a different position, when verifying 𝜑, the truth
value of different subformulas in 𝜑 might be evaluated at the same state of 𝐺. We provide a name to
each position of 𝑃𝑜𝑠𝜑 so that two subformulas have the same position naming if and only if they are
within the same scope of ⟨⟨𝐶⟩⟩X and [[𝐶]] X̃, and as a result, their truth value are always evaluated at
the same state of 𝐺. Our notion of subformula positions and position naming is inspired by similar
concepts used in epistemic GTL model-checking [18].

Definition 6 (Position Naming). Let 𝐺 be a valid GDL description and 𝜑 a GCL formula. A position
naming for 𝜑 is a function 𝒱𝜑 ∶ 𝑃𝑜𝑠𝜑 → ℕ such that 𝒱𝜑(𝜖) = 0; and for all positions 𝜋1, 𝜋2 ∈ 𝑃𝑜𝑠𝜑 and
their longest prefixes 𝜋 ′1 and 𝜋 ′2 which ends in some ⟨⟨𝐶⟩⟩X or [[𝐶]] X̃ we have that 𝒱𝜑(𝜋1) = 𝒱𝜑(𝜋2) iff
𝜋 ′1 = 𝜋 ′2 (where 𝜋 ′𝑖 = 𝜖 if no such ⟨⟨𝐶⟩⟩X or [[𝐶]] X̃ exists).

We define the depth of a position name 𝒱𝜑(𝜋) (denoted as 𝑑𝑒𝑝𝑡ℎ(𝒱𝜑(𝜋))) as the total number of
⟨⟨𝐶⟩⟩X or [[𝐶]] X̃ operators in 𝜋. The degree of a GCL expression 𝜑 (denoted as 𝑑𝑒𝑔(𝜑)) is the maximum
possible depth of any position name 𝒱𝜑(𝜋) such that 𝜋 ∈ 𝑃𝑜𝑠𝜑, which is also equal to the maximum
nesting of ⟨⟨𝐶⟩⟩X or [[𝐶]] X̃ operators in the syntax tree of 𝜑.

Example 1. Consider the formula 𝜑1 = (⟨⟨{𝑥}⟩⟩X 𝑔𝑜𝑎𝑙(𝑥, 100)∧𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙)∨([[{𝑜}]] X̃ 𝑔𝑜𝑎𝑙(𝑜, 100)∧𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙),
which says that either 𝑥 can force a win in the next state or no matter what 𝑜 does, 𝑥 can let 𝑜 win in the
next state. The positions of the subformulas of 𝜑1 and a possible valid position naming is as follows:

• 𝑝𝑜𝑠(𝜑1) = 𝜖, and 𝒱𝜑1(𝜖) = 0

• 𝑝𝑜𝑠(⟨⟨{𝑥}⟩⟩X 𝑔𝑜𝑎𝑙(𝑥, 100) ∧ 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙1) = 𝜖∨1, and 𝒱𝜑1(𝜖∨1) = 0

• 𝑝𝑜𝑠(𝑔𝑜𝑎𝑙(𝑥, 100) ∧ 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙1) = 𝜖 ∨1 ⟨⟨{𝑥}⟩⟩X, and 𝒱𝜑1(𝜖 ∨1 ⟨⟨{𝑥}⟩⟩X) = 1

• 𝑝𝑜𝑠(𝑔𝑜𝑎𝑙(𝑥, 100)) = 𝜖 ∨1 ⟨⟨{𝑥}⟩⟩X∧1, and 𝒱𝜑1(𝜖 ∨1 ⟨⟨{𝑥}⟩⟩X∧1) = 1

• 𝑝𝑜𝑠(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙1) = 𝜖 ∨1 ⟨⟨{𝑥}⟩⟩X∧2, and 𝒱𝜑1(𝜖 ∨1 ⟨⟨{𝑥}⟩⟩X∧2) = 1

• 𝑝𝑜𝑠([[{𝑜}]] X̃ 𝑔𝑜𝑎𝑙(𝑜, 100) ∧ 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙2) = 𝜖∨2, and 𝒱𝜑1(𝜖∨2) = 0

• 𝑝𝑜𝑠(𝑔𝑜𝑎𝑙(𝑜, 100) ∧ 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙2) = 𝜖 ∨2 [[{𝑜}]] X̃, and 𝒱𝜑1(𝜖 ∨2 [[{𝑜}]] X̃) = 2

• 𝑝𝑜𝑠(𝑔𝑜𝑎𝑙(𝑜, 100)) = 𝜖 ∨2 [[{𝑜}]] X̃∧1, and 𝒱𝜑1(𝜖 ∨2 [[{𝑜}]] X̃∧1) = 2

• 𝑝𝑜𝑠(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙2) = 𝜖 ∨2 [[{𝑜}]] X̃∧2, and 𝒱𝜑1(𝜖 ∨2 [[{𝑜}]] X̃∧2) = 2

Although 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 appears twice in 𝜑1, they are different subformulas of 𝜑1. For clarity, we use 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙1
and 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙2 to distinguish them. The position naming above ensures that any subformulas within the
same scope of the temporal operator have the same naming. For example, when performing GCL model-
checking against 𝜑1, we know that 𝑔𝑜𝑎𝑙(𝑜, 100) and 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙2 should always be evaluated at the same state
to decide the truth value of the subformula 𝑔𝑜𝑎𝑙(𝑜, 100)∧ 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙2, thus, they should have the same position
naming. For the valid position naming provided in this example, we can ensure this requirement because
the subformulas 𝑔𝑜𝑎𝑙(𝑜, 100), 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙2, and 𝑔𝑜𝑎𝑙(𝑜, 100) ∧ 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙2 all have the same position naming 2.

The depth of the position names is given as: 𝑑𝑒𝑝𝑡ℎ(0) = 0 and 𝑑𝑒𝑝𝑡ℎ(1) = 𝑑𝑒𝑝𝑡ℎ(2) = 1; and 𝑑𝑒𝑔(𝜑) = 1.

Based on the semantics of GCL, we know that whether a GCL formula 𝜑 holds at a particular state 𝑆
of 𝐺 depends on the evaluation of all subformulas 𝜑′ of 𝜑 that have the same position name as 𝜑 at state
𝑆 and the evaluation of all subformulas 𝜑″ that have exactly 1 more nesting of temporal operators at
some successor state 𝑆′ of 𝑆. We now introduce the concept of successor position, which refers to all
positions that have exactly 1 more nesting of the temporal operators than the current position.

Definition 7 (Successor Position Name). Suppose that 𝐺 is a valid GDL description, 𝜑 is a GCL formula,
𝜋1 and 𝜋2 are two positions in 𝑃𝑜𝑠𝜑, and 𝒱𝜑 ∶ 𝑃𝑜𝑠𝜑 → ℕ is a valid position naming function. A position
name 𝒱𝜑(𝜋2) is a successor of the position name 𝒱𝜑(𝜋1) (denoted as 𝑠𝑢𝑐𝑐(𝒱𝜑(𝜋1), 𝒱𝜑(𝜋2))) if and only if
𝑑𝑒𝑝𝑡ℎ(𝒱𝜑(𝜋2)) = 𝑑𝑒𝑝𝑡ℎ(𝒱𝜑(𝜋1)) + 1, and for the longest prefixes 𝜋 ′1 of 𝜋1 and 𝜋 ′2 of 𝜋2 which ends in some
⟨⟨𝐶⟩⟩X or [[𝐶]] X̃ we have that 𝜋 ′1 is a proper prefix of 𝜋 ′2 .

Example 2. Consider the formula 𝜑1 = (⟨⟨{𝑥}⟩⟩X 𝑔𝑜𝑎𝑙(𝑥, 100)∧𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙)∨([[{𝑜}]] X̃ 𝑔𝑜𝑎𝑙(𝑜, 100)∧𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙)
with the same position naming as in Example 1. Then, both position names 1 and 2 are successor positions
of the position name 0 (i.e., 𝑠𝑢𝑐𝑐(0, 1) and 𝑠𝑢𝑐𝑐(0, 2)). This implies that the truth value of 𝜑1 with position
name 0 may depend on the evaluation of the subformulas of 𝜑1 with position names 1 and 2.

The overall QASP encoding consists of 4 parts: Firstly, an ASP representation of the GDL description
𝐺. Secondly, an ASP encoding of the GCL formula 𝜑. Thirdly, an action generator in ASP that can
generate a legal action for each player at a non-terminal state. Finally, a quantifier prefix Q. The
ultimate goal is to ensure that 𝐺 ⊧𝑡 𝜑 if and only if the QASP is satisfiable.

We first map a GDL description 𝐺 into an ASP representation called Position-Extended ASP, which is
similar to the method discussed in GTL model-checking [5].

Definition 8 (Position Extension). Suppose 𝐺 is a valid GDL description, the Position-Extended ASP of 𝐺
(denoted as 𝑃𝑒𝑥𝑡(𝐺)) is obtained from 𝐺 as follows:

• Change all occurrences of 𝑡𝑟𝑢𝑒(𝐹) to 𝑡𝑟𝑢𝑒(𝐹 , (𝑇 , 0)) and all occurrences of 𝑛𝑒𝑥𝑡(𝐹) to 𝑡𝑟𝑢𝑒(𝐹 , (𝑄, 0)).

• For any atom of the form 𝑝(#»𝑡) (i.e., predicate 𝑝 with argument #»𝑡) such that the predicate symbol
𝑝 ∉ {𝑡𝑟𝑢𝑒, 𝑛𝑒𝑥𝑡}; if 𝑝 depends on true but does not depend on does, change it to 𝑝(#»𝑡 , (𝑇 , 0)); if 𝑝
depends on does, change it to 𝑝(#»𝑡 , (𝑄, 1)).

• For each rule whose head has been extended by (𝑇 , 0), add 𝑡𝑑𝑜𝑚(𝑇) to its body; and for each rule
whose head has been extended by (𝑄, 0) or (𝑄, 1), add 𝑠𝑢𝑐𝑐(𝑇 , 𝑄) to its body.

We extend the definition of 𝑆 𝑡𝑟𝑢𝑒 to 𝑆 𝑡𝑟𝑢𝑒(𝑖) = {𝑡𝑟𝑢𝑒(𝑓 , (𝑖, 0)) ∣ 𝑡𝑟𝑢𝑒(𝑓) ∈ 𝑆 𝑡𝑟𝑢𝑒} and the definition of 𝐴𝑑𝑜𝑒𝑠 to

𝐴𝑑𝑜𝑒𝑠(𝑖) = {𝑑𝑜𝑒𝑠(𝑝1, 𝐴(𝑝1), (𝑖, 1)), ..., 𝑑𝑜𝑒𝑠(𝑝𝑘, 𝐴(𝑝𝑘), (𝑖, 1))}

Example 3. Consider the following rule of Tic-Tac-Toe, which says that if player 𝑥 marks a cell and the
cell is currently blank, the cell will be marked as 𝑥 in the next state.

• 𝑛𝑒𝑥𝑡(𝑐𝑒𝑙𝑙(𝑋 , 𝑌 , 𝑥)) ∶ −𝑡𝑟𝑢𝑒(𝑐𝑒𝑙𝑙(𝑋 , 𝑌 , 𝑏)), 𝑑𝑜𝑒𝑠(𝑥, 𝑚𝑎𝑟𝑘(𝑋 , 𝑌)).

In 𝑃𝑒𝑥𝑡(𝐺), the rule is mapped to

• 𝑡𝑟𝑢𝑒(𝑐𝑒𝑙𝑙(𝑋 , 𝑌 , 𝑥), (𝑄, 0)) ∶ −𝑡𝑟𝑢𝑒(𝑐𝑒𝑙𝑙(𝑋 , 𝑌 , 𝑏), (𝑇 , 0)), 𝑑𝑜𝑒𝑠(𝑥, 𝑚𝑎𝑟𝑘(𝑋 , 𝑌), (𝑄, 1)), 𝑠𝑢𝑐𝑐(𝑇 , 𝑄).

Note that the program 𝑃𝑒𝑥𝑡(𝐺) is stratified whenever 𝐺 is. The following theorem shows the semantics
equivalence of 𝑃𝑒𝑥𝑡(𝐺) and valid game playing sequences in the original game description 𝐺.

Theorem 2. Consider a GDL description G with semantics (𝑅, 𝑆0, 𝑇 , 𝑙, 𝑢, 𝑔) and a valid play sequence

𝑆0
𝐴1−−→ 𝑆1

𝐴2−−→ ...𝑆𝑛−1
𝐴𝑛−−→ 𝑆𝑛.

Let 𝑃 = 𝑆 𝑡𝑟𝑢𝑒0 (𝑖0) ∪ 𝑃𝑒𝑥𝑡(𝐺) ∪ 𝐴𝑑𝑜𝑒𝑠
1 (𝑖1) ∪ … ∪ 𝐴𝑑𝑜𝑒𝑠

𝑛 (𝑖𝑛) ∪ ⋃𝑛−1
𝑘=0{𝑠𝑢𝑐𝑐(𝑖𝑘, 𝑖𝑘+1).} ∪ ⋃𝑛

𝑘=0{𝑡𝑑𝑜𝑚(𝑖𝑘).}, where
𝑖𝑘 (0 ≤ 𝑘 ≤ 𝑛) are arbitrary pairwise distinct integers. Then, for any predicate symbol 𝑝 in the game
description 𝐺 and for all 0 ≤ 𝑘 ≤ 𝑛, such that 𝑝 is not init or next and 𝑝 does not depend on does, we have:

• 𝑆𝑘 = {𝑓 | 𝑃 ⊧ 𝑡𝑟𝑢𝑒(𝑓 , (𝑖𝑘, 0))}, and

• 𝐺 ∪ 𝑆 𝑡𝑟𝑢𝑒𝑘 ⊧ 𝑝(#»𝑡) iff 𝑃 ⊧ 𝑝(#»𝑡 , (𝑖𝑘, 0))

In particular, since 𝑙𝑒𝑔𝑎𝑙 does not depend on 𝑑𝑜𝑒𝑠, 𝐺 ∪ 𝑆 𝑡𝑟𝑢𝑒𝑘 ⊧ 𝑙𝑒𝑔𝑎𝑙(𝑟 , 𝑎) iff 𝑃 ⊧ 𝑙𝑒𝑔𝑎𝑙(𝑟 , 𝑎, (𝑖𝑘, 0)).

The correctness of the theorem is a direct consequence of Theorem 1 in [5]. The only difference is
that in [5], it assumes that 𝑖𝑘 = 𝑘.
Next, we show how a GCL formula can be encoded as an ASP program. Similar to GTL model-

checking [5], we assume that there is a function 𝜂(𝜓 , 𝑖) that would give an atom of arity 0 for each GCL
formula 𝜓 with position naming 𝑖.

Definition 9. Suppose that 𝜑 is a GCL formula in NNF, the ASP encoding of any of its subformula 𝜓 with
position 𝜋 (denoted as 𝐸𝑛𝑐(𝜓 , 𝒱𝜑(𝜋))) is recursively defined as follows:

• 𝐸𝑛𝑐(𝑝(#»𝑡), 𝑖) = {𝜂(𝑝(#»𝑡), 𝑖) :- 𝑝(#»𝑡 , (𝑖, 0)).}.

• 𝐸𝑛𝑐(¬𝑝(#»𝑡), 𝑖) = {𝜂(¬𝑝(#»𝑡), 𝑖) :- 𝑛𝑜𝑡 𝑝(#»𝑡 , (𝑖, 0)).}.

• 𝐸𝑛𝑐(𝜑1 ∧ 𝜑2, 𝒱𝜑(𝜋)) = 𝐸𝑛𝑐(𝜑1, 𝒱𝜑(𝜋∧1)) ∪ 𝐸𝑛𝑐(𝜑2, 𝒱𝜑(𝜋∧2))
∪ {𝜂(𝜑1 ∧ 𝜑2, 𝒱𝜑(𝜋)) :- 𝜂(𝜑1, 𝒱𝜑(𝜋∧1)) , 𝜂(𝜑2, 𝒱𝜑(𝜋∧2))}.

• 𝐸𝑛𝑐(𝜑1 ∨ 𝜑2, 𝒱𝜑(𝜋)) = 𝐸𝑛𝑐(𝜑1, 𝒱𝜑(𝜋∨1)) ∪ 𝐸𝑛𝑐(𝜑2, 𝒱𝜑(𝜋∨2))
∪ {𝜂(𝜑1 ∨ 𝜑2, 𝒱𝜑(𝜋)) :- 𝜂(𝜑1, 𝒱𝜑(𝜋∨1)).} ∪ {𝜂(𝜑1 ∨ 𝜑2, 𝒱𝜑(𝜋)) :- 𝜂(𝜑2, 𝒱𝜑(𝜋∨2))}.

• 𝐸𝑛𝑐(⟨⟨𝐶⟩⟩X𝜙, 𝒱𝜑(𝜋)) = {𝜂(⟨⟨𝐶⟩⟩X𝜙, 𝒱𝜑(𝜋)) :- 𝜂(𝜙, 𝒱𝜑(𝜋⟨⟨𝐶⟩⟩X)) , 𝑛𝑜𝑡 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙((𝒱𝜑(𝜋), 0)).} ∪
𝑃𝑔𝑒𝑛(𝐺, 𝐶, 𝒱𝜑(𝜋), 𝒱𝜑(𝜋⟨⟨𝐶⟩⟩X)) ∪ 𝐸𝑛𝑐(𝜙, 𝒱𝜑(𝜋⟨⟨𝐶⟩⟩X)) ∪
{𝑠𝑢𝑐𝑐(𝒱𝜑(𝜋), 𝒱𝜑(𝜋⟨⟨𝐶⟩⟩X)).} ∪ {𝑡𝑑𝑜𝑚(𝒱𝜑(𝜋⟨⟨𝐶⟩⟩X)).} ∪
{_𝑒𝑥𝑖𝑠𝑡𝑠(𝑟 , 𝒱𝜑(𝜋⟨⟨𝐶⟩⟩X))). ∣ 𝑟 ∈ 𝐶}

• 𝐸𝑛𝑐([[𝐶]] X̃𝜙, 𝒱𝜑(𝜋)) = {𝜂([[𝐶]] X̃𝜙, 𝒱𝜑(𝜋)) :- 𝜂(𝜙, 𝒱𝜑(𝜋[[𝐶]] X̃)).} ∪
{𝜂([[𝐶]] X̃𝜙, 𝒱𝜑(𝜋)) :- 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙((𝒱𝜑(𝜋), 0)).} ∪
𝑃𝑔𝑒𝑛(𝐺, 𝑅 ∖ 𝐶,𝒱𝜑(𝜋), 𝒱𝜑(𝜋[[𝐶]] X̃)) ∪ 𝐸𝑛𝑐(𝜙, 𝒱𝜑(𝜋[[𝐶]] X̃)) ∪
{𝑠𝑢𝑐𝑐(𝒱𝜑(𝜋), 𝒱𝜑(𝜋[[𝐶]] X̃)).} ∪ {𝑡𝑑𝑜𝑚(𝒱𝜑(𝜋[[𝐶]] X̃)).}

The intuition of the above inductive encoding is as follows. Suppose that we want to evaluate the
subformula 𝜓 with position 𝑖 at state 𝑆, the atom 𝜂(𝜓 , 𝑖) holds if and only if 𝐺, 𝑆 ⊧𝑡 𝜓. The case when 𝜓 is
a ground atom 𝑝(#»𝑡) is converted to a rule which justifies 𝜂(𝑝(#»𝑡), 𝑖) if and only if 𝑝(#»𝑡) with position
𝑖 holds at state 𝑆. To show that 𝜓 where 𝜓 = 𝜑1 ∧ 𝜑2 holds (i.e., 𝜂(𝜑1 ∧ 𝜑2, 𝑖) is justified), the encoding
states that the both subformulas 𝜑1 and 𝜑2 must be justified at state 𝑆. Remark that the positions 𝜋∧1
and 𝜋∧2 have the same name, because they are within the same scope of ⟨⟨𝐶⟩⟩X and [[𝐶]] X̃.
𝜓 with connectivities ¬ or ∨ are defined the same way as in the GTL model-checking encoding [5].
The case when the subformula 𝜓 is of the form ⟨⟨𝐶⟩⟩X𝜙 with position naming 𝒱𝜑(𝜋) is converted to

rules which justify 𝜂(⟨⟨𝐶⟩⟩X𝜙, 𝒱𝜑(𝜋)) if and only if the current state 𝑆 is not terminal and the players
joint actions of the players perform at 𝑆 would lead us to a successor state 𝑆′ such that the formula 𝜙
with position 𝒱𝜑(𝜋⟨⟨𝐶⟩⟩X) holds at 𝑆′. The case when the subformula 𝜓 is of the form [[𝐶]] X̃𝜙 with
position naming 𝒱𝜑(𝜋) is converted to rules which justify 𝜂([[𝐶]] X̃𝜙, 𝒱𝜑(𝜋)) if and only if the current
state 𝑆 is terminal or the players joint actions of the players perform at 𝑆 would lead us to a successor
state 𝑆′ such that the formula 𝜙 with position 𝒱𝜑(𝜋[[𝐶]] X̃) holds at 𝑆′.
In the last two cases, whether a subformula 𝜓 at a state 𝑆 holds is related to the joint actions of the

players and whether 𝜙 holds in the successor state 𝑆′ of 𝑆. Similar to GTL model-checking [5], we need
an action generator program in ASP. Suppose that the current state is 𝑆 and we want to reason about a
subformula with position name 𝑡 whose truth value is related to the truth value of the subformula at
position name 𝑞 at some successor state 𝑆′ of 𝑆 such that 𝑠𝑢𝑐𝑐(𝑡, 𝑞) holds. The action generator program
describes the state transition from 𝑆 to 𝑆′ (cf. Theorem 2), which generates 1 action per player that
is legal at state 𝑆 as long as 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 cannot be derived at position name 𝑡. Since GCL also involves
existential and universal quantification of player actions at a particular state, we define the following
action generator, which generates 1 action per player that is legal at state 𝑆 such that one successor
of position name 𝑡 is position 𝑞 and the actions of the players in 𝐶 are quantified existentially (i.e., the
subformula 𝜓 is of the form ⟨⟨𝐶⟩⟩X𝜙), while the actions of the players in 𝑅 ∖ 𝐶 are quantified universally.

Definition 10 (Action Generator). Suppose that 𝐺 is a valid GDL description, 𝐶 ⊆ 𝑅 is a coalition, 𝑡 and 𝑞
the names of two positions, the action generator 𝑃𝑔𝑒𝑛(𝐺, 𝐶, 𝑡 , 𝑞) contains the following clauses.

1. 𝑒𝑛𝑑((𝑡, 0)) :- 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙((𝑡 , 0)).

2. 𝑒𝑛𝑑((𝑞, 0)) :- 𝑒𝑛𝑑((𝑡, 0)).

3. 1 {𝑑𝑜𝑒𝑠(𝑅, 𝐴, (𝑞, 1)) ∶ 𝑖𝑛𝑝𝑢𝑡(𝑅, 𝐴)} 1 :- 𝑛𝑜𝑡 𝑒𝑛𝑑((𝑡, 0)), 𝑟𝑜𝑙𝑒(𝑅).

4. :- 𝑛𝑜𝑡 𝑙𝑒𝑔𝑎𝑙(𝑅, 𝐴, (𝑡, 0)), 𝑑𝑜𝑒𝑠(𝑅, 𝐴, (𝑞, 1)).

5. For each 𝑟 ∈ 𝑅 ∖ 𝐶, create the clause: {𝑚𝑜𝑣𝑒𝐿(𝑟 , 𝐿, (𝑞, 1)) ∶ 𝑙𝑑𝑜𝑚(𝑟 , 𝐿)}.

6. For each 𝑟 ∈ 𝑅 ∖ 𝐶 and each 𝑚𝑖 in the move domain of 𝑟, create the clause:
𝑑𝑜𝑒𝑠(𝑟 , 𝑚𝑖, (𝑞, 1)) :- 𝑙𝑒𝑔𝑎𝑙(𝑟 , 𝑚𝑖, (𝑡 , 0)), 𝑛𝑜𝑡 𝑒𝑛𝑑((𝑡, 0)), 𝑚𝑜𝑣𝑒𝐿(𝑟 , 𝜌1, (𝑞, 1)), … , 𝑚𝑜𝑣𝑒𝐿(𝑟 , 𝜌𝑗, (𝑞, 1)),

𝑛𝑜𝑡 𝑚𝑜𝑣𝑒𝐿(𝑟 , 𝜇1, (𝑞, 1)), … , 𝑚𝑜𝑣𝑒𝐿(𝑟 , 𝜇𝑘, (𝑞, 1)).

where 𝜌1, … , 𝜌𝑗 are the 1 bits in the binary representation of 𝑖 − 1, and 𝜇1, … , 𝜇𝑘 are the 0 bits in the
binary representation of 𝑖 − 1.

In the action generator, (1) checks that state 𝑆 is not a terminal state. (2) ensures that if 𝑆 is a terminal
state, all of its successor states should be terminal. (3) states that one legal action should be generated
for all players at state 𝑆 that would lead to state 𝑆′ as long as 𝑆 is not a terminal state. The integrity
constraint (4) ensures that all actions generated by (3) should be legal. One challenging part of the
encoding is to generate all possible legal joint actions of players whose actions are quantified universally
(i.e., players in 𝑅 ∖ 𝐶) at a particular state. We need to ensure that every player in this set must make
exactly one legal action. Note that we cannot simply use integrity constraints like (4) to achieve this
goal because we do not want the “universal” players in 𝑅 ∖ 𝐶 to “deliberately” pick illegal actions to
unsatisfy the QASP. (5) and (6) constitute a logarithmic encoding of the actions of the “universal”
players in 𝑅 ∖ 𝐶 that uses the idea of the so-called corrective encoding of propositional games [8].
𝑙𝑑𝑜𝑚 is the logarithmic move domain, which represents the domain of the second parameter of moveL.
Suppose the size of the move domain of some player 𝑟 ∈ 𝑅 ∖ 𝐶 is |𝑀|, then 𝑙𝑑𝑜𝑚 is defined over 1 to
|𝐿| = ⌈log2 |𝑀|⌉. We create |𝑀| rules of the form (6), one for each action 𝑚𝑖 in the move domain. The
logarithmic encoding ensures that every player in 𝑅 ∖ 𝐶 will make exactly one legal move at state
𝑆. It is important to note that |𝑀| might be less than 2|𝐿|, which means there might be some binary
combinations of 𝑚𝑜𝑣𝑒𝐿 that do not correspond to a legal action in the move domain. In this case, no
action of some players in 𝑅 ∖ 𝐶 can be generated by rule (6). However, (3) and (4) ensure that exactly
one legal action of these players in 𝑅 ∖ 𝐶 is generated in such a case.

Example 4. Consider the formula 𝜑1 = (⟨⟨{𝑥}⟩⟩X 𝑔𝑜𝑎𝑙(𝑥, 100)∧𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙)∨([[{𝑜}]] X̃ 𝑔𝑜𝑎𝑙(𝑜, 100)∧𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙)
with the same position naming as in Example 1. Then, one possible definition of the mapping 𝜂 of the
subformulas in 𝜑1 is:

• 𝜂(𝜑1, 0) = 𝑎0 𝜂(⟨⟨{𝑥}⟩⟩X 𝑔𝑜𝑎𝑙(𝑥, 100) ∧ 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙1, 0) = 𝑎1

• 𝜂(𝑔𝑜𝑎𝑙(𝑥, 100) ∧ 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙1, 1) = 𝑎2 𝜂(𝑔𝑜𝑎𝑙(𝑥, 100), 1) = 𝑎3

• 𝜂(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙1, 1) = 𝑎4 𝜂([[{𝑜}]] X̃ 𝑔𝑜𝑎𝑙(𝑜, 100) ∧ 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙2, 0) = 𝑎5

• 𝜂(𝑔𝑜𝑎𝑙(𝑜, 100) ∧ 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙2, 2) = 𝑎6 𝜂(𝑔𝑜𝑎𝑙(𝑜, 100), 2) = 𝑎7

• 𝜂(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙2, 2) = 𝑎8

And the ASP encoding of 𝐸𝑛𝑐(𝜑1, 0) the GCL formula 𝜑1 contains the following clauses:

• 𝑎0 :- 𝑎1. 𝑎0 :- 𝑎5.

• 𝑎1 :- 𝑎2, 𝑛𝑜𝑡 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙((0, 0)). 𝑎2 :- 𝑎3, 𝑎4.

• 𝑎3 :- 𝑔𝑜𝑎𝑙(𝑥, 100, (1, 0)). 𝑎4 :- 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙((1, 0)).

• 𝑎5 :- 𝑎6. 𝑎5 :- 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙((0, 0)). 𝑎6 :- 𝑎7, 𝑎8.

• 𝑎7 :- 𝑔𝑜𝑎𝑙(𝑜, 100, (2, 0)). 𝑎8 :- 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙((2, 0)).

• The action generation programs: 𝑃𝑔𝑒𝑛(𝐺, {𝑥}, 0, 1) and 𝑃𝑔𝑒𝑛(𝐺, {𝑥}, 0, 2)

• Facts: 𝑠𝑢𝑐𝑐(0, 1). 𝑠𝑢𝑐𝑐(0, 2). 𝑡𝑑𝑜𝑚(1). 𝑡𝑑𝑜𝑚(2). _𝑒𝑥𝑖𝑠𝑡𝑠(𝑥, 1)

To ensure that the GCL formula 𝜑 holds, 𝜂(𝜑, 0) must be justified. Hence, we add the integrity
constraint {:- 𝑛𝑜𝑡 𝜂(𝜑, 0)} to our encoding. Note that all encodings we have discussed so far do not
involve any actual quantification. To verify a GCL formula, we need to define a quantifier prefix Q to
the program 𝐸𝑛𝑐(𝜑, 0) ∪ {𝑡𝑑𝑜𝑚(0).} ∪ 𝑃𝑒𝑥𝑡(𝐺) ∪ {:- 𝑛𝑜𝑡 𝜂(𝜑, 0)} so that the resulting QASP is satisfiable
if and only if 𝐺 ⊧𝑡 𝜑. The idea is to quantify all ground atoms of the predicate 𝑚𝑜𝑣𝑒𝐿 in the ground
program universally, and all the other ground atoms existentially. One possible quantification method
based on atom dependency is defined as follows, which is similar to the method we discussed in [1].

Definition 11 (Atom dependency). Suppose that 𝑄 is an ASP program with grounding A and 𝑃 is the
ground normal logic program of 𝑄. For two atoms 𝑝, 𝑞 ∈ A we say that 𝑞 depends on 𝑝 in 𝑄 iff the following
recursive definition holds: Program 𝑃 contains a rule such that the atom 𝑞 appears in the head of the rule
and the atom 𝑝 appears in the body of the rule; or, there exists an atom 𝑧 ∈ A such that 𝑞 depends on 𝑧 and
𝑧 depends on 𝑝. We denote that 𝑞 depends on 𝑝 by 𝑝 → 𝑞.

Definition 12 (Dependency Based Quantification Method). Suppose A is the set of ground atoms of the
program 𝑃 = 𝑆 𝑡𝑟𝑢𝑒0 (0) ∪ 𝐸𝑛𝑐(𝜑, 0) ∪ {𝑡𝑑𝑜𝑚(0).} ∪ 𝑃𝑒𝑥𝑡(𝐺) ∪ {:- 𝑛𝑜𝑡 𝜂(𝜑, 0)} and the quantifier prefix Q𝑑 of the
program is of form where 𝑇𝑚𝑎𝑥 = 𝑑𝑒𝑔(𝜑)

Q𝑑 = ∃𝐸0 ∀𝑈1 ∃𝐸1 ∀𝑈2… ∀𝑈𝑇𝑚𝑎𝑥 ∃𝐸𝑇𝑚𝑎𝑥

Then, for each 𝑎 ∈ A, the quantifier block it belongs to is determined by the following three rules:

1. If 𝑎 = 𝑚𝑜𝑣𝑒𝐿(𝑟 , 𝐿, (𝑡 , 1)) for some 𝑟 , 𝐿, 𝑡 then 𝑎 ∈ 𝑈𝑑𝑒𝑝𝑡ℎ(𝑡).

2. If 𝑎 = 𝑑𝑜𝑒𝑠(𝑟 , 𝑀, (𝑡, 1)) for some 𝑟 , 𝑀, 𝑡 and _𝑒𝑥𝑖𝑠𝑡𝑠(𝑟 , 𝑡) ∈ A then a ∈ 𝐸𝑑𝑒𝑝𝑡ℎ(𝑡)−1

3. If 𝑎 = 𝑑𝑜𝑒𝑠(𝑟 , 𝑀, (𝑡, 1)) for some 𝑟 , 𝑀, 𝑡 and _𝑒𝑥𝑖𝑠𝑡𝑠(𝑟 , 𝑡) ∉ A then a ∈ 𝐸𝑑𝑒𝑝𝑡ℎ(𝑡)+1

4. Otherwise, 𝑎 ∈ 𝐸𝑡 with 𝑡 the maximum 1 ≤ 𝑡 ≤ 𝑇𝑚𝑎𝑥 such that 𝑚𝑜𝑣𝑒𝐿(𝑟 , 𝐿, (𝑝, 1)) → 𝑎 for some
𝑚𝑜𝑣𝑒𝐿(𝑟 , 𝐿, (𝑝, 1)) ∈ A and 𝑑𝑒𝑝𝑡ℎ(𝑝) = 𝑡. If no such 𝑡 exists then 𝑎 ∈ 𝐸0.

To put it in words, we quantify the ground atoms of 𝑃 that is an instance of the predicate 𝑚𝑜𝑣𝑒𝐿
universally. Item 1 ensures that the quantification level of the universal variables follows the depth
of the position names. There are two possible situations of the quantifier level of a ground atom that
is an instance of 𝑑𝑜𝑒𝑠 and is extended with position name 𝑡 (e.g., 𝑑𝑜𝑒𝑠(𝑟 , 𝑀, (𝑡, 1))). We should note
that the action generator generates any instance of 𝑑𝑜𝑒𝑠 in the program 𝑃. To generate the ground
atom 𝑑𝑜𝑒𝑠(𝑟 , 𝑀, (𝑡, 1)) in 𝑃, the program 𝑃𝑔𝑒𝑛(𝐺, 𝐶, 𝑞, 𝑡) must be part of 𝐸𝑛𝑐(𝜑, 0) for some 𝑠𝑢𝑐𝑐(𝑞, 𝑡) and
𝐶. According to definition 9, 𝑃𝑔𝑒𝑛(𝐺, 𝐶, 𝑞, 𝑡) is part of 𝐸𝑛𝑐(𝜑, 0) if and only if either 𝐸𝑛𝑐(⟨⟨𝐶⟩⟩ X̃𝜙, 𝑞) or
𝐸𝑛𝑐([[𝑅 ∖ 𝐶]]X𝜙, 𝑞) is part of 𝐸𝑛𝑐(𝜑, 0). For the former case, we want to verify whether ⟨⟨𝐶⟩⟩ X̃𝜙 holds.
The actions of players in 𝐶 should be generated before the actions in 𝑅 ∖ 𝐶. Therefore, in item 2, if 𝑟 ∈ 𝐶,
𝑑𝑜𝑒𝑠(𝑟 , 𝑀, (𝑡, 1)) should be quantified existentially in 𝐸𝑑𝑒𝑝𝑡ℎ(𝑡)−1. In all other cases, according to item 3,
the ground atom 𝑑𝑜𝑒𝑠(𝑟 , 𝑀, (𝑡, 1)) should be quantified existentially in 𝐸𝑑𝑒𝑝𝑡ℎ(𝑡)+1. Item 4 ensures that
no ground atom in 𝑃 that depends on an action is quantified before that action atom.

We now revisit proving ⟨⟨𝐶⟩⟩X𝜙 at state 𝑆. In the ASP encoding of GCL formulas (cf. definition 9), if
we want to justify 𝜂(⟨⟨𝐶⟩⟩X𝜙, 𝒱𝜑(𝜋)) at state 𝑆, 𝑆 must not be terminal and 𝜂(𝜙, 𝒱𝜑(𝜋⟨⟨𝐶⟩⟩X)) must be
justified at the successor state. With our quantification method, we can ensure that 𝜂(⟨⟨𝐶⟩⟩X𝜙, 𝒱𝜑(𝜋))
is justified if and only if the 𝑆 is not terminal and there exists some legal joint actions of the players

in 𝐶 such that for all legal joint actions of players in 𝑅 ∖ 𝐶, 𝜂(𝜙, 𝒱𝜑(𝜋⟨⟨𝐶⟩⟩X)) must be justified in the
successor state and thereby shows that 𝐺, 𝑆 ⊧𝑡 ⟨⟨𝐶⟩⟩X𝜙. Generating all legal joint actions of players in
𝑅 ∖ 𝐶 is achieved by the logarithmic encoding of the actions of the players in 𝑅 ∖ 𝐶.

Example 5. Consider the formula 𝜑1 = (⟨⟨{𝑥}⟩⟩X 𝑔𝑜𝑎𝑙(𝑥, 100)∧𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙)∨([[{𝑜}]] X̃ 𝑔𝑜𝑎𝑙(𝑜, 100)∧𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙)
with the same position naming as in Example 1. Let 𝑃 = 𝑆 𝑡𝑟𝑢𝑒0 (0) ∪ 𝐸𝑛𝑐(𝜑, 0) ∪ {𝑡𝑑𝑜𝑚(0).} ∪ 𝑃𝑒𝑥𝑡(𝐺) ∪
{:- 𝑛𝑜𝑡 𝜂(𝜑, 0)} and the quantifier prefix Q𝑑 and the ground atoms of 𝑃 is A. Assume the move domain of
players is {(𝑥, 𝑎𝑐1), (𝑥, 𝑎𝑐2), (𝑥, 𝑎𝑐3), (𝑜, 𝑎𝑐1), (𝑜, 𝑎𝑐2), (𝑜, 𝑎𝑐3)}. Then, the quantifier prefix of 𝑃 has the form
∃𝐸0∀𝑈1∃𝐸1, where:

• 𝐸0 = {𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙((0, 0)), 𝑡𝑑𝑜𝑚(0..2), 𝑠𝑢𝑐𝑐(0, 1), 𝑠𝑢𝑐𝑐(0, 2), 𝑑𝑜𝑒𝑠(𝑥, 𝐴, (1, 1)), _𝑒𝑥𝑖𝑠𝑡𝑠(𝑥, 1)…}

• 𝑈1 = {𝑚𝑜𝑣𝑒𝐿(𝑜, 1, (1, 1)), 𝑚𝑜𝑣𝑒𝐿(𝑜, 2, (1, 1)), 𝑚𝑜𝑣𝑒𝐿(𝑥, 1, (2, 1)), 𝑚𝑜𝑣𝑒𝐿(𝑥, 2, (2, 1))}

• 𝐸1 = {𝑑𝑜𝑒𝑠(𝑜, 𝐴, (1, 1)), 𝑑𝑜𝑒𝑠(𝑥, 𝐴, (2, 1)), 𝑑𝑜𝑒𝑠(𝑜, 𝐴, (2, 1)), 𝑎0, … , 𝑎8, …}, where 𝐴 ∈ {𝑎𝑐1, 𝑎𝑐2, 𝑎𝑐3}

When proving the subformula ⟨⟨{𝑥}⟩⟩X 𝑔𝑜𝑎𝑙(𝑥, 100) ∧ 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙, the action of player 𝑥 must be made before
player 𝑜. Hence, the actions of player 𝑥 at position 1 are quantified in 𝐸0, and all the actions of player 𝑜 at
position 1 are quantified later in 𝐸1. 𝑚𝑜𝑣𝑒𝐿(𝑜, 1, (1, 1)) and 𝑚𝑜𝑣𝑒𝐿(𝑜, 2, (1, 1)) are quantified universally
before the actions of player 𝑜 ensuring that all 3 possible actions of player 𝑜 at position 1 may be generated
by some binary combination of 𝑚𝑜𝑣𝑒𝐿(𝑜, 1..2, (1, 1)). And if the binary combination of 𝑚𝑜𝑣𝑒𝐿(𝑜, 1..2, (1, 1))
does not correspond to a legal action at position 1, then player 𝑜 can pick any legal action at position 1. The
logarithmic encoding and quantification method ensures that the constraint “there exists a legal action of
player 𝑥 such that for all legal actions of player 𝑜, something holds next” can be implemented correctly.

In QBF research, “quantification method” is also referred to as “prenexing strategy”. For GCL model-
checking, there are many correct prenexing strategies. For example, due to both 𝐸𝑛𝑐(𝜑, 0) and 𝑃𝑒𝑥𝑡(𝐺)
are stratified, the quantifier prefix of 𝑃 can also be defined as follows, where 𝐸′0 = {𝑑𝑜𝑒𝑠(𝑥, 𝐴, (1, 1))},
𝑈 ′
1 = 𝑈1 and 𝐸′1 contains all other ground atoms. Such a quantification method moves all atoms that

were originally quantified in the first existential block 𝐸0 and are not an instance of 𝑑𝑜𝑒𝑠 to the existential
block 𝐸1. The quantification method is also correct because the truth value of all atoms that have been
moved (e.g., 𝑡𝑑𝑜𝑚(0).) does not depend on 𝑑𝑜𝑒𝑠 and can be uniquely determined at state 𝑆0.

Different prenexing strategies can significantly affect the efficiency of GCL model-checking [1]. Sys-
tematically exploring how the efficiency of GCL model-checking can be affected by different prenexing
strategies is beyond the scope of this paper. Interested readers can find out more about how prenexing
strategies can affect the efficiency of QBF solving in [19].

To summarize, our encoding is similar to GTL model checking [5]; the only difference lies in the use
of a logarithmic encoding to handle the existential and universal quantification over players’ actions.
The following proposition states the correctness of the encoding, which can be proved by induction on
the structure of the GCL formula (cf. our explanation in Definition 9) and relies on Theorem 2 1.

Proposition 1. Suppose that 𝐺 is a valid GDL description and 𝜑 is a GCL formula over 𝐺, then 𝐺 ⊧𝑡 𝜑 if
and only if the following QASP is satisfiable.

Q𝑑 𝑆 𝑡𝑟𝑢𝑒0 (0) ∪ 𝐸𝑛𝑐(𝜑, 0) ∪ {𝑡𝑑𝑜𝑚(0).} ∪ 𝑃𝑒𝑥𝑡(𝐺) ∪ {:- 𝑛𝑜𝑡 𝜂(𝜑, 0)}

5. Experimental Results

One of the most important strategic properties of games is strong winnability, which is whether a player
has a strategy to win the game regardless of the actions of the remaining players. In this section, we
briefly report the efficiency of our QBF-based model-checking method on reasoning strong winnability
on some popular turn-based two-player games: Generalized 4×4 Tic-Tac-Toe (GT-1-1, and GT-2-2) [9],
Connect-3 (C-3), Connect-4 (C-4) [20], Breakthrough (BT) [21], and Dots and Boxes (D&B) [22]. For

1Detailed proof is available here: https://github.com/hharryyf/gdl2qbf-general

https://github.com/hharryyf/gdl2qbf-general

GDL description 𝐺 & GCL formula 𝜑 in NNF QASP QBF T/F
encode translate solve

preprocess

Figure 1: The logic flow of GCL Model-Checking with QBF solvers

simplicity, we assume the two players in these games are denoted as 𝑥 and 𝑜, with 𝑥 as the player taking
the first turn. We only concern ourselves with whether the game is strongly winnable by player 𝑥. We
test the efficiency of our model-checking method on various game configurations. For C-3, C-4, BT, and
D&B, different configurations refer to different board sizes, whereas in GT-1-1 and GT-2-2, different
configurations indicate different winning domino shapes [9]. The GDL rules of these games are created
and modified based on the GGP Base repository [23].

Well-formed GDL games must be finite and terminating [2]. We employ iterative deepening to prove
the strong winnability of any game 𝐺 [8] by gradually increasing the search depth, 𝑇𝑚𝑎𝑥, and checking
if 𝐺 ⊧𝑡 𝜑𝑤𝑖𝑛(𝑥, 𝑇𝑚𝑎𝑥). For a game 𝐺, we denote by 𝜇𝐺 the length of the longest valid playing sequence
with player 𝑥 as the winner. Iterative deepening is complete and terminates as long as we are provided
with 𝜇𝐺: If 𝐺 ̸⊧𝑡 𝜑𝑤𝑖𝑛(𝑥, 𝑇𝑚𝑎𝑥) for all 𝑇𝑚𝑎𝑥 ≤ 𝜇𝐺, then 𝑥 cannot strongly win the game at all. Computing
𝜇𝐺 is beyond the scope of this paper, and so we used human domain knowledge [21] to determine it.

Our overall approach is given in Figure 1.2 We use qasp2qbf [13] for the QASP to QBF translation. For
the QBF preprocessing, we use bloqqer [24]. Finally, we solve the preprocessed formulas with one of the
state-of-the-art QBF solvers Caqe [7]. Our approach is certainly not the only method of reasoning about
the bounded-depth strong winnability of strategic games. Forward search algorithms are widely applied
in solving such a problem. For comparison purposes, we implemented a naive Minimax Search-based
solver (Minx) in C++ that uses Prolog as the GDL reasoner for legal actions [25] and an enhanced
version with transposition tables (MinxTT). All the experiments were run on a Latitude 5430 laptop
with a solving time limit of 900 seconds.

In Table 1, we record the value of 𝜇𝐺 and the smallest depth 𝑇𝑚𝑎𝑥 of the game in bold if the game
can be proved to be strongly winnable by player 𝑥 within 𝑇𝑚𝑎𝑥 steps by any of the 3 solvers within the
solving time limit. If player 𝑥 cannot force a win at all depths, and the game can be proved not to be
strongly winnable by player 𝑥 within 𝜇𝐺 steps by any solver under any encoding in the solving time
limit, we let 𝑇𝑚𝑎𝑥 = 𝜇𝐺 and record 𝑇𝑚𝑎𝑥 in plain format. For games that can neither be proved to be
strongly winnable by 𝑥 at some depth nor be proved not to strongly winnable by 𝑥 for all depth within
the solving time limit, we record the maximum refuted depth 𝑇𝑚𝑎𝑥 [21] (i.e., the maximum 𝑇𝑚𝑎𝑥 such
that the game is proved not to be strongly winnable by 𝑥 within 𝑇𝑚𝑎𝑥 steps by any solver under any
encoding within the solving time limit) of the unsolved games in italic format.

In Table 1, we also record the preprocessing time of bloqqer (Bloq), the total run time of bloqqer and
Caqe (Caqe+bloq) to verify 𝜑𝑤𝑖𝑛(𝑥, 𝑇𝑚𝑎𝑥), the run time of the baseline minimax solver (Minx), and the
run time of the minimax with transposition table solver (MinxTT).
We can observe that for almost all of these small-sized games, Caqe can completely solve the game

(i.e., prove or disprove whether 𝑥 can strongly win the game) in a reasonable amount of time. For the
relatively larger instances C-4-5x5 and C-4-6x6, although Caqe cannot solve the game completely, it
can disprove the bounded-depth strong winnability property of these games to a relatively large depth.
If we compare the QBF-based approach (Caqe+bloq) with the baseline minimax solver (Minx), we can
observe that the efficiency of the QBF-based approach outperforms Minx in almost all instances except
the easy ones, such as C-3, where the bloqqer preprocessing time dominates the solving procedure. The
comparison between the QBF-based approach with the minimax and transposition table solver MinxTT,
however, is mixed, and the result is highly domain dependent. Except for the easy domain such as C-3,
the QBF-based approach outperforms MinxTT in most of the non-trivial games from C-4, GT-1-1, and
GT-2-2. However, MinxTT outperforms Caqe+bloq by more than an order of magnitude in D&B.

2The interested reader can find the code used in our experiments here: https://github.com/hharryyf/gdl2qbf-general

https://github.com/hharryyf/gdl2qbf-general

Game Config 𝜇𝐺 𝑇𝑚𝑎𝑥 Bloq Caqe+bloq Minx MinxTT
2×5 21 21 6.61 6.88 1.64 0.36
2×6 29 15 5.71 15.63 25.58 3.13

BT 3×4 19 19 11.91 12.12 5.49 1.13
4×4 25 25 51.57 65.97 * 106.20
4×4 15 9 0.64 0.72 0.33 0.20

C-3 5×5 25 9 0.98 1.22 1.28 0.74
6×6 35 9 1.30 2.10 2.65 1.54
4×4 15 15 1.06 1.37 9.06 1.54

C-4 5×5 25 21 2.55 219.35 * 628.17
6×6 35 19 4.19 649.13 * *
elly 15 7 2.65 3.01 21.48 11.74
fat. 15 15 7.40 259.80 * 307.38

GT-1-1 knob. 15 15 7.29 587.17 * *
skin. 15 15 7.15 * * 263.20
tip. 15 9 3.43 4.79 172.78 30.94
elly 14 6 1.83 1.90 0.39 0.23
fat. 14 14 5.63 316.63 * *

GT-2-2 knob. 14 6 1.77 1.85 1.24 0.88
skin. 14 14 5.44 560.45 * 662.32
tip. 14 6 1.70 1.75 6.14 3.87

D&B 2×2 12 12 1.89 7.21 22.61 0.64
2×3 17 17 5.89 592.51 * 18.05

Table 1
Time (in seconds) for the QBF-based approach (Caqe+bloq), the minimax baseline solver (Minx), and
the minimax + transposition table solver to 𝜑𝑤𝑖𝑛(𝑥, 𝑇𝑚𝑎𝑥). * means the solver timed out after 900 seconds.

Note that GCL model-checking can also be performed by a naive depth-first search algorithm by
directly following Definition 4, and for verifying the bounded-depth strong winnability, the algorithm is
similar to the baseline minimax search, which performs drastically worse than our QBF-based approach.
Although with a transposition table, the efficiency of the minimax search solver for verifying the
bounded-depth strong winnability can be improved significantly, for general GCL model-checking, it
is still unclear how a transposition table can be properly defined. Our QBF-based approach is more
generic because the learning mechanism within the QBF solver (e.g., Counterexample Guided Abstract
Refinement [7]) applies to any QBF expression. Although the transposition table is not the same as the
learning mechanism in QBF solvers, both can prune unnecessary search space. With a generic QBF
solver, we can leverage its pruning effect without the need to design a transposition table from scratch.
Even if bounded-depth strong winnability is just one important property that can be expressed in

GCL, the experiment indicates that our QBF-based approach has the potential to support GGP systems
to perform endgame search when the game property can be formulated as GCL formulas.

6. Conclusion and Future Work

In this paper, we investigate the connection between Coalition Logic and GDL and propose a QBF-based
model-checking method. Although Coalition Logic is only a subset of ATL [4], it allows the formulation
of both strategic and non-strategic properties up to a bounded depth. Our case study on solving
two-player games shows that the QBF-based model-checking method has the potential to assist GGP
systems in reasoning about endgame properties that can be formulated as GCL formulas. In the future,
we plan to systematically evaluate our QBF-based approach on verifying other GCL properties and
investigate how to integrate the QBF-based method into a GGP system. Also, we intend to investigate
how to extend our approach to reason about GCL formulas of games with imperfect information [26].

Declaration on Generative AI

During the preparation of this work, the authors used ChatGPT in order to: Grammar and spelling
check.

References

[1] Y. He, A. Saffidine, M. Thielscher, Solving Two-player games with QBF solvers in General Game
Playing, in: Proceedings of AAMAS, 2024, pp. 807–815.

[2] M. Genesereth, M. Thielscher, General game playing, Synthesis Lectures on Artificial Intelligence
and Machine Learning 8 (2014) 1–229.

[3] J. Clune, Heuristic evaluation functions for general game playing, in: Proceedings of AAAI, 2007,
pp. 1134–1139.

[4] J. Ruan, W. Van Der Hoek, M. Wooldridge, Verification of games in the game description language,
Journal of Logic and Computation 19 (2009) 1127–1156.

[5] M. Thielscher, S. Voigt, A Temporal Proof System for General Game Playing, in: Proceedings of
AAAI, 2010, pp. 1000–1005.

[6] M. Pauly, A modal logic for coalitional power in games, Journal of logic and computation 12 (2002)
149–166.

[7] M. N. Rabe, L. Tentrup, CAQE: A Certifying QBF Solver, in: Proceedings of FMCAD, 2015, pp.
136–143.

[8] V. Mayer-Eichberger, A. Saffidine, Positional Games and QBF: The Corrective Encoding, in:
Proceedings of SAT, 2020, pp. 447–463.

[9] Diptarama, R. Yoshinaka, A. Shinohara, QBF Encoding of Generalized Tic-Tac-Toe, in: F. Lonsing,
M. Seidl (Eds.), Proceedings of the 4th International Workshop on Quantified Boolean Formulas
(QBF 2016), 2016, pp. 14–26.

[10] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, Answer set solving in practice, Synthesis lectures
on artificial intelligence and machine learning 6 (2012) 1–238.

[11] S. Schiffel, M. Thielscher, A Multiagent Semantics for the Game Description Language, in: Agents
and Artificial Intelligence, 2010, pp. 44–55.

[12] J. Marques-Silva, I. Lynce, S. Malik, Conflict-driven clause learning SAT solvers, in: Handbook of
Satisfiability, IOS press, 2021, pp. 133–182.

[13] J. Fandinno, F. Laferrière, J. Romero, T. Schaub, T. C. Son, Planning with incomplete information
in quantified answer set programming, Theory and Practice of Logic Programming 21 (2021)
663–679.

[14] F. Belardinelli, A. Lomuscio, A. Murano, S. Rubin, et al., Alternating-time Temporal Logic on Finite
Traces., in: Proceedings of IJCAI, volume 18, 2018, pp. 77–83.

[15] E. Bonnet, A. Saffidine, On the complexity of general game playing, in: Workshop on Computer
Games, Springer, 2014, pp. 90–104.

[16] T. Janhunen, I. Niemelä, Compact Translations of Non-disjunctive Answer Set Programs to
Propositional Clauses, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 111–130. URL:
https://doi.org/10.1007/978-3-642-20832-4_8. doi:10.1007/978-3-642-20832-4_8.

[17] A. J. Robinson, A. Voronkov, Handbook of automated reasoning, volume 1, Elsevier, 2001.
[18] S. Haufe, Automated Theorem Proving for General Game Playing, Ph.D. thesis, Dresden University

of Technology, 2012. URL: https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-89998.
[19] S. Heisinger, M. Heisinger, A. Rebola-Pardo, M. Seidl, Quantifier shifting for quantified boolean

formulas revisited, in: Proceedings of IJCAR, 2024, pp. 325–343.
[20] I. P. Gent, A. G. Rowley, Encoding Connect-4 using quantified Boolean formulae, in: Proceedings

of International Workshop on Modelling and Reformulating Constraint Satisfaction Problems,
2003, pp. 78–93.

[21] I. Shaik, J. van de Pol, Concise QBF Encodings for Games on a Grid (extended version), arXiv
preprint 2303.16949, 2023. URL: http://arxiv.org/abs/2303.16949.

[22] E. R. Berlekamp, The Dots and Boxes game: sophisticated child’s play, CRC Press, 2000.
[23] GGP, GGP Base Repository. http://games.ggp.org/base/, 2023.
[24] A. Biere, F. Lonsing, M. Seidl, Blocked Clause Elimination for QBF, in: Proceedings of CADE,

2011, pp. 101–115.
[25] S. Schiffel, Y. Björnsson, Efficiency of GDL reasoners, IEEE Transactions on Computational

https://doi.org/10.1007/978-3-642-20832-4_8
http://dx.doi.org/10.1007/978-3-642-20832-4_8
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-89998
http://arxiv.org/abs/2303.16949
http://games.ggp.org/base/

Intelligence and AI in Games 6 (2014) 343–354.
[26] M. Thielscher, A general game description language for incomplete information games, in:

Proceedings of AAAI, 2010, pp. 994–999.

	1 Introduction
	2 Preliminaries
	2.1 Game Description Language
	2.2 Quantified Answer Set Programming

	3 Coalition Logic For General Games
	4 QASP Encoding for GCL Model-Checking
	5 Experimental Results
	6 Conclusion and Future Work

