
Using AFT to Characterize Shen and Eiter’s Disjunctive
Logic Program Semantics
Spencer Killen1,*, Jia-Huai You1

1University of Alberta, 11011 - 88 Avenue, Edmonton, AB, Canada, T6G 2G5

Abstract
Disjunction in knowledge representation concisely expresses uncertainty as sets of possibilities. Due to the
nondeterministic nature of these sets, we require specialized tools to establish the meaning of languages that
incorporate disjunction. In this work, we further prove the effectiveness of one such tool: Our recent extension
of approximation fixpoint theory (AFT) to disjunctive semantics. This approach has the advantage of simplicity
because it directly utilizes the existing objects and definitions of AFT. To exercise our approach, we capture the
determining inference semantics of Shen and Eiter, a class of disjunctive semantics where any non-disjunctive
answer set semantics is extended to disjunctive logic programs. This leads to a fixpoint characterization of this
class of disjunctive semantics. Additionally, we extend determining inference semantics to the three-valued
case. In the case of disjunctive logic programs, we combine the determining inference stable models with partial
stable models. A combination of these semantics that is faithful presents a challenge due to incompatibility
concerning truth minimality. However, due to the flexibility of our approach, we are able to remedy this challenge
by introducing a new truth ordering.

1. Introduction

Approximation fixpoint theory [1] can not accommodate disjunctive semantics. As a result, various ap-
proaches [2, 3] have emerged that capture specific nondeterministic semantics by formulating operators
that map sets to other sets. Heyninck et al. [4] recently developed a general theory of nondeterministic
AFT that generalizes such an approach. Their theory is highly suitable for characterizing disjunctive
semantics [4, 5, 6]. However, it departs significantly from standard AFT by introducing its own no-
tion of fixpoints, exactness, monotonicity, etc., which leads to increased challenges in transitioning
non-disjunctive semantics to a nondeterministic setting. In prior work [7], we offer an alternative to
Heyninck et al.’s approach, called an approximator set, which leverages a set of operators rather than a
single operator.

Using a family of operators has a few interesting benefits. Firstly, the definitions and objects of
deterministic AFT can be directly reused in this lifted theory. Unlike nondeterministic AFT [4], there
is no need to introduce separate notions of fixpoints or monotonicity. This reduces the overhead of
applying AFT nondeterministically, and it can also tighten the relationship between nondeterministic
semantics and their deterministic counterparts. To capture a nondeterministic semantics using a set of
operators is to break the semantics down into a family of deterministic semantics, each captured by
its own operator. Because many deterministic semantics have been treated by AFT, there are many
operators that can be reused in a nondeterministic setting. For example, a disjunctive logic program can
be expressed as a family of normal logic programs. We can capture the disjunctive semantics using the
set of operators defined for the normal logic programs and an operation to merge these semantics [7].

By parameterizing this merge operation, the approximator set approach is highly flexible and a
question is raised of what other disjunctive semantics we can capture with this approach. In this work,
we show that we can capture the determining inference semantics of disjunctive logic programs by

23rd International Workshop on Nonmonotonic Reasoning, November 11-13, 2025, Melbourne, Australia
*Corresponding author.
$ sjkillen@ualberta.ca (S. Killen); jyou@cs.ualberta.ca (J. You)
� https://sjkillen.ca (S. Killen)
� 0000-0003-3930-5525 (S. Killen); 0000-0001-9372-4371 (J. You)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:sjkillen@ualberta.ca
mailto:jyou@cs.ualberta.ca
https://sjkillen.ca
https://orcid.org/0000-0003-3930-5525
https://orcid.org/0000-0001-9372-4371
https://creativecommons.org/licenses/by/4.0/deed.en

tweaking the merge operation for the set of operators for partial stable models. The relative ease with
which this is accomplished further supports our approach.

Shen and Eiter [8] introduced determining inference semantics as a relaxation of Gelfond and
Lifschitz’s answer set semantics [9] (𝒮ℳ semantics). Borrowing from their example (Example 1), the
following disjunctive logic program has no answer sets under 𝒮ℳ semantics.

𝑎← 𝑎, 𝑏← 𝑏← 𝑛𝑜𝑡 𝑏

We can separate the program into two non-disjunctive programs: (a) one which replaces 𝑎, 𝑏← with
𝑎←, effectively “choosing” the atom 𝑎, and (b) the program which “chooses” 𝑏. Under 𝒮ℳ semantics,
program (a) does not have an answer set and program (b) has a single answer set {𝑎, 𝑏} which assigns
both 𝑎 and 𝑏 to be true. Disjunction in DLPs is not equivalent to disjunction in classical logic [10]. Shen
and Eiter [8] argue that determining inference semantics is more faithful to the constructive nature of
disjunction as used in logic programming. They argue that the additional answer sets the semantics
brings are reasonably acceptable. The determining inference semantics provides a mechanism to lift any
semantics defined for non-disjunctive logic programs to disjunctive programs. By demonstrating that
approximator sets [7] can capture determining inference semantics, we also show that approximator
sets can be used as a means to lift any approximator defined for non-disjunctive programs to disjunctive
programs.

This paper reports the results of our investigation, and the main contributions are as follows:

1. Under reasonable syntactic restrictions, we successfully apply approximator sets [7] to capture
the DI-𝒳 semantics [8], a family of disjunctive semantics induced by a non-disjunctive semantics
𝒳 . This demonstrates the flexibility of approximator sets and provides an automatic method of
lifting non-disjunctive fixpoint semantics to disjunctive programs.

2. We examine the three-valued fixpoints in our approach to identify a three-valued DI-𝒳 . The
newly formulated DI-𝒫𝒮ℳ semantics are faithful to both DI-𝒮ℳ and 𝒫𝒮ℳ semantics.

The paper is organized as follows. In Section 2, we cover the necessary preliminaries and establish
notation for disjunctive logic programs (Section 2.1), approximation fixpoint theory (Section 2.2), and
determining inference semantics (Section 2.3). In Section 3 we apply approximator sets to determining
inference semantics and establish a three-valued semantics. Finally, we conclude and discuss in Section 4.

2. Preliminaries

2.1. Disjunctive Logic Programs

A disjunctive logic program (DLP) 𝒫 is a set of rules. Each rule 𝑟 ∈ 𝒫 consists of a set of atoms
called its head, denoted ℎ𝑑(𝑟), and a set of possibly negated atoms called its body, denoted 𝑏𝑜𝑑𝑦(𝑟).
A rule 𝑟 with the parts ℎ𝑑(𝑟) = {ℎ1, . . . , ℎ𝑛} ≠ ∅ and 𝑏𝑜𝑑𝑦(𝑟) = {𝑝1, . . . , 𝑝𝑘,𝑛𝑜𝑡 𝑏1, . . . ,𝑛𝑜𝑡 𝑏𝑖}
is written as ℎ1, . . . , ℎ𝑛 ← 𝑝1, . . . , 𝑝𝑘,𝑛𝑜𝑡 𝑏1, . . . ,𝑛𝑜𝑡 𝑏𝑖 . For such a rule 𝑟, we also define
𝑏𝑜𝑑𝑦+(𝑟) := {𝑝1, . . . , 𝑝𝑘} and 𝑏𝑜𝑑𝑦−(𝑟) := {𝑏1, . . . , 𝑏𝑖} to extract the positive body and the nega-
tive body of the rule. Note that the elements in 𝑏𝑜𝑑𝑦−(𝑟) are atoms rather than negated atoms. We say
a rule 𝑟 is normal if there is exactly one atom in ℎ𝑑(𝑟). A program that only contains normal rules is a
normal program (a non-disjunctive program).

In this work, without loss of generality, we do not consider logic programs with variables. That is,
we assume every program is variable-free or ground.

An interpretation of a DLP 𝒫 is a true/false assignment to every atom that appears in 𝒫 . A set
of atoms 𝐼 is an interpretation that assigns its contained atoms to be true and all other atoms to be
false. We also consider three-valued interpretations represented by pairs of sets of atoms (described
later). When it is necessary to disambiguate between types of interpretations, we call them two-valued
interpretations or three-valued interpretations.

Gelfond and Lifschitz [9] define the answer set semantics (a.k.a the stable model semantics) of normal
programs using two-valued interpretations. We also denote this as the 𝒮ℳ semantics with their 𝒮ℳ
answer sets.

Definition 1. Given a normal program 𝒫 and an interpretation 𝐼 , the (normal) reduct 𝒫𝐼 of 𝒫 w.r.t. 𝐼 is
defined as 𝒫𝐼 := {ℎ𝑑(𝑟)← 𝑏𝑜𝑑𝑦+(𝑟) | 𝑟 ∈ 𝒫, 𝑏𝑜𝑑𝑦−(𝑟) ∩ 𝐼 = ∅}. A rule 𝑟 is satisfied by 𝐼 if

((𝑏𝑜𝑑𝑦+(𝑟) ⊆ 𝐼) ∧ (𝑏𝑜𝑑𝑦−(𝑟) ∩ 𝐼 = ∅)) =⇒ (ℎ𝑑(𝑟) ⊆ 𝐼)

is true. An interpretation 𝐼 is a model of 𝒫 if every rule is satisfied by 𝐼 . A model 𝐼 of 𝒫 is an answer set of
𝒫 if there does not exist a model 𝐼 ′ of 𝒫𝐼 s.t. 𝐼 ′ ⊂ 𝐼 .

Przymusinski [11] generalizes 𝒮ℳ semantics to three-valued logic by defining partial answer sets
(a.k.a. partial stable models). Before we can introduce these 𝒫𝒮ℳ answer sets, we must introduce
interpretation pairs. While we restrict our attention to three-valued logic, it is convenient to introduce
four-valued interpretations.

We briefly summarize the four-valued logic given by Belnap and Nuel [12] to give meaning to four,
three, and two-valued interpretations. The logic introduces four truth values: 𝑡 (true), 𝑢 (undefined), 𝑓
(false), and 𝑐 (contradictory). In this logic, there are two orderings (complete lattices), the truth-ordering
and the precision-ordering.

The truth-ordering places 𝑡 at the top, 𝑓 at the bottom, and 𝑢 and 𝑐 are incomparable. The precision-
ordering places 𝑐 at the top, 𝑢 at the bottom, while 𝑡 and 𝑓 are incomparable.

We formulate a four-valued interpretation as a pair of sets (𝑇, 𝑃) where 𝑇 and 𝑃 are interpretations.
A valuation (𝑇, 𝑃)(𝑎) of an atom 𝑎 against an interpretation (𝑇, 𝑃) is 𝑡 iff 𝑎 ∈ 𝑇 ∩ 𝑃 , 𝑓 iff 𝑎 ̸∈ 𝑇 ∪ 𝑃 ,
𝑢 iff 𝑎 ̸∈ 𝑇 , 𝑎 ∈ 𝑃 , and 𝑐 iff 𝑎 ∈ 𝑇 , 𝑎 ̸∈ 𝑃 . The set 𝑇 contains true atoms, while 𝑃 contains possibly
true atoms (either true or undefined) while the set 𝑇 ∖ 𝑃 contains all contradictory atoms. False atoms
are not contained in either set 𝑇 or 𝑃 . We say such an interpretation is consistent (three-valued) if
𝑇 ⊆ 𝑃 . We call an interpretation (𝑇, 𝑇) exact or two-valued.

We define the truth-ordering (⪯2
𝑡) and precision-ordering (⪯2

𝑝) for interpretations as follows.

Definition 2. For two interpretations (𝑇, 𝑃) and (𝑇 ′, 𝑃 ′)

(𝑇, 𝑃) ⪯2
𝑡 (𝑇

′, 𝑃 ′) ⇐⇒ 𝑇 ⊆ 𝑇 ′ and 𝑃 ⊆ 𝑃 ′

(𝑇, 𝑃) ⪯2
𝑝 (𝑇

′, 𝑃 ′) ⇐⇒ 𝑇 ⊆ 𝑇 ′ and 𝑃 ′ ⊆ 𝑃

Intuitively, these orderings relate interpretations whose individual atom valuations relate according
to Belnap’s logic. With (𝑇, 𝑃) ⪯2

𝑝 (𝑇 ′, 𝑃 ′), we have 𝐹 ⊆ 𝐹 ′ where 𝐹 and 𝐹 ′ contain the set false of
atoms in (𝑇, 𝑃) and (𝑇 ′, 𝑃 ′) respectively. We use the following to relate rules and interpretations by
describing the set of rules whose bodies are satisfied by an interpretation.

𝑏𝑜𝑑𝑦𝑠𝑎𝑡(𝑇,𝑃)(𝒫) := {𝑟 ∈ 𝒫 | 𝑏𝑜𝑑𝑦+(𝑟) ⊆ 𝑇, 𝑏𝑜𝑑𝑦−(𝑟) ∩ 𝑃 = ∅}

Given a consistent (𝑇, 𝑃), we say a rule 𝑟’s body is satisfied by (𝑇, 𝑃) if 𝑟 ∈ 𝑏𝑜𝑑𝑦𝑠𝑎𝑡(𝑃,𝑇)({𝑟}).
With slight abuse of notation, we use ℎ𝑑(𝒫) (normally ℎ𝑑(𝑟) with a particular rule 𝑟) to denote the set

of atoms that appear in the heads of rules in a normal program 𝒫 . That is, ℎ𝑑(𝒫) := {ℎ𝑑(𝑟) | 𝑟 ∈ 𝒫}.
We adopt the method of Killen et al. [7] to convert a DLP into a set of normal programs.

Definition 3. Given a DLP 𝒫 , the set 𝑛𝑜𝑟𝑚𝑎𝑙(𝒫) is defined as follows

𝑛𝑜𝑟𝑚𝑎𝑙(𝒫) :=
{︁
{ℎ𝑐(𝑟) | 𝑟 ∈ 𝒫} | ∃ℎ𝑐,∀𝑟 ∈ 𝒫,∃𝑎 ∈ ℎ𝑑(𝑟), ℎ𝑐(𝑟) = (𝑎← 𝑏𝑜𝑑𝑦(𝑟))

}︁
For example, 𝑛𝑜𝑟𝑚𝑎𝑙({𝑎, 𝑏 ←}) = {{𝑎 ←}, {𝑏 ←}}. The programs completion for disjunctive

programs shows us that we can deal with disjunctive programs by treating the normal programs in the
set above [13]. We follow Killen et al. [7]’s definition of Przymusinski’s three-valued semantics of DLPs
(𝒫𝒮ℳ semantics).

Definition 4. We call a consistent interpretation (𝑇, 𝑃) a model of a DLP 𝒫 if for some 𝒫 ′ ∈ 𝑛𝑜𝑟𝑚𝑎𝑙(𝒫)

(ℎ𝑑(𝑏𝑜𝑑𝑦𝑠𝑎𝑡(𝑇,𝑃)(𝒫 ′)), ℎ𝑑(𝑏𝑜𝑑𝑦𝑠𝑎𝑡(𝑃,𝑇)(𝒫 ′))) ⪯2
𝑡 (𝑇, 𝑃)

We say a consistent (𝑇 ′, 𝑃 ′) is a model of the reduct of 𝒫 w.r.t. (𝑇, 𝑃) if for some 𝒫 ′ ∈ 𝑛𝑜𝑟𝑚𝑎𝑙(𝒫)

(ℎ𝑑(𝑏𝑜𝑑𝑦𝑠𝑎𝑡(𝑇 ′,𝑃)(𝒫 ′)), ℎ𝑑(𝑏𝑜𝑑𝑦𝑠𝑎𝑡(𝑃 ′,𝑇)(𝒫 ′))) ⪯2
𝑡 (𝑇

′, 𝑃 ′)

A model (𝑇, 𝑃) of a DLP 𝒫 is a 𝒫𝒮ℳ answer set of 𝒫 if there does not exist (𝑇 ′, 𝑃 ′) ≺2
𝑡 (𝑇, 𝑃) s.t.

(𝑇 ′, 𝑃 ′) is a model of the reduct of 𝒫 w.r.t. (𝑇, 𝑃).

Przymusinski [14] shows that 𝒫𝒮ℳ answer sets are faithful to Gelfond and Lifschitz’s answer set
semantics [15].

2.2. Approximation Fixpoint Theory (AFT)

Approximation Fixpoint Theory (AFT) [1] generalizes a large body of research, including 𝒫𝒮ℳ
semantics for non-disjunctive programs. AFT algebraically characterizes semantics as fixpoints of
certain functions, called approximators.

First, we introduce some lattice theory fundamentals for notation [16]. A complete lattice ℒ is a poset
s.t. every set 𝑆 ⊆ ℒ a unique least upper bound

⋁︀
𝑆, and unique greatest lower bound

⋀︀
𝑆. We use ≺

to denote the strict variant of a relation ⪯ s.t. (𝑎 ≺ 𝑏) ⇐⇒ ((𝑎 ⪯ 𝑏) ∧ 𝑎 ̸= 𝑏).
Given an ordering ⟨ℒ,⪯⟩ and a function 𝑓 : ℒ → ℒ, we say that 𝑓 is monotone if 𝑎 ⪯ 𝑏 implies

𝑓(𝑎) ⪯ 𝑓(𝑏). We use ℒ2 to denote the set of pairs {(𝑥, 𝑦) | 𝑥, 𝑦 ∈ ℒ}. For a function 𝑓 : ℒ2 → ℒ2, we
use 𝑓(𝑥, 𝑦)1 and 𝑓(𝑥, 𝑦)2 to project the first and second elements, respectively, of the resulting pair. We
partially apply and project such functions using the notation 𝑓(·, 𝑦)1 and 𝑓(𝑥, ·)2 to construct the new
unary functions 𝜆𝑥, 𝑓(𝑥, 𝑦)1 and 𝜆𝑦, 𝑓(𝑥, 𝑦)2 respectively. A fixpoint 𝑥 of a function 𝑓 is an element
such that 𝑓(𝑥) = 𝑥. We use fix 𝑓 to denote the set of all fixpoints of 𝑓 . We use lfp 𝑓 to denote the least
fixpoint of a function 𝑓 , that is, lfp 𝑓 :=

⋀︀
(fix 𝑓). If a function is monotone over a complete lattice,

then lfp 𝑓 is well-defined [17].
AFT [1] leverages the same orderings ⪯2

𝑡 and ⪯2
𝑝 from Definition 2, except ⊆ is replaced with a

provided ordering from a complete lattice. We call pairs (𝑧, 𝑧) exact. We call a function 𝑜 exact if it
maps exact pairs to exact pairs.

Definition 5. Given a complete lattice ⟨ℒ,⪯⟩, an approximator 𝑜 : ℒ2 → ℒ2 is an exact and⪯2
𝑝-monotone

function.

An approximator may have fixpoints that do not correspond to the intended semantics. The stable
revision operator is formed from an approximator and has fewer fixpoints.

Definition 6. Given an an approximator 𝑜, its stable revision operator 𝑆(𝑜) is

𝑆(𝑜) := (lfp 𝑜(·, 𝑦)1, lfp 𝑜(𝑥, ·)2)

Denecker et al. [1] show that all fixpoints of a stable operator, called stable fixpoints are ⪯2
𝑡 -minimal.

2.3. Determining Inference Semantics

We introduce Shen and Eiter’s [8] determining inference semantics for DLPs and its associated definitions.
First, a DLP induces a family of normal logic programs via a head selection function and a disjunctive
reduct.

Definition 7. Given a DLP𝒫 , a head selection functionℎ𝑠(𝐼, 𝑟) is a function that accepts an interpretation
𝐼 and a rule 𝑟 ∈ 𝒫 and returns an element ℎ ∈ ℎ𝑑(𝑟)∩ 𝐼 , unless ℎ𝑑(𝑟)∩ 𝐼 = ∅ in which case it returns⊥.

Shen and Eiter impose an additional constraint requiring that for any two rules 𝑟, 𝑟′ ∈ 𝒫 s.t.
ℎ𝑑(𝑟) = ℎ𝑑(𝑟′), then ℎ𝑠(𝐼, 𝑟) = ℎ𝑠(𝐼, 𝑟′). This choice appears to be made to accommodate their
more generalized semantics that allow arbitrary formulas in the heads of rules. For simplicity, we do
not consider arbitrary formulas and we do not explore this difference, and in the remainder of this
work, we assume ℎ𝑑(𝑟) ̸= ℎ𝑑(𝑟′) when 𝑟 ̸= 𝑟′ and |ℎ𝑑(𝑟)| > 1. This is not so limiting as the semantics
of an excluded program can be mimicked by adding fresh atoms to the head of each disallowed rule and
additional rules that result in every atom being true if one of these atoms is selected from the head of a
rule1. Without this syntactic restriction, we cannot establish a strong relationship between Shen and
Eiter’s determining inference semantics and 𝒫𝒮ℳ answer sets. However, if this restriction is removed,
this work holds over a slightly modified version of determining inference semantics, which we soon
describe. We leave a deeper investigation into this detail for future work.

From a head-selection function, normal programs are obtained as a disjunctive reduct.

Definition 8. A disjunctive reduct 𝒫 ′ of a DLP 𝒫 w.r.t. an interpretation 𝐼 and a head selection function
ℎ𝑠 is a normal program such that 𝒫 ′ = {ℎ𝑠(𝐼, 𝑟)← 𝑏𝑜𝑑𝑦(𝑟) | 𝑟 ∈ 𝒫, 𝐼 satisfies 𝑏𝑜𝑑𝑦(𝑟)}.

Soon, we will define a simpler version of the disjunctive reduct that does not involve an interpretation.
We introduce determining inference semantics, which is parameterized by a semantics for normal
logic programs. An answer set semantics 𝒳 for normal programs identifies a subset of models of normal
programs as 𝒳 -answer sets s.t. they are truth-minimal.

Definition 9. Given an answer set semantics 𝒳 for normal programs, a model 𝐼 of a DLP 𝒫 is a DI-𝒳
(determining inference 𝒳) answer set of 𝒫 if

1. 𝐼 is an 𝒳 -answer set of some disjunctive reduct of 𝒫 w.r.t. 𝐼 and some head selection function, and
2. there is no model of 𝒫 𝐼 ′ ⊂ 𝐼 that satisfies (1).

It is convenient for us to make a few simplications and generalizations to Definition 9. We rely
on 𝑛𝑜𝑟𝑚𝑎𝑙(𝒫) (Definition 3) instead of interpretations in disjunctive reducts. Every model of a
𝒫 ′ ∈ 𝑛𝑜𝑟𝑚𝑎𝑙(𝒫) is a model of the DLP 𝒫 [7], so the model requirement in Definition 9 can be dropped.
Additionally, we generalize DI-𝒳 semantics to accommodate 𝒫𝒮ℳ answer sets by parameterizing the
underlying interpretation structure and ordering. This is so that later we can apply the semantics with
three-valued interpretations. The modified definition is presented below.

A DI-structure ⟨𝒳 , ⟨ℒ,⪯⟩⟩ is an answer set semantics 𝒳 and an ordering ⟨ℒ,⪯⟩. The ordering, an
interpretation structure, is used identify elements in ℒ as models of specific normal programs with
some being 𝒳 -answer sets.

Definition 10. A (generalized) DI-𝒳 semantics is given by a DI-structure ⟨𝒳 , ⟨ℒ,⪯⟩⟩. We say 𝐼 ∈ ℒ is
a (generalized) DI-𝒳 answer set of a DLP 𝒫 if

1. 𝐼 is an 𝒳 -answer set of some 𝒫 ′ ∈ 𝑛𝑜𝑟𝑚𝑎𝑙(𝒫), and
2. there is no 𝐼 ′ ∈ ℒ s.t. 𝐼 ′ ≺ 𝐼 and 𝐼 ′ satisfies (1).

Proposition 1. Using the DI-structure ⟨𝒳 , ⟨ℐ,⊆⟩⟩, Definitions 9 and 10 are equivalent for programs 𝒫
s.t. for every rule 𝑟 ∈ 𝒫 with |ℎ𝑑(𝑟)| > 1, there does not exist 𝑟′ ∈ 𝒫 s.t. 𝑟 ̸= 𝑟′ and ℎ𝑑(𝑟) = ℎ𝑑(𝑟′).

Proof. If 𝐼 is an 𝒳 answer set of a program 𝒫 ′ ∈ 𝑛𝑜𝑟𝑚𝑎𝑙(𝒫), then we can construct a head selection
function that chooses the true atoms from the heads of rules in 𝒫 ′. Removing the rules whose bodies
are not satisfied by 𝐼 does not affect the status of 𝐼 as an answer set.

Clearly we have 𝒫 ′ ∈ 𝑛𝑜𝑟𝑚𝑎𝑙(𝒫) s.t. 𝒫 ′ has an answer set 𝐼 ′ ⊂ 𝐼 iff there exists a disjunctive reduct
that corresponds to 𝒫 ′. Note that head selection function for 𝒫 ′ uses 𝐼 ′, not 𝐼 , thus the removal of
unsatisfied rules has no bearing on 𝐼 ′’s status as an answer set of 𝒫 ′.

From here on, we adopt Definition 10 for DI-𝒳 semantics.
1While one might wish to use a constraint instead of making every atom true, under determining inference semantics, adding
constraints can introduce new answer sets [8].

Definition 11. The semantics DI-𝒮ℳ are given by applying DI-𝒳 to Gelfond and Lifschitz’s answer set
semantics (Definition 1) using the the DI-structure ⟨𝒮ℳ, ⟨ℐ,⊆⟩⟩.

We return to Shen and Eiter’s example [8] (Example 1)

Example 1. Define 𝒫 to be the following DLP

𝑎← 𝑎, 𝑏← 𝑏← 𝑛𝑜𝑡 𝑏

The program has no answer set under Gelfond and Lifschitz’s answer set semantics [15]. We have

𝑛𝑜𝑟𝑚𝑎𝑙(𝒫) := {𝒫𝑎,𝒫𝑏}, where
𝒫 ′ := {𝑎←, 𝑏← 𝑛𝑜𝑡 𝑏} 𝒫𝑎 := 𝒫 ′ ∪ {𝑎←} 𝒫𝑏 := 𝒫 ′ ∪ {𝑏←}

The program 𝒫𝑎 has no 𝒮ℳ-answer sets, whereas 𝒫𝑏 has the 𝒮ℳ-answer set {𝑎, 𝑏}. Thus, under DI-𝒮ℳ,
this program has one DI-𝒮ℳ answer set {𝑎, 𝑏}.

3. Capturing DI-Semantics

We are now ready to capture determining inference semantics with approximator sets. First, we capture
the semantics defined by Shen and Eiter, that is, the two-valued determining inference semantics.
We show that given any two-valued answer set semantics 𝒳 , we can capture the two-valued DI-𝒳
semantics using approximator sets.

First, we introduce approximator sets [7] to use AFT in a nondeterministic setting.

Definition 12. An approximator set is a finite2 set of approximators.

To capture the DI semantics in the two-valued case, we can simply isolate the truth-minimal stable
fixpoints of approximators in an approximator set. Recall that we use fix 𝑆(ℎ) to denote stable fixpoints
of the approximator ℎ.

Definition 13. The exact DI-𝒳 stable fixpoints of an approximator set 𝐻 are contained in the set

𝑚𝑖𝑛⪯2
𝑡
(
⋃︁
{(𝑥, 𝑥) ∈ fix(𝑆(ℎ)) | ℎ ∈ 𝐻})

It is immediate that every exact DI-𝒳 stable fixpoints is ⪯2
𝑡 -minimal.

We now show how the above use of approximator sets can capture the DI-𝒳 semantics for an answer
set semantics 𝒳 . Given a semantics 𝒳 for normal programs and a DLP 𝒫 , an exact corresponding
approximator set is a set 𝐻 of cardinality |𝑛𝑜𝑟𝑚𝑎𝑙(𝒫)| s.t. for each 𝒫 ′ ∈ 𝑛𝑜𝑟𝑚𝑎𝑙(𝒫), there is an
approximator in 𝐻 whose exact stable fixpoints correspond to the 𝒳 -answer sets of 𝒫 ′.

Theorem 1. Given an answer set semantics 𝒳 , a DLP 𝒫 , and an exact corresponding approximator set 𝐻 ,
we have that (𝑇, 𝑇) is an exact DI-𝒳 stable fixpoint of 𝐻 (Definition 13) iff it is an DI-𝒳 answer set of 𝒫
(Definition 10) under a two-valued DI-structure ⟨𝒳 , ⟨ℐ,⪯⟩⟩.

Proof. (⇒) By definition, there is no approximator ℎ𝒫 ′ ∈ 𝐻 s.t. (𝑇 ′, 𝑇 ′) ∈ fix 𝑆(ℎ𝒫 ′) and 𝑇 ′ ⊂ 𝑇 .
Thus, there is no 𝒫 ′ ∈ 𝑛𝑜𝑟𝑚𝑎𝑙(𝒫) with such an answer set 𝑇 ′. (⇐) Similarly, with no 𝒫 ′ ∈ 𝑛𝑜𝑟𝑚𝑎𝑙(𝒫)
with an answer set 𝑇 ′ ⊂ 𝑇 , there is no ℎ ∈ 𝐻 with the exact stable fixpoint (𝑇 ′, 𝑇 ′).

Intuitively, if a two-valued non-disjunctive semantics 𝒳 has an approximator, then we can immedi-
ately derive a two-valued determining inference semantics to handle the disjunctive case.

For example, to capture determining inference semantics for Gelfond and Lifschitz’s answer set
semantics using stable revision, we adopt the approximator set defined for a set of normal programs by
Killen et al. [7].
2We restrict ourselves to finite sets here as infinite sets introduce additional complications that are not relevant to disjunctive
logic programs [7].

Definition 14. Given a DLP 𝒫 ,

Γ𝒫(𝑇, 𝑃) := {ℎ | ℎ𝑑(𝑟) = {ℎ}, 𝑟 ∈ 𝒫, 𝑏𝑜𝑑𝑦+(𝑟) ⊆ 𝑇, 𝑏𝑜𝑑𝑦−(𝑟) ∩ 𝑃 = ∅}
ℎ𝒫(𝑇, 𝑃) := (Γ𝒫(𝑇, 𝑃),Γ𝒫(𝑃, 𝑇)) 𝐻(𝒫) := {ℎ𝒫 ′ | 𝒫 ′ ∈ 𝑛𝑜𝑟𝑚𝑎𝑙(𝒫)}

𝐻(𝒫) is an approximator defined with the approximators that capture the 𝒮ℳ semantics of the
programs in 𝑛𝑜𝑟𝑚𝑎𝑙(𝒫). The following comes immediately from Theorem 1 and because 𝐻(𝒫) is a
corresponding approximator set for 𝒮ℳ semantics.

Theorem 2. Let 𝐼 be an interpretation of a DLP 𝒫 . It is a DI-𝒮ℳ of 𝒫 if and only if (𝐼, 𝐼) is an exact
DI-𝒮ℳ stable fixpoint of 𝐻(𝒫).

We have established that we can use AFT to capture the Shen and Eiter’s [8] DI-𝒮ℳ semantics.
AFT distinguishes two types of fixpoints that always exist, exhibit special properties, and that can be

used to characterize new or existing semantics.

Definition 15. Given an approximator 𝑜, (lfp⪯2
𝑝
𝑜) is the Kripke-Kleene fixpoint of 𝑜 and (lfp⪯2

𝑝
𝑆(𝑜))

is the well-founded fixpoint of 𝑜.

Several properties of the above can easily be shown due to the algebraic nature of fixpoints. Namely,
that the Kripke-Kleene fixpoint is less than any other fixpoint, the well-founded fixpoint is less than
any other stable fixpoint, and the Kripke-Kleene fixpoint is less than the well-founded fixpoint.

We now lift Kripke-Kleene and well-founded fixpoints to approximator sets.

Definition 16. For an approximator set 𝐻 , a

• local Kripke-Kleene fixpoint of 𝐻 is a Kripke-Kleene fixpoint of some approximator from 𝐻 , and a
• local well-founded fixpoint of 𝐻 is a well-founded fixpoint of some approximator from 𝐻 .

Definition 17. For an approximator set 𝐻 , its global Kripke-Kleene (resp. global well-founded) fixpoints
are ⪯2

𝑡 -minimal local Kripke Kleene (resp. well-founded) fixpoints of 𝐻 .

The following comes immediately due to the finitude of an approximator set and the complete lattice
structure of ⪯2

𝑡 [12].

Lemma 1. Every approximator set 𝐻 has at least one global Kripke-Kleene fixpoint and at least one global
well-founded fixpoint.

In a similar vein to Heyninck et al. [4], we define disjunctive states.

Definition 18. The Kripke-Kleene state (resp. well-founded state) of an approximator set is a nonempty
set containing all of its global Kripke-Kleene fixpoints (resp. global well-founded fixpoints).

The existence of these states follows immediately from Lemma 1.

Corollary 1. For an approximator set 𝐻 , its Kripke-Kleene state (resp. well-founded state) is unique and
nonempty.

We briefly instantiate the discussed definitions in the following example.

Example 2. Let ℒ = {⊥,⊤, 𝑎, 𝑏} be the complete lattice where ⊥ ⪯ 𝑎 ⪯ ⊤ and ⊥ ⪯ 𝑏 ⪯ ⊤. Define 𝐻
to be a set of approximators indexed by ℒ ∖ {⊥} such that for 𝛼 ∈ (ℒ ∖ {⊥}) and ℎ𝛼 ∈ 𝐻

ℎ𝛼(𝑥, 𝑦)1 :=
⋁︁
{𝛼, 𝑥}

ℎ𝛼(𝑥, 𝑦)2 := ℎ𝛼(𝑦, 𝑥)1

Clearly, each approximator is ⪯2
𝑝-monotone and symmetric. For each approximator ℎ𝛼 ∈ 𝐻 , we have that

(𝛼,⊤) is the Kripke-Kleene fixpoint and (𝛼, 𝛼) is the well-founded fixpoint. Clearly (𝛼,⊤) ⪯2
𝑝 (𝛼, 𝛼).

These are local Kripke-Kleene (resp. well-founded) fixpoints of 𝐻 . The Kripke-Kleene state of 𝐻 is
{(𝑎,⊤), (𝑏,⊤)} and the well-founded state of 𝐻 is {(𝑎, 𝑎), (𝑏, 𝑏)}. If we were to add ℎ⊥ to 𝐻 , then its
Kripke-Kleene state would be {(⊥,⊤)} and its well-founded state would be {(⊥,⊥)}.

3.1. Three-Valued Semantics

For exact DI-𝒳 stable fixpoints (Definition 13) we only minimize against exact stable fixpoints. However,
our approximators for DI-𝒮ℳ semantics have stable fixpoints that are not exact. These partial stable
fixpoints are meaningful because they approximate exact stable fixpoints (like well-founded models).
Our goal is to combine determining inference semantics with the partial stable model semantics to
obtain a new semantics, DI-𝒫𝒮ℳ. If we minimize 𝒫𝒮ℳ answer sets using the ⪯2

𝑡 ordering, we do
not preserve DI-𝒫𝒮ℳ answer sets. We briefly demonstrate how using ⪯2

𝑡 , that is, the DI-structure
⟨𝒫𝒮ℳ, ⟨ℒ2,⪯2

𝑡 ⟩⟩, is problematic.

Example 3. Let 𝒫 be the program from Example 1.

𝑎← 𝑎, 𝑏← 𝑏← 𝑛𝑜𝑡 𝑏

There is one 𝒫𝒮ℳ answer set ({𝑎}, {𝑎, 𝑏}) under Przymusinski’s semantics [14] (Definition 4). The
interpretation ({𝑎}, {𝑎, 𝑏}) is a 𝒫𝒮ℳ answer set of the disjunctive reduct which selects 𝑎 from the head of
the rule 𝑎, 𝑏←. In Example 1, we established that ({𝑎, 𝑏}, {𝑎, 𝑏}) is a DI-𝒮ℳ answer set of 𝒫 . However,
we have ({𝑎}, {𝑎, 𝑏}) ⪯2

𝑡 ({𝑎, 𝑏}, {𝑎, 𝑏}). Thus, if we were to use⪯2
𝑡 to formulate a three-valued variation

of DI-𝒳 semantics, we would not preserve ({𝑎, 𝑏}, {𝑎, 𝑏}) as a DI-𝒮ℳ answer set as it is not minimal w.r.t.
the ordering supplied in the DI-structure. Note that, as a non-exact pair, ({𝑎}, {𝑎, 𝑏}) does not participate
in truth minimality checking for exact pairs in Definition 13.

We wish to preserve both the DI-𝒮ℳ answer sets and Przymusinski’s 𝒫𝒮ℳ answer sets. One
possible approach would be to remove every instance from the relation ⪯2

𝑡 that compares exact pairs
with non-exact pairs. This technique is employed by Knorr et al. [18] when lifting the semantics
of Hybrid MKNF from the two-valued case to the three-valued case.3 Clearly, using this modified
⪯2

𝑡 ordering would tightly preserve all DI-𝒮ℳ answer sets because the truth minimization of exact
interpretations reduces to ⊆.

However, the approach of modifying ⪯2
𝑡 in this way yields an unnatural semantics. One simply

has to add the rule 𝑦 ← 𝑛𝑜𝑡 𝑦 to a program (where 𝑦 is a fresh atom), ignore 𝑦 in the resulting
interpretations, and the resulting semantics are equivalent having used⪯2

𝑡 in the DI-structure. Later on,
we demonstrate this concretely in Example 4. To address this peculiarity, we introduce a new ordering
for truth-minimization.

Definition 19. (𝑥, 𝑦) ⪯2
𝑞𝑡 (𝑥

′, 𝑦′) ⇐⇒ 𝑥 ⪯ 𝑥′ and 𝑦 ⪯ (𝑦′ ∖ (𝑥′ ∖ 𝑥))

Note that because the underlying ordering is ⊆, the ∖ operation is defined as the set difference.
Intuitively, ⪯2

𝑞𝑡 exhibits a quasi-truth ordering in that it removes certain pairings from the relation
that compare exact pairs with non-exact pairs. Additionally, ⪯2

𝑞𝑡 compares truth values of individual
atoms in a way that resembles ⪯2

𝑡 , with the difference that the values 𝑡 and 𝑢 are incomparable. That
is, for an answer set to be favoured over another, it must make some true or undefined atoms false. In
contrast to ⪯2

𝑡 , in which to shrink an interpretation, it is sufficient to assign some true atoms the value
of undefined.

First, we show that this new ordering is weaker than ⪯2
𝑡 .

Lemma 2. For two consistent interpretations (𝑇, 𝑃) and (𝑇 ′, 𝑃 ′), we have that if (𝑇, 𝑃) ⪯2
𝑞𝑡 (𝑇

′, 𝑃 ′),
then (𝑇, 𝑃) ⪯2

𝑡 (𝑇
′, 𝑃 ′).

Proof. Clearly, (𝑦 ∖ (𝑥 ∖ 𝑥′)) ⪯ 𝑦, thus 𝑦′ ⪯ 𝑦.

Now, we demonstrate how this ordering minimizes truth.

Lemma 3. Given two consistent interpretations (𝑇, 𝑃) and (𝑇 ′, 𝑃 ′) and an atom 𝑎 s.t. (𝑇, 𝑃)(𝑎) ̸= 𝑡
and (𝑇 ′, 𝑃 ′)(𝑎) = 𝑡, if (𝑇, 𝑃) ≺2

𝑞𝑡 (𝑇
′, 𝑃 ′) then (𝑇, 𝑃)(𝑎) = 𝑓 .

3In Knorr et al.’s Definition 9 [18], when an interpretation pair (𝑀,𝑁) is compared against a pair (𝑀 ′, 𝑁 ′), they require
𝑀 ′ = 𝑁 ′ if 𝑀 = 𝑁 .

Proof. By contrapositive, suppose (𝑇, 𝑃)(𝑎) = 𝑢. We have 𝑎 ̸∈ 𝑇 and 𝑎 ∈ 𝑃 . Because (𝑇 ′, 𝑃 ′)(𝑎) = 𝑡,
we have 𝑎 ∈ 𝑇 ′, thus 𝑎 ∈ (𝑇 ′ ∖ 𝑇). It follows that 𝑎 ̸∈ 𝑃 ′ ∖ (𝑇 ′ ∖ 𝑇), and then we can conclude
¬(𝑃 ⪯ (𝑃 ′ ∖ (𝑇 ′ ∖ 𝑇))).

Finally, we show that when minimizing truth, partial consistent interpretations will not be favoured
over exact interpretations.

Lemma 4. With (𝑇, 𝑃) ⪯2
𝑞𝑡 (𝑇

′, 𝑇 ′) s.t. 𝑇 ⊆ 𝑃 , we have 𝑇 = 𝑃 .

Proof. Suppose 𝑇 ⊂ 𝑃 and let 𝑎 ∈ (𝑃 ∖ 𝑇). We have (𝑇, 𝑃)(𝑎) = 𝑢. From Lemma 2, it follows that
𝑃 ⊆ 𝑇 ′, thus (𝑇 ′, 𝑇 ′)(𝑎) = 𝑡. We can apply Lemma 3 to conclude (𝑇, 𝑃)(𝑎) = 𝑓 , a contradiction.

We now lift 𝒫𝒮ℳ answer sets [11] from normal logic programs to DLPs using DI-𝒳 semantics as
defined in Definition 10.

Definition 20. The DI-𝒫𝒮ℳ semantics are given by using the determining inference structure
⟨𝒫𝒮ℳ, ⟨ℒ2,⪯2

𝑞𝑡⟩⟩ with the DI-𝒳 semantics (Definition 10).

The resulting semantics DI-𝒫𝒮ℳ is equivalent to 𝒫𝒮ℳ for normal programs [8], but differs for
disjunctive programs. The following example demonstrates the new semantics.

Example 4. Let 𝒫 be the program given in Example 1. DI-𝒫𝒮ℳ is faithful to both DI-𝒮ℳ (Definition 11)
and 𝒫𝒮ℳ semantics (Definition 4). That is, both ({𝑎, 𝑏}, {𝑎, 𝑏}) and ({𝑎}, {𝑎, 𝑏}) are DI-𝒫𝒮ℳ answer
sets. No other interpretation is a DI-𝒫𝒮ℳ answer set. If we add the rule 𝑦 ← 𝑛𝑜𝑡 𝑦, then ({𝑎, 𝑏}, {𝑎, 𝑏, 𝑦})
and ({𝑎}, {𝑎, 𝑏, 𝑦}) are the DI-𝒫𝒮ℳ answer sets. The interpretation ({𝑎, 𝑏}, {𝑎, 𝑏, 𝑦}) is neither a DI-𝒮ℳ
nor a 𝒫𝒮ℳ answer set.

The example above shows that some non-exact DI-𝒫𝒮ℳs are not 𝒫𝒮ℳ answer sets. This is by
choice as combining 𝒫𝒮ℳ answer sets and DI-𝒮ℳ under a single semantics will result in a semantics
where not every DI-answer set is ⪯2

𝑡 minimal. The following lemma provides some further insight into
the relation between DI-𝒫𝒮ℳ answer sets and ⪯2

𝑡 .

Lemma 5. If (𝑇, 𝑃) is a𝒫𝒮ℳ answer set of some𝒫 ′ ∈ 𝑛𝑜𝑟𝑚𝑎𝑙(𝒫) for a DLP𝒫 , then𝒫 has a DI-𝒫𝒮ℳ
(𝑇 ′, 𝑃 ′) s.t. (𝑇 ′, 𝑃 ′) ⪯2

𝑡 (𝑇, 𝑃).

This shows that, if desired, one can leverage ⟨𝒫𝒮ℳ, ⟨ℒ2,⪯2
𝑡 ⟩⟩ to obtain a DI-𝒳 semantics that is

⪯2
𝑡 minimal at the cost of sacrificing some DI-𝒮ℳ answer sets (Example 4).
We show that in general, DI-𝒫𝒮ℳ is faithful to both the original DI-𝒮ℳ semantics [8] and 𝒫𝒮ℳ

answer sets [14].

Proposition 2. If (𝑇, 𝑃) is a 𝒫𝒮ℳ answer set of 𝒫 , then it is a DI-𝒫𝒮ℳ answer set of 𝒫 .

Proof. By contrapositive, assume (𝑇, 𝑃) is not a DI-𝒫𝒮ℳ of 𝒫 . We have (𝑇 ′, 𝑃 ′) ≺2
𝑞𝑡 (𝑇, 𝑃) s.t.

(𝑇 ′, 𝑃 ′) is a 𝒫𝒮ℳ answer set of a disjunctive reduct 𝒫 ′ of 𝒫 . It follows that (𝑇 ′, 𝑃 ′) ⪯2
𝑡 (𝑇, 𝑃)

(Lemma 2). With 𝑃 ′ ⊆ 𝑃 and as a model of 𝒫 ′, we have that (𝑇 ′, 𝑃 ′) satisfies the reduct of 𝒫 w.r.t.
(𝑇, 𝑃), thus (𝑇, 𝑃) is not a 𝒫𝒮ℳ answer set of 𝒫 .

In general, the converse does not hold, that is, there are some DI-𝒫𝒮ℳ stable fixpoints that are not
𝒫𝒮ℳ answer sets (see Example 4).

Proposition 3. If (𝑇, 𝑇) is a DI-𝒮ℳ answer set of 𝒫 , then it is a DI-𝒫𝒮ℳ answer set of 𝒫 .

Proof. For the sake of contradiction, suppose (𝑇, 𝑇) is not a DI-𝒫𝒮ℳ. There exists (𝑇 ′, 𝑃 ′) ≺2
𝑞𝑡 (𝑇, 𝑇)

s.t. (𝑇 ′, 𝑃 ′) is 𝒫𝒮ℳ answer sets of a disjunctive reduct of the DLP 𝒫 . By Lemma 4, 𝑇 ′ = 𝑃 ′, which
contradicts the assumption that (𝑇, 𝑇) is a DI-𝒮ℳ.

Naturally, it follows that our semantics capture the 𝒮ℳ answer sets.
Unlike 𝒫𝒮ℳ answer sets, a DI-𝒫𝒮ℳs is guaranteed to exist.

Proposition 4. Every DLP has a DI-𝒫𝒮ℳ answer set.

Proof. Let 𝒫 ′ be some disjunctive reduct of the DLP 𝒫 . 𝒫 ′ has a 𝒫𝒮ℳ answer set, then by Lemma 5,
𝒫 has a DI-𝒫𝒮ℳ.

Using fix𝑓 to denote the set of fixpoints of a function 𝑓 , we now define a method of filtering stable
fixpoints that is similar to Definition 13 but which minimizes across all stable fixpoints instead of just
exact stable fixpoints.

Definition 21. Given an approximator set 𝐻 and a DI-structure ⟨𝒳 , ⟨ℒ2,⪯⟩⟩ the DI-𝒳 stable fixpoints
of 𝐻 are contained in the set 𝑚𝑖𝑛⪯(

⋃︀
{fix(𝑆(ℎ)) | ℎ ∈ 𝐻}).

We instantiate the above for 𝒫𝒮ℳ answer sets.

Definition 22. Given an approximator set 𝐻 , the DI-𝒫𝒮ℳ stable fixpoints of 𝐻 are given as the DI-𝒳
stable fixpoints with ⟨𝒫𝒮ℳ, ⟨ℒ2,⪯2

𝑞𝑡⟩⟩.

Echoing Theorem 1, but this time for the three-valued case, we show that if a normal answer set
semantics 𝒳 has an approximator, the DI-𝒳 semantics can be characterized using an approximator set.
A corresponding approximator set for 𝒳 and a DLP 𝒫 is a set 𝐻 of cardinality |𝑛𝑜𝑟𝑚𝑎𝑙(𝒫)| s.t. for each
𝒫 ′ ∈ 𝑛𝑜𝑟𝑚𝑎𝑙(𝒫), there is an approximator in 𝐻 whose stable fixpoints correspond to the 𝒳 -answer
sets of 𝒫 ′.4

Theorem 3. Given an answer set semantics 𝒳 , a DLP 𝒫 , and an exact corresponding approximator set
𝐻 , we have that (𝑇, 𝑇) is a DI-𝒳 stable fixpoint of 𝐻 (Definition 21) iff it is a DI-𝒳 answer set of 𝒫
(Definition 10).

Proof. Follows proof of Theorem 1.

Given that 𝐻(𝒫) is a corresponding approximator set for 𝒫𝒮ℳ, we get the following result from
Theorem 3.

Theorem 4. Let (𝑇, 𝑃) be an interpretation of a DLP 𝒫 . It is a DI-𝒫𝒮ℳ answer set of 𝒫 if and only if
(𝑇, 𝑃) is a DI-𝒫𝒮ℳ stable fixpoint of 𝐻(𝒫).

Example 5. Define 𝒫 as the program from Example 1 with the added rule 𝑢 ← 𝑛𝑜𝑡 𝑢. This program
has no DI-𝒮ℳ answer sets and two DI-𝒫𝒮ℳ answer sets, namely, the 𝒫𝒮ℳ answer sets ({𝑎}, {𝑎, 𝑏, 𝑢})
and ({𝑎, 𝑏}, {𝑎, 𝑏, 𝑢}).

Let 𝒫𝑎 and 𝒫𝑏 be the programs from 𝑛𝑜𝑟𝑚𝑎𝑙(𝒫) that select 𝑎 and 𝑏 respectively from the head of 𝑎, 𝑏←
and let ℎ𝒫𝑎 and ℎ𝒫𝑏

be their approximators from 𝐻(𝒫).
We have that ({𝑎, 𝑏}, {𝑎, 𝑏, 𝑢}) is a stable fixpoint of 𝑆(ℎ𝒫𝑏

) and not a fixpoint of 𝑆(ℎ𝒫𝑎) with
𝑆(ℎ𝒫𝑎)(({𝑎, 𝑏}, {𝑎, 𝑏, 𝑢})) = ({𝑎}, {𝑎, 𝑢}).

Killen et al. [19] define stable fixpoints of approximator sets and show that it can capture 𝒫𝒮ℳ
answer sets of DLPs. We introduce this definition to compare.

Definition 23. Given an approximator set𝐻 , a disjunctive stable fixpoint of𝐻 is a pair (𝑥, 𝑦) ∈ fix(𝑆(ℎ))
for some ℎ ∈ 𝐻 s.t. (𝑥, 𝑦) ∈𝑚𝑖𝑛⪯2

𝑡
{𝑆(ℎ)(𝑥, 𝑦) | ℎ ∈ 𝐻}.

Comparing DI-stable fixpoint to disjunctive stable fixpoints, we can generalize Proposition 2 to the
level of algebra.

Proposition 5. Given a DI-structure ⟨𝒳 , ⟨ℒ2 ⪯2
𝑞𝑡⟩⟩, A disjunctive stable fixpoint (Definition 23) of an

approximator set 𝐻 is a DI-𝒳 stable fixpoint of 𝐻 (Definition 21).

That DI-𝒫𝒮ℳ answer sets subsume 𝒫𝒮ℳ answer sets (Proposition 2) follows from the above.

4Unlike Theorem 1, the corresponding approximator set is not limited to exact pairs

Corollary 2. A DI-𝒫𝒮ℳ stable fixpoint is a disjunctive stable fixpoint (Definition 23).

We can also show that the DI-𝒫𝒮ℳ stable fixpoints capture the exact DI-𝒮ℳ stable fixpoints.

Proposition 6. An exact DI-𝒮ℳ stable fixpoint (Definition 13) is a DI-𝒫𝒮ℳ stable fixpoint (Defini-
tion 20).

We can discuss the local/global Kripke-Kleene/well-founded fixpoints and states. Now that we have
captured DI-𝒫𝒮ℳ semantics via a set of approximators, we automatically obtain the distinguished
fixpoints and states (Definitions 16, 17, and 18). We briefly instantiate these for a DI-𝒫𝒮ℳ semantics.

Example 6. Define 𝒫 to be the following program

𝑎, 𝑏← 𝑎, 𝑏, 𝑐← 𝑐← 𝑛𝑜𝑡 𝑐

There are six programs in 𝑛𝑜𝑟𝑚𝑎𝑙(𝒫). We denote the program from 𝑛𝑜𝑟𝑚𝑎𝑙(𝒫) that selects
the atom 𝛼 from ℎ𝑑(𝑎, 𝑏 ←) and 𝛽 from ℎ𝑑(𝑎, 𝑏, 𝑐 ←) as 𝒫𝛼,𝛽 . Thus, 𝑛𝑜𝑟𝑚𝑎𝑙(𝒫) =
{𝒫𝑎,𝑎,𝒫𝑎,𝑏,𝒫𝑎,𝑐,𝒫𝑏,𝑎,𝒫𝑏,𝑏,𝒫𝑏,𝑐}. The Kripke-Kleene fixpoints of each program𝒫𝛼,𝛽 , i.e., the local Kripke-
Kleene fixpoints of 𝐻(𝒫), take the form ({𝛼, 𝛽}, {𝛼, 𝛽, 𝑐}). For example, lfp ℎ𝒫𝑎,𝑐 = ({𝑎, 𝑐}, {𝑎, 𝑐}).
In this case, lfp ℎ𝒫𝑎,𝑐 is not a global Kripke-Kleene fixpoint because lfp ℎ𝒫𝑎,𝑎 = ({𝑎}, {𝑎, 𝑐}) ⪯2

𝑡

({𝑎, 𝑐}, {𝑎, 𝑐}). The interpretation ({𝑎}, {𝑎, 𝑐}) is a global Kripke-Kleene fixpoint and thus it is a part of
the Kripke-Kleene state.

4. Discussion

We have demonstrated the flexibility of Killen et al.’s [7] approach to disjunctive AFT by capturing Shen
and Eiter’s [8] determining inference semantics. Because AFT characterizes three-valued semantics,
we have lifted determining inference semantics to the three-valued case. We have shown that for a
three-valued semantics to be faithful to both the two-valued determining inference semantics and
Przymusinski’s three-valued semantics for DLPs, we must sacrifice ⪯2

𝑡 -minimality. It is not difficult to
see that the semantics could be tweaked by selecting a different ordering.

The connections between DI-𝒫𝒮ℳ and 𝒫𝒮ℳ rely on the syntactic restriction that ℎ𝑑(𝑟) = ℎ𝑑(𝑟′)
implies 𝑟 ̸= 𝑟′ for disjunctive rules. Shen and Eiter use a peculiar method of generating normal
programs from a disjunctive logic program. Interestingly, their method of choosing normal programs
has little impact on the semantics of disjunctive 𝒫𝒮ℳ answer sets. In general, the method of choosing
normal programs greatly impacts the semantics in DI-𝒳 semantics. In future work, we wish to further
generalize determining inference semantics such that this head selection function is parameterized and
study this wider family of semantics through the lens of AFT.

Heyninck et al. lift AFT to a nondeterministic setting [4]. Due to its compatibility with approximator
sets [7], it is likely this theory could also be used to define DI-𝒳 stable fixpoints. However, it is unclear
how to define stable revision.

Acknowledgements

Spencer Killen was partially supported by Alberta Innovates and Alberta Advanced Education.

Declaration on Generative AI

The authors have not employed any Generative AI tools.

References

[1] M. Denecker, V. Marek, M. Truszczyński, Approximations, stable operators, well-founded fixpoints
and applications in nonmonotonic reasoning, in: Logic-Based Artificial Intelligence, Springer,
2000, pp. 127–144. doi:10.1007/978-1-4615-1567-8_6.

[2] C. Antić, T. Eiter, M. Fink, Hex semantics via approximation fixpoint theory, in: Proceedings
of the 12th International Conference on Logic Programming and Nonmonotonic Reasoning -
Volume 8148, LPNMR 2013, Springer-Verlag, Berlin, Heidelberg, 2013, p. 102–115. URL: https:
//doi.org/10.1007/978-3-642-40564-8_11. doi:10.1007/978-3-642-40564-8_11.

[3] N. Pelov, M. Truszczynski, Semantics of disjunctive programs with monotone aggregates-an
operator-based approach, in: Proceedings of the 10th International Workshop on Non-Monotonic
Reasoning, 2004, pp. 327–334.

[4] J. Heyninck, O. Arieli, B. Bogaerts, Non-deterministic approximation fixpoint theory and its
application in disjunctive logic programming, Artificial Intelligence 331 (2024) 104110.

[5] J. Heyninck, B. Bogaerts, Non-deterministic approximation operators: Ultimate operators, semi-
equilibrium semantics, and aggregates, Theory Pract. Log. Program. 23 (2023) 632–647. URL:
https://doi.org/10.1017/s1471068423000236. doi:10.1017/S1471068423000236.

[6] J. Heyninck, Operator-based semantics for choice programs: Is choosing losing?, in: P. Marquis,
M. Ortiz, M. Pagnucco (Eds.), Proceedings of the 21st International Conference on Principles of
Knowledge Representation and Reasoning, KR 2024, Hanoi, Vietnam. November 2-8, 2024, 2024.
URL: https://doi.org/10.24963/kr.2024/42. doi:10.24963/KR.2024/42.

[7] S. Killen, J.-H. You, J. Heyninck, An alternative theory of stable revision for nondeterministic
approximation fixpoint theory and the relationships, in: Thirty-Ninth AAAI Conference on
Artificial Intelligence, AAAI 2025, AAAI Press, 2025.

[8] Y. Shen, T. Eiter, Determining inference semantics for disjunctive logic programs, Artif. Intell. 277
(2019). URL: https://doi.org/10.1016/j.artint.2019.103165. doi:10.1016/J.ARTINT.2019.103165.

[9] M. Gelfond, V. Lifschitz, The stable model semantics for logic programming, in: R. Kowalski, Bowen,
Kenneth (Eds.), Proceedings of International Logic Programming Conference and Symposium,
MIT Press, 1988, pp. 1070–1080. URL: http://www.cs.utexas.edu/users/ai-lab?gel88.

[10] T. Eiter, G. Gottlob, On the computational cost of disjunctive logic programming: Propositional
case, Ann. Math. Artif. Intell. 15 (1995) 289–323. doi:10.1007/BF01536399.

[11] T. C. Przymusinski, The well-founded semantics coincides with the three-valued stable semantics,
Fundam. Inform. 13 (1990) 445–463.

[12] N. D. Belnap, A Useful Four-Valued Logic, Springer Netherlands, Dordrecht, 1977, pp. 5–37.
doi:10.1007/978-94-010-1161-7_2.

[13] J. Lee, V. Lifschitz, Loop formulas for disjunctive logic programs, in: C. Palamidessi (Ed.), Logic
Programming, 19th International Conference, ICLP 2003, Mumbai, India, December 9-13, 2003,
Proceedings, volume 2916 of Lecture Notes in Computer Science, Springer, 2003, pp. 451–465.
doi:10.1007/978-3-540-24599-5_31.

[14] T. C. Przymusinski, Stable semantics for disjunctive programs, New Gener. Comput. 9 (1991)
401–424. doi:10.1007/BF03037171.

[15] M. Gelfond, V. Lifschitz, Classical negation in logic programs and disjunctive databases, New
Gener. Comput. 9 (1991) 365–386. doi:10.1007/BF03037169.

[16] S. Roman, Lattices and Ordered Sets, Springer New York, 2008. doi:10.1007/
978-0-387-78901-9.

[17] A. Tarski, A lattice-theoretical fixpoint theorem and its applications., Pacific Journal of Mathematics
5 (1955) 285 – 309. doi:10.2140/pjm.1955.5.285.

[18] M. Knorr, J. J. Alferes, P. Hitzler, Local closed world reasoning with description logics under the well-
founded semantics, Artif. Intell. 175 (2011) 1528–1554. doi:10.1016/j.artint.2011.01.007.

[19] S. Killen, J. You, A fixpoint characterization of three-valued disjunctive hybrid MKNF knowledge
bases, in: Y. Lierler, J. F. Morales, C. Dodaro, V. Dahl, M. Gebser, T. Tekle (Eds.), Proceedings 38th
International Conference on Logic Programming, ICLP 2022 Technical Communications / Doctoral

http://dx.doi.org/10.1007/978-1-4615-1567-8_6
https://doi.org/10.1007/978-3-642-40564-8_11
https://doi.org/10.1007/978-3-642-40564-8_11
http://dx.doi.org/10.1007/978-3-642-40564-8_11
https://doi.org/10.1017/s1471068423000236
http://dx.doi.org/10.1017/S1471068423000236
https://doi.org/10.24963/kr.2024/42
http://dx.doi.org/10.24963/KR.2024/42
https://doi.org/10.1016/j.artint.2019.103165
http://dx.doi.org/10.1016/J.ARTINT.2019.103165
http://www.cs.utexas.edu/users/ai-lab?gel88
http://dx.doi.org/10.1007/BF01536399
http://dx.doi.org/10.1007/978-94-010-1161-7_2
http://dx.doi.org/10.1007/978-3-540-24599-5_31
http://dx.doi.org/10.1007/BF03037171
http://dx.doi.org/10.1007/BF03037169
http://dx.doi.org/10.1007/978-0-387-78901-9
http://dx.doi.org/10.1007/978-0-387-78901-9
http://dx.doi.org/10.2140/pjm.1955.5.285
http://dx.doi.org/10.1016/j.artint.2011.01.007

Consortium, Haifa, Israel, 31st July 2022 - 6th August 2022, volume 364 of EPTCS, 2022, pp. 51–64.
doi:10.4204/EPTCS.364.6.

http://dx.doi.org/10.4204/EPTCS.364.6

	1 Introduction
	2 Preliminaries
	2.1 Disjunctive Logic Programs
	2.2 Approximation Fixpoint Theory (AFT)
	2.3 Determining Inference Semantics

	3 Capturing DI-Semantics
	3.1 Three-Valued Semantics

	4 Discussion

