
Eliminating Unintended Stable Fixpoints in
Approximation Fixpoint Theory
Spencer Killen1,*, Jia-Huai You1

1University of Alberta, 11011 - 88 Avenue, Edmonton, AB, Canada, T6G 2G5

Abstract
A wide variety of nonmonotonic semantics can be expressed as approximators defined under AFT (Approximation
Fixpoint Theory). Using traditional AFT theory, it is difficult to derive falsity from falsity. However, this type
of reasoning is essential for systems that incorporate classical negation into nonmonotonic reasoning. In this
work, we introduce a methodology that can better leverage falsity in stable revision to capture a more precise
semantics. We show that our framework fits within the theoretical confines of AFT and can be utilized without
modifying the existing theory.

Keywords
approximation fixpoint theory, answer set programming, bilattices

1. Introduction

At the heart of approximation fixpoint theory (AFT) [1], a stable operator enhances an approximator
with the capacity to rule out cyclically justified inferences. Mechanically, this is achieved by eliminating
undesired fixpoints from the approximator. The remaining fixpoints, called stable fixpoints, characterize
a semantics. Semantics that have been treated by AFT include the stable, partial stable, and well-founded
semantics of many nonmonotonic reasoning systems (e.g. [2, 3]). Sometimes, the intended semantics
is only a subset of the captured stable fixpoints, thus, an AFT characterization of a semantics can be
improved by removing additional unintended stable fixpoints. In this work, we enhance stable revision
and provide a general framework that fits within the existing theory of AFT.

Currently, stable revision is limited in the following way: The approximator embedded in the stable
operator does not have access to the atoms that were false when the stable operator was invoked. This
information is required by semantics that infer atoms to be false based on the falsity of other atoms. As
a result, stable revision applied to such semantics will have additional unintended stable fixpoints. We
concretely demonstrate this point in the following logic program example.

Example 1. For logic programming, stable revision is an iterative process that first fixes negation, then
assigns all atoms to be false, and then computes the minimal set of true atoms. Here, our goal is to capture
a program’s answer sets as stable fixpoints. Let 𝒫 be the program containing the following rules.

← 𝑎 𝑏← 𝑛𝑜𝑡 𝑎 𝑎← 𝑛𝑜𝑡 𝑏

Informally, an answer set is a minimal set of atoms such that if a rule’s body (the right side) is satisfied,
then the rule’s head (the left side) is contained in the answer set. Since its head is empty, the constraint← 𝑎
requires that no answer set contains 𝑎, and the remaining rules work to set up a “choice” between assigning
𝑎 or 𝑏 to be true. This program has one answer set ({𝑏}, {𝑏}), which assigns 𝑏 to be true and 𝑎 to be false.

A forward-reasoning approximator, such as the one given by Denecker et al., will ignore the constraint
and propagate that both 𝑎 and 𝑏 are possibly true (but not necessarily true)1. That is, the interpretation

23rd International Workshop on Nonmonotonic Reasoning, November 11-13, 2025, Melbourne, Australia
*Corresponding author.
$ sjkillen@ualberta.ca (S. Killen); jyou@cs.ualberta.ca (J. You)
� https://sjkillen.ca (S. Killen)
� 0000-0003-3930-5525 (S. Killen); 0000-0001-9372-4371 (J. You)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

1Note that Denecker et al.’s approximator was not designed with constraints in mind.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:sjkillen@ualberta.ca
mailto:jyou@cs.ualberta.ca
https://sjkillen.ca
https://orcid.org/0000-0003-3930-5525
https://orcid.org/0000-0001-9372-4371
https://creativecommons.org/licenses/by/4.0/deed.en


(∅, {𝑎, 𝑏}) that assigns both 𝑎 and 𝑏 to be unknown, is a stable fixpoint. This overly cautious interpretation
approximates both ({𝑏}, {𝑏}) and ({𝑎}, {𝑎}). Because ({𝑎}, {𝑎}) is not an answer set, the approximator
need not consider it when answer sets are the intended semantics. If we wish to remove the unintended
stable fixpoint (∅, {𝑎, 𝑏}), our approximator must leverage backward-reasoning to conclude that 𝑎 is false.

Deceptively so, it appears like we can accomplish this with a simple modification: our approximator
must not derive atoms that would satisfy the body of a constraint. However, this approach quickly falls
apart when we add some layers of indirection. For example, let us change the constraint to use a new atom
𝑐 and add an additional rule 𝑐← 𝑎.

← 𝑐 𝑏← 𝑛𝑜𝑡 𝑎 𝑐← 𝑎 𝑎← 𝑛𝑜𝑡 𝑏

This program is similar to 𝒫 in that ({𝑏}, {𝑏}) is the only answer set, however, multiple steps of reasoning
are required to conclude that 𝑎 must be false. A reasoning step must conclude that 𝑐 is false (from← 𝑐)
for a subsequent reasoning step to conclude that 𝑎 is false (from 𝑐 ← 𝑎). Constructing the appropriate
approximator is challenging because there is no mechanism to access which atoms were false at the
invocation of stable revision. If we invoke the stable operator with an interpretation (𝑇, 𝑃 ), the complement
of 𝑃 contains the atoms that are false. Yet, the computation of lfp 𝑜(𝑇, ·)2, which determines the atoms
that are false, has no access to this information.

When stable revision is used for iterative construction, each iteration more atoms with an unknown
truth value are assigned a value of either true or false. However, in each iteration, the underlying
approximator “forgets” which atoms it assigned false. Thus, from the approximator’s perspective, any
atom may become true. In actuality, atoms that are assigned false will remain false on subsequent
iterations due to monotonicity.

The primary contribution of this work is a formulation of stable revision that can incorporate false
information in its reasoning to conclude that more atoms are false. Surprisingly, our extension does not
require a new theory. We simply modify the underlying bilattice on which the approximators operate.
As a result, the theory can be easily adopted to extend existing approximators. Our framework can
help eliminate unintended stable fixpoints for a semantics if removing these fixpoints requires the
propagation of false information.

We are motivated by our approximator defined for hybrid MKNF knowledge bases [4]. In this work,
we formalize a general theory for the approximator defined there. For simplicity, and as a testament
to the generality of our theory, we limit our focus to non-disjunctive logic programs with constraints.
They serve well as a proxy for hybrid systems with falsity propagation. A hybrid MKNF knowledge
base [5] pairs an ontology𝒪 with a logic program 𝒫 . The ontology is a decidable fragment of first-order
logic, thus 𝒪 = ¬𝑎 is semantically similar to a rule← 𝑎 in that it rules out all models with 𝑎 to be true.
With the additional reasoning power, our approximator expanded the class of known knowledge bases
with polynomial-computable well-founded models [4].

We organize the paper as follows. Section 2 details lattice theory and the notation adopted throughout
this work, Section 2.1 covers approximators and stable revision as used in this work, and Section 2.2
introduces logic programming. In Section 3, we begin by providing an illustrative example and a sketch
of a solution. The next subsection expands upon these ideas by formalizing recurrent approximators,
approximators defined over a tetralattice, a bilattice formed from a bilattice. These operators operate on
4-tuples (pairs of pairs) and provide a theoretical backing on AFT with an extra parameter of pairs. In
Section 4 we offer an additional use for recurrent approximators by describing how they can be used to
make approximators increasing/decreasing. Finally, we wrap up and discuss in Section 5.

2. Preliminaries

We summarize common theory of lattices [6] to establish the notation used throughout this work. A poset
⟨𝑆,⪯𝛼⟩ is a relation ⪯𝛼 over a set of elements 𝑆 that satisfies: reflexivity (∀𝑥 ∈ 𝑆, 𝑥 ⪯𝛼 𝑥), transitivity
(∀𝑥, 𝑦, 𝑧 ∈ 𝑆, having both 𝑥 ⪯𝛼 𝑦 and 𝑦 ⪯𝛼 𝑧 implies 𝑥 ⪯𝛼 𝑧), and antisymmetry (∀𝑥, 𝑦 ∈ 𝑆, if 𝑥 ⪯𝛼 𝑦



and 𝑦 ⪯𝛼 𝑥 then 𝑥 = 𝑦). We refer to a poset ⟨𝑆,⪯𝛼⟩ simply by 𝑆 when ⪯𝛼 is clear from context.
Given a poset 𝑆, we call an element 𝑥 ∈ 𝑆 an upper bound (resp. a lower bound) of a subset 𝑄 ⊆ 𝑆
if ∀𝑦 ∈ 𝑄, 𝑦 ⪯ 𝑥 (resp. ∀𝑦 ∈ 𝑄, 𝑥 ⪯ 𝑦). An upper bound of 𝑄 w.r.t. a poset ⟨𝑆,⪯𝛼⟩ is a least upper
bound, denoted 𝑙𝑢𝑏(𝑄) (resp. greatest lower bound, denoted as 𝑔𝑙𝑏(𝑄)) if it is a lower bound of the set
of all upper bounds of 𝑄 (resp. an upper bound of the set of all lower bounds of 𝑄). A poset ⟨ℒ,⪯𝛼⟩
is a complete lattice if every subset 𝑆 ⊆ ℒ has a least upper bound and a greatest lower bound. For a
complete lattice ⟨ℒ,⪯𝛼⟩ we denote 𝑔𝑙𝑏(ℒ) as ⊥⪯𝛼 and 𝑙𝑢𝑏(ℒ) as ⊤⪯𝛼 when ℒ is clear from context
or simply as ⊥ and ⊤ when the relation is unambiguous. An operator over a complete lattice ⟨ℒ,⪯𝛼⟩
is a function 𝑜(𝑥) : ℒ → ℒ. The operator is ⪯𝛼-monotone (resp. ⪯𝛼-antitone) if ∀𝑥, 𝑦 ∈ ℒ whenever
𝑥 ⪯𝛼 𝑦 we also have 𝑜(𝑥) ⪯𝛼 𝑜(𝑦) (resp. 𝑜(𝑦) ⪯𝛼 𝑜(𝑥)). An operator is ⪯𝛼-monotone increasing (resp.
decreasing) if ∀𝑥, 𝑥 ⪯𝛼 𝑜(𝑥) (resp. ∀𝑥, 𝑜(𝑥) ⪯𝛼 𝑥). An element of a complete lattice 𝑥 ∈ ℒ is a fixpoint
of an operator 𝑜 if 𝑜(𝑥) = 𝑥. The set of all fixpoints of a ⪯ℒ-monotone operator 𝑜 on a lattice ⟨ℒ,⪯ℒ⟩
forms a complete lattice [7]. We call the greatest lower bound of this lattice the least fixpoint and denote
it as lfp⪯ℒ

𝑜. This element can be constructed by iteratively applying 𝑜 to⊥⪯ℒ . We denote the cartesian
product of two sets 𝑆 and 𝐷 with 𝑆 ×𝐷 or 𝑆2 if 𝑆 = 𝐷. , that is,

𝑆 ×𝐷 := {(𝑠, 𝑑) | 𝑠 ∈ 𝑆, 𝑑 ∈ 𝐷}
𝑆2 := {(𝑠, 𝑎) | 𝑠 ∈ 𝑆, 𝑎 ∈ 𝑆}

Given a lattice ⟨ℒ,⪯ℒ⟩, its induced bilattice [1] consists of the two complete lattices ⟨ℒ2,⪯2
𝑝⟩

and ⟨ℒ2,⪯2
𝑡 ⟩. These are the lattices formed from the two orderings ⪯2

𝑝 and ⪯2
𝑡 such that for each

𝑥, 𝑦, 𝑧, 𝑤 ∈ ℒ

• (𝑥, 𝑦) ⪯2
𝑝 (𝑧, 𝑤) iff 𝑥 ⪯ℒ 𝑧 and 𝑤 ⪯ℒ 𝑦 (the precision-ordering)

• (𝑥, 𝑦) ⪯2
𝑡 (𝑧, 𝑤) iff 𝑥 ⪯ℒ 𝑧 and 𝑦 ⪯ℒ 𝑤 (the truth-ordering)

We denote the powerset of a set 𝑆, as ℘(𝑆). We use subscript notation to denote the projection
of particular components of a tuple, for example, given an operator 𝑜(𝑇, 𝑃 ) : ℒ2 → ℒ2, we have
𝑜(𝑇, 𝑃 ) = (𝑜(𝑇, 𝑃 )1, 𝑜(𝑇, 𝑃 )2) and 𝑜(𝑇, 𝑃 )2,1 = (𝑜(𝑇, 𝑃 )2, 𝑜(𝑇, 𝑃 )1). We create partial functions
by using a “·” in place of arguments to be filled in, that is, for an operator 𝑜(𝑇, 𝑃 ) : ℒ2 → ℒ2, we
write 𝑜(·, 𝑃 ) (resp. 𝑜(𝑇, ·)) to mean 𝜆𝑥. 𝑜(𝑥, 𝑃 ) (resp. 𝜆𝑥. 𝑜(𝑇, 𝑥)). Naturally, if a “·” is used within a
function application that is then projected, the projections are included within the body of the lambda
abstraction For example,

𝑓(𝑥, ·)1 = 𝜆𝑦. (𝑓(𝑥, 𝑦)1) (where 𝑓(𝑥, 𝑦) : ℒ2 → ℒ2)

This makes it possible to write lfp ⪯ℒ 𝑜(𝑇, ·)1.
For convenience and ergonomics, we may write 4-tuples as a pair of 2-tuples or as a tuple with four

members. As a general rule, we consider two tuples to be equivalent if they are equal when all nested
tuples are “flattened”. For example, the following equivalences hold.

ℒ4 = ℒ2 × ℒ2 = (ℒ2)2

(𝑇, 𝐹, 𝑈, 𝑃 ) = ((𝑇, 𝐹 ), (𝑈,𝑃 ))

𝑓((𝑇, 𝐹 ), (𝑈,𝑃 )) = 𝑓(𝑇, 𝐹, 𝑈, 𝑃 )

2.1. Approximation Fixpoint Theory

Approximation fixpoint theory (AFT) was first defined by Denecker et al. [1] to provide a uniform
fixpoint characterization of a multitude of nonmonotonic semantics. This work adopts the generalized
framework of AFT described by Liu and You [8]. This theory can be viewed as a relaxation of AFT. Rather
than ensuring that stable fixpoints are always consistent, inconsistent stable fixpoints are permitted.
One can provide an additional condition to deterimine whether a stable fixpoint is intended (e.g. it must
be consistent).

We introduce the definitions of approximators and stable revision.



Definition 1. An approximator is a ⪯2
𝑝-monotone operator 𝑜(𝑇, 𝑃 ) : ℒ2 → ℒ2 on the complete lattice

⟨ℒ2,⪯2
𝑝⟩

Traditional AFT [1] requires some additional properties on approximators, including exactness,
symmetry, or consistency. Following Liu and You [8], we do not impose any of these requirements.

Definition 2. Given an approximator 𝑜 : ℒ2 → ℒ2, we can construct its stable revision operator 𝑆(𝑜).

𝑆 :
(︁
ℒ2 → ℒ2

)︁
→ ℒ2 → ℒ2

𝑆(𝑜)(𝑇, 𝑃 ) := (lfp⪯ℒ
(𝑜(·, 𝑃 )1), lfp⪯ℒ

(𝑜(𝑇, ·)2))

For an approximator 𝑜, we refer to fixpoints of 𝑆(𝑜) as stable fixpoints. Since the operator 𝑜 is ⪯2
𝑝-

monotone, it is easy to check that both operators 𝑜(·, 𝑃 )1 and 𝑜(𝑇, ·)2 are ⪯ℒ-monotone, so stable
revision is well-defined.

To apply AFT to a semantics is to characterize the intended models as stable fixpoints. If there are
stable fixpoints that do not correspond to the intended semantics, we say they are unintended stable
fixpoints. Such fixpoints are unavoidable in hybrid reasoning systems[8]. They may also appear due
to an inability to capture intended semantics (e.g. the intended semantics is super-polynomial but a
polynomial approximator is desired).

It is desirable to have fewer unintended stable fixpoints. Ultimate approximation theory [9] embodies
this ideal by ordering approximators by their ability to capture the intended stable fixpoints. However,
climbing this ordering may introduce additional unintended exact stable fixpoints.

2.2. Logic Programming

A logic program is a set of rules formed by if/then constraints. Most logic programming semantics seek a
truth-minimal assignment to atoms appearing in the program such that every rule is satisfied. Here, we
introduce Przymusinski’s [10] extension of answer set semantics, a language which only allows a single
atom in the head of each rule and the bodies of rules can leverage negation as failure. Additionally, we
allow for integrity constraints.

For a logic program 𝒫 , each rule 𝑟 ∈ 𝒫 consists of a head, a set containing at most one
atom, denoted ℎ𝑑(𝑟), and a set of possibly negated atoms called its body, denoted 𝑏𝑜𝑑𝑦(𝑟). A
rule 𝑟 with the parts ℎ𝑑(𝑟) = {ℎ} and 𝑏𝑜𝑑𝑦(𝑟) = {𝑝1, . . . , 𝑝𝑘,𝑛𝑜𝑡 𝑏1, . . . ,𝑛𝑜𝑡 𝑏𝑖} is written as
ℎ← 𝑝1, . . . , 𝑝𝑘,𝑛𝑜𝑡 𝑏1, . . . ,𝑛𝑜𝑡 𝑏𝑖 . Rules with empty heads are called integrity constraints and

are written as above with ℎ omitted. For a program, 𝒫 , we use 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠(𝒫) to capture the set
of such rules, that is, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠(𝒫) = {𝑟 | 𝑟 ∈ 𝒫, ℎ𝑑(𝑟) = ∅}. For a rule 𝑟, we also define
𝑏𝑜𝑑𝑦+(𝑟) := {𝑝1, . . . , 𝑝𝑘} and 𝑏𝑜𝑑𝑦−(𝑟) := {𝑏1, . . . , 𝑏𝑖} to extract the positive body and the negative
body of the rule. Note that the elements in 𝑏𝑜𝑑𝑦−(𝑟) are atoms rather than negated atoms. Without
loss of generality, we do not consider logic programs with variables.

An interpretation of a logic program 𝒫 is a true/false/unknown assignment to every atom that
appears in 𝒫 . If the assignment does not use the value unknown, then it is two-valued and represented
as the set of true atoms. Otherwise, the interpretation is three-valued and represented by a pair of sets
(𝑇, 𝑃 ) such that 𝑇 ⊆ 𝑃 , the set 𝑇 contains the atoms that are true, and 𝑃 contains the atoms that are
not false. Every two-valued interpretation 𝑇 has an equivalent three-valued interpretation (𝑇, 𝑇 ). The
valuation (𝑇, 𝑃 )(𝑎) for an atom 𝑎 w.r.t. an interpretation (𝑇, 𝑃 ) is given as follows.

(𝑇, 𝑃 )(𝑎) :=

⎧⎪⎨⎪⎩
𝑡 (𝑡𝑟𝑢𝑒) iff 𝑎 ∈ 𝑇 ∩ 𝑃

𝑓 (𝑓𝑎𝑙𝑠𝑒) iff 𝑎 ̸∈ 𝑇 ∪ 𝑃

𝑢 (𝑢𝑛𝑘𝑛𝑜𝑤𝑛) iff 𝑎 ̸∈ 𝑇 , 𝑎 ∈ 𝑃

The orderings ⪯2
𝑡 and ⪯2

𝑝 defined earlier are extended to interpretations using the underlying ordering
⊆. These order the interpretations based on the individual valuations of each atom [11]. That is, with
𝐴𝑡𝑜𝑚𝑠(𝒫) denoting the set containing all atoms appearing in a logic program 𝒫 ,

(𝑇, 𝑃 ) ⪯2
𝑡 (𝑇

′, 𝑃 ′) iff ∀𝑎 ∈ 𝐴𝑡𝑜𝑚𝑠(𝒫), (𝑇, 𝑃 )(𝑎) ⪯𝑡 (𝑇
′, 𝑃 ′)(𝑎)



(𝑇, 𝑃 ) ⪯2
𝑝 (𝑇

′, 𝑃 ′) iff ∀𝑎 ∈ 𝐴𝑡𝑜𝑚𝑠(𝒫), (𝑇, 𝑃 )(𝑎) ⪯𝑝 (𝑇
′, 𝑃 ′)(𝑎)

where 𝑓 ⪯𝑡 𝑢 ⪯𝑡 𝑡, 𝑢 ⪯𝑝 𝑡, and 𝑢 ⪯𝑝 𝑓 . The ordering ⪯2
𝑡 is used to minimize truth while ⪯2

𝑝

measures the proximity to a two-valued interpretation. Treated as an interval, an interpretation (𝑇, 𝑃 )
contains all two-valued interpretations related by ⪯2

𝑝. That is,

𝑇 ⊆ 𝑋 ⊆ 𝑃 ⇐⇒ (𝑇, 𝑃 ) ⪯2
𝑝 (𝑋,𝑋)

We use the following to relate rules and interpretations by describing the set of rules whose bodies
are satisfied by an interpretation.

𝑏𝑜𝑑𝑦𝑠𝑎𝑡(𝑇,𝑃 )(𝒫) := {𝑟 ∈ 𝒫 | 𝑏𝑜𝑑𝑦+(𝑟) ⊆ 𝑇, 𝑏𝑜𝑑𝑦−(𝑟) ∩ 𝑃 = ∅}

We use ℎ𝑑(𝑅) to denote {ℎ𝑑(𝑟) | 𝑟 ∈ 𝑅} for a set of rules 𝑅.
Przymusinski [10] extends Gelfond and Lifschitz’s [12] answer set semantics to three-valued inter-

pretations. We adopt our own definition due to its close proximity to fixpoint operators [13].

Definition 3. We call an interpretation (𝑇, 𝑃 ) a model of a logic program 𝒫 if

(ℎ𝑑(𝑏𝑜𝑑𝑦𝑠𝑎𝑡(𝑇,𝑃 )(𝒫)), ℎ𝑑(𝑏𝑜𝑑𝑦𝑠𝑎𝑡(𝑃,𝑇 )(𝒫))) ⪯2
𝑡 (𝑇, 𝑃 )

We say an interpretation (𝑇 ′, 𝑃 ′) models the reduct of 𝒫 w.r.t. (𝑇, 𝑃 ) if

(ℎ𝑑(𝑏𝑜𝑑𝑦𝑠𝑎𝑡(𝑇 ′,𝑃 )(𝒫)), ℎ𝑑(𝑏𝑜𝑑𝑦𝑠𝑎𝑡(𝑃 ′,𝑇 )(𝒫))) ⪯2
𝑡 (𝑇

′, 𝑃 ′)

A model (𝑇, 𝑃 ) of a logic program𝒫 is a partial stable model of𝒫 if there does not exist (𝑇 ′, 𝑃 ′) ≺2
𝑡 (𝑇, 𝑃 )

s.t. (𝑇 ′, 𝑃 ′) models of the reduct of 𝒫 w.r.t. (𝑇, 𝑃 ).

Przymusinski [14] shows that partial stable models are faithful to Gelfond and Lifschitz’s answer set
semantics [15].

3. Recurrent Approximators

During the computation of stable revision, the underling approximator cannot access the information
passed to invoke the stable operator. That is, 𝑆(𝑜)(𝑇, 𝑃 )2 cannot be based on 𝑃 . This makes perfect
sense given that stable revision removes circular justifications. If 𝑆(𝑜)(𝑇, 𝑃 )2 were to introduce
conclusions based on atoms in 𝑃 , that would undoubtedly introduce circular reasoning. However, this
rationale only holds for positive conclusions. Concluding that an atom should not be in 𝑆(𝑜)(𝑇, 𝑃 )2
based on the atoms that are not in 𝑃 can be perfectly valid. This type of reasonig is not possible in AFT.
In this section, we demonstrate this limitation and then we introduce an extension of AFT to remedy it.

3.1. An Illustrative Sketch

First, return to the example presented in the introduction. We focus on constraints in answer set
programming due to their simplicity. A constraint ← 𝑐 can alternatively be represented as a rule
𝑑 ← 𝑐,𝑛𝑜𝑡 𝑑. Adopting this representation is possible and straightforward, however, it would only
make the coming examples more difficult.

We define the following set of rules.

← 𝑎 𝑏← 𝑛𝑜𝑡 𝑎 𝑎← 𝑛𝑜𝑡 𝑏

This program has two partial stable models: (∅, {𝑎, 𝑏}) and ({𝑏}, {𝑏}). The interpretation ({𝑎}, {𝑎}) is
not a partial stable model because it violates the integrity constraint← 𝑎.

Suppose our intended semantics is just the answer sets (the two-valued partial stable models). Elimi-
nating (∅, {𝑎, 𝑏}) as a stable fixpoint is a welcome improvement because it cannot be extended to an
answer set, but we cannot remove every stable fixpoint that is not an answer set [9].



We introduce Denecker et al.’s approximator for capturing partial stable models of a program 𝒫 .

Γ𝒫(𝑇, 𝑃 ) := (ℎ𝑑(𝑏𝑜𝑑𝑦𝑠𝑎𝑡(𝑇,𝑃 )(𝒫)), ℎ𝑑(𝑏𝑜𝑑𝑦𝑠𝑎𝑡(𝑃,𝑇 )(𝒫)))

Recall that we use ℎ𝑑(𝑏𝑜𝑑𝑦𝑠𝑎𝑡(𝑇,𝑃 )(𝒫)) to denote {ℎ𝑑(𝑟) | 𝑟 ∈ 𝑏𝑜𝑑𝑦𝑠𝑎𝑡(𝑇,𝑃 )(𝒫)}. We have
lfp Γ𝒫(∅, ·)1 = ∅ and lfp Γ𝒫(·, {𝑎, 𝑏})2 = {𝑎, 𝑏}. Thus, (∅, {𝑎, 𝑏}) is a stable fixpoint of Γ𝒫 . Be-
cause this approximator was not constructed to support integrity constraints, both ({𝑎}, {𝑎}) and
({𝑏}, {𝑏}) are also stable fixpoints.

Let us define a modified version that prevents the derivation of atoms that would satisfy constraints.

Γ′
𝒫(𝑇, 𝑃 )1 := Γ𝒫(𝑇, 𝑃 )1

Γ′
𝒫(𝑇, 𝑃 )2 := Γ𝒫(𝑇, 𝑃 )2 ∖ 𝑏𝑙𝑜𝑐𝑘′𝒫(𝑇, 𝑃 )

𝑏𝑙𝑜𝑐𝑘′𝒫(𝑇, 𝑃 ) := {𝑎 ∈ 𝐴𝑡𝑜𝑚𝑠(𝒫) | ∃𝑟′ ∈ 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠(𝒫), 𝑟′ ∈ 𝑏𝑜𝑑𝑦𝑠𝑎𝑡(𝑇∪{𝑎},𝑃 ))}

Recall that in 𝑏𝑜𝑑𝑦𝑠𝑎𝑡(𝑇,𝑃 ) the set 𝑇 is used to evaluate positive atoms in rules and 𝑃 to evaluate
negated atoms (e.g. 𝑛𝑜𝑡 𝑎). Intuitively, the set 𝑏𝑙𝑜𝑐𝑘𝒫(𝑇, 𝑃 ) is the set of atoms that, if true, would satisfy
a constraint. For example, with the constraint← 𝑎, 𝑏,𝑛𝑜𝑡 𝑐 we have 𝑎 ∈ 𝑏𝑙𝑜𝑐𝑘𝒫({𝑏}, {𝑎, 𝑏}). Thus, if
there were another rule 𝑎← 𝑛𝑜𝑡 𝑐, the atom 𝑎 would not be derived in Γ𝒫({𝑏}, {𝑎, 𝑏})2. Clearly, as
an interpretation (𝑇, 𝑃 ) becomes more precise, the set 𝑏𝑙𝑜𝑐𝑘𝒫(𝑇, 𝑃 ) grows. Because these atoms are
extracted from 𝑃 , the function Γ′

𝒫 is ⪯2
𝑝-monotone (our only requirement for it to be an approximator).

Note that if an interpretation (𝑇, 𝑃 ) satisfies some constraint in 𝒫 , then 𝑏𝑙𝑜𝑐𝑘𝒫(𝑇, 𝑃 ) = 𝐴𝑡𝑜𝑚𝑠(𝒫).
Thus, inconsistent stable fixpoints, which are not possible in traditional AFT [1], are possible. Using the
generalized AFT of Liu and You [8], we can tolerate inconsistent pairs2.

While we have succeeded in removing the stable fixpoint (∅, {𝑎, 𝑏}) for the small program, our
approximator Γ′

𝒫(𝑇, 𝑃 ) does not hold up for programs where falsity propagation must be performed
over multiple rules. Take the following program to be 𝒫 , which modifies the constraint in the other
program to use a new atom 𝑐 and adds an additional rule 𝑐← 𝑎.

← 𝑐 𝑏← 𝑛𝑜𝑡 𝑎 𝑐← 𝑎 𝑎← 𝑛𝑜𝑡 𝑏

Because the third rule is not satisfied by (∅, {𝑎, 𝑏}), it is not a model of the program (and thus not a
partial stable model). However, it is a stable fixpoint of both Γ and Γ′. While our modified approximator
Γ′ does block the derivation of 𝑐, it only blocks constraints, thus, it does not block 𝑎.

Let us modify Γ′ so that all rules, and not just constraints, are a part of the backward-chaining.

Ω𝒫(𝑇, 𝑃 )1 := Γ𝒫(𝑇, 𝑃 )1

Ω𝒫(𝑇, 𝑃 )2 := Γ𝒫(𝑇, 𝑃 )2 ∖ 𝑏𝑙𝑜𝑐𝑘Ω𝒫(𝑇, 𝑃 )

𝑏𝑙𝑜𝑐𝑘Ω𝒫(𝑇, 𝑃 ) := {𝑎 ∈ 𝐴𝑡𝑜𝑚𝑠(𝒫) | ∃𝑟′ ∈ 𝒫, ℎ𝑑(𝑟′) ∩ 𝑃 = ∅, 𝑟′ ∈ 𝑏𝑜𝑑𝑦𝑠𝑎𝑡(𝑇∪{𝑎},𝑃 ))}

Intuitively, Ω𝒫 functions identically to Γ′, except it also blocks atoms in the bodies of rules whose heads
are false (they do not appear in 𝑃 ). As expected, 𝑏𝑙𝑜𝑐𝑘𝒫({𝑏}, {𝑎, 𝑏}) = {𝑐, 𝑎} and Ω𝒫({𝑏}, {𝑎, 𝑏}) =
({𝑏}, {𝑏}). This is, given that 𝑐 is false, we conclude that 𝑎 must also be false. The interpretation
({𝑏}, {𝑏}) is a fixpoint of Ω𝒫 (a requirement for it to be a stable fixpoint of Ω𝒫 ). We show below that
Ω𝒫 can be used to construct the partial stable model ({𝑏}, {𝑏}).

𝑏𝑙𝑜𝑐𝑘𝒫(∅, 𝐴𝑡𝑜𝑚𝑠(𝒫)) = {𝑐} Ω𝒫(∅, 𝐴𝑡𝑜𝑚𝑠(𝒫)) = (∅, {𝑎, 𝑏}) (No rule to derive 𝑐)

𝑏𝑙𝑜𝑐𝑘𝒫(∅, {𝑎, 𝑏}) = {𝑐, 𝑎} Ω𝒫(∅, {𝑎, 𝑏}) = (∅, {𝑏}) (𝑎 is blocked)

𝑏𝑙𝑜𝑐𝑘𝒫(∅, {𝑏}) = {𝑐, 𝑎} Ω𝒫(∅, {𝑏}) = ({𝑏}, {𝑏}) (With 𝑎 false, 𝑏 can be true)

While approximators can compute some partial stable models, stable revision is required to eliminate
cyclic justifications. However, the stable operator of Ω𝒫 does not behave as expected.
2In practice, this requires pairing stable fixpoint checking with an additional condition to verify an intended model. Here, we
can verify stable fixpoints as partial stable models by checking that they are consistent.



To compute the least stable fixpoint of Ω𝒫 , we begin with (∅, 𝐴𝑡𝑜𝑚𝑠(𝒫)), the interpretation that
assigns all atoms to be unknown.

𝑆(Ω𝒫)(∅, 𝐴𝑡𝑜𝑚𝑠(𝒫)) = (lfp Ω𝒫(·, 𝐴𝑡𝑜𝑚𝑠(𝒫)), lfp Ω𝒫(∅, ·))
Ω𝒫(∅, 𝐴𝑡𝑜𝑚𝑠(𝒫))1 = ∅ (fixpoint)

Ω𝒫(∅, ∅)2 = Γ𝒫(∅, ∅)2 ∖ 𝑏𝑙𝑜𝑐𝑘Ω𝒫(∅, ∅)
Γ𝒫(∅, ∅)2 = {𝑎, 𝑏}

𝑏𝑙𝑜𝑐𝑘Ω𝒫(∅, ∅) = {𝑎, 𝑏}
𝑆(Ω𝒫)(∅, ∅)2 = {𝑎, 𝑏} ∖ {𝑎, 𝑏} = ∅ (fixpoint)

Thus, the least stable fixpoint is (∅, ∅). Due to ⪯2
𝑝-monotonicity and (∅, 𝐴𝑡𝑜𝑚𝑠(𝒫)) ⪯2

𝑝 ({𝑏}, {𝑏}), we
can conclude that ({𝑏}, {𝑏}) is not a stable fixpoint. This can also be easily worked out by hand. Clearly,
this approximator does not capture our intended semantics! If we analyze the approximator, it becomes
clear that we cannot trust the atoms that are not in 𝑃 to be false. In a constructive computation of
𝑆(Ω𝒫)(𝑇, 𝑃 )2, stable revision first “resets” 𝑃 to ∅, thus 𝑏𝑙𝑜𝑐𝑘Ω𝒫(𝑇, 𝑃 ) will treat every atom as false!
Note that while 𝑃 is used in two places in 𝑏𝑙𝑜𝑐𝑘Ω𝒫 , and we only demonstrated issues with one, both are
problematic.

It seems impossible to formulate 𝑏𝑙𝑜𝑐𝑘𝒫 so that it is powerful enough to perform false backward-
chaining. We remedy this issue by introducing a meta operator Φ𝑃 . When used inside an approximator,
Φ𝑃 has the same value as 𝑃 . When used in stable revision, Φ𝑃 has the value of 𝑃 that was passed to
the stable operator.

We modify Ω𝒫 to formulate a new operator Γ′′
𝒫 by replacing 𝑏𝑙𝑜𝑐𝑘Ω𝒫 with the following.

𝑏𝑙𝑜𝑐𝑘′′𝒫(𝑇, 𝑃 ) := {𝑎 ∈ 𝐴𝑡𝑜𝑚𝑠(𝒫) | ∃𝑟′ ∈ 𝒫, ℎ𝑑(𝑟′) ∩ Φ𝑃 = ∅, 𝑟′ ∈ 𝑏𝑜𝑑𝑦𝑠𝑎𝑡(𝑇∪{𝑎},Φ𝑃 ))}

Now, when we compute our least stable fixpoint for Γ′′
𝒫 , we get our stable model ({𝑏}, {𝑏}).

𝑆(Γ′′
𝒫)(∅, 𝐴𝑡𝑜𝑚𝑠(𝒫)) = (lfp Γ′′

𝒫(·, 𝐴𝑡𝑜𝑚𝑠(𝒫))2, lfp Γ′′
𝒫(∅, ·)2)

Γ′′
𝒫(∅, 𝐴𝑡𝑜𝑚𝑠(𝒫))1 = ∅

Γ′′
𝒫(∅, ∅)2 = Γ𝒫(∅, ∅)2 ∖ 𝑏𝑙𝑜𝑐𝑘′′𝒫(∅, ∅)

Γ𝒫(∅, ∅)2 = {𝑎, 𝑏}
Φ𝑃 = {𝑎, 𝑏, 𝑐}

𝑏𝑙𝑜𝑐𝑘′′𝒫(∅, ∅) = {𝑐}
Γ′′
𝒫(∅, ∅)2 = {𝑎, 𝑏} ∖ {𝑐} = {𝑎, 𝑏}

No longer is (∅, ∅) the least stable fixpoint. When we continue the computation of 𝑆(Γ′′
𝒫)(∅, 𝐴𝑡𝑜𝑚𝑠(𝒫))

with (∅, {𝑎, 𝑏}), it is critical that Φ𝑃 remains as {𝑎, 𝑏, 𝑐}. With Φ𝑃 = {𝑎, 𝑏}, that is, with 𝑐 removed,
we have 𝑏𝑙𝑜𝑐𝑘′′𝒫(∅, {𝑎, 𝑏}) = {𝑐} and Γ′′

𝒫(∅, {𝑎, 𝑏})2 = {𝑏}. Thus, if we update Φ𝑃 in this way, the
function Γ′′

𝒫(∅, ·)2 is not monotone and the stable operator is not well-defined.
After we have computed 𝑆(Γ′′

𝒫)(∅, 𝐴𝑡𝑜𝑚𝑠(𝒫)) to be (∅, {𝑎, 𝑏}) we can apply 𝑆(Γ′′
𝒫) again with the

more precise interpretation (∅, {𝑎, 𝑏}) to use Φ𝑃 = {𝑎, 𝑏}.

𝑏𝑙𝑜𝑐𝑘′′𝒫(∅, {𝑎, 𝑏}) = {𝑐, 𝑎}
Γ′′
𝒫(∅, {𝑎, 𝑏})2 = {𝑏}
Γ′′
𝒫(∅, {𝑏})2 = {𝑏} (fixpoint)

While Φ𝑃 seems to have solved the issues with Ω𝒫 , its introduction raises many questions. The
introduction of this operator appears to be a significant deviation from AFT. How do we determine
if a recurrent approximator is ⪯2

𝑝-monotone? What is the relationship between fixpoints and stable
fixpoints? Do stable fixpoints still exist? To address these questions, we show that Φ𝑃 fits within the
existing AFT theory. Thus, any recurrent approximator can be expressed as an approximator which does
not use Φ𝑃 . Due to this relationship, the properties of AFT continue to hold for recurrent approximators.



3.2. A Formalization of Φ𝑃

We have shown that making inferences based on false information is limited in stable revision, and
we have provided a sketch which extends the stable revision operator with an operator to access false
information so that it can be incorporated safely in reasoning. We formalize this operator by establishing
a larger complete lattice for approximators to operate on. Intuitively, this lattice is formed by taking the
bilattice of the bilattice to form a tetralattice. The additional data in each element is used to store Φ𝑃 .

For simplicity and throughout the remainder of this work, we assume that every complete lattice
⟨ℒ,⪯ℒ⟩ has a complement operation, denoted as 𝑎c, that satisfies the following two properties

𝑖. ∀𝑎 ∈ ℒ, (𝑎c)c = 𝑎 𝑖𝑖. ∀𝑎, 𝑏 ∈ ℒ, 𝑎 ⪯ℒ 𝑏 ⇐⇒ 𝑏c ⪯ℒ 𝑎c

Not every lattice has such a complement operation, thus it appears limiting, however, this operation is
not necessary to apply our theory. We rely upon it only for simplicity. One can instead define orderings
differently so that the criteria of the complement is satisfied.

We intend to isolate a family of approximators defined on a “bilattice formed from a bilattice” that
can be used to propagate information from the stable operator to the approximators within. First, we
formally describe this lattice.

Definition 4. Given a complete lattice ⟨ℒ,⪯ℒ⟩ we construct its bilattice ⟨ℒ2,⪯2
𝑡 ⟩, ⟨ℒ2,⪯2

𝑝⟩, and then we
define the following pair of complete lattices which we refer to collectively and individually as a tetralattice.

⟨ℒ4,⪯4
𝑡 ⟩, ⟨ℒ4,⪯4

𝑝⟩

A tetralattice is the bilattice formed from turning ⟨ℒ2,⪯2
𝑡 ⟩ into a bilattice. The orderings ⪯4

𝑡 and ⪯4
𝑝

are naturally defined. For the ordering ⪯4
𝑡 and any two 4-tuples (𝑇, 𝐹, 𝑈, 𝑃 ), (𝑇 ′, 𝐹 ′, 𝑈 ′, 𝑃 ′) ∈ ℒ4, the

following three expressions are equivalent

• ((𝑇, 𝐹 ), (𝑈,𝑃 )) ⪯4
𝑡 ((𝑇

′, 𝐹 ′), (𝑈 ′, 𝑃 ′)),
• (𝑇, 𝐹 ) ⪯2

𝑡 (𝑇
′, 𝐹 ′) ∧ (𝑈,𝑃 ) ⪯2

𝑡 (𝑈
′, 𝑃 ′), and

• 𝑇 ⪯ℒ 𝑇 ′ ∧ 𝐹 ⪯ℒ 𝐹 ′ ∧ 𝑈 ⪯ℒ 𝑈 ′ ∧ 𝑃 ⪯ℒ 𝑃 ′

For ⪯4
𝑝, the following are equivalent

• ((𝑇, 𝐹 ), (𝑈,𝑃 )) ⪯4
𝑝 ((𝑇

′, 𝐹 ′), (𝑈 ′, 𝑃 ′)),
• (𝑇, 𝐹 ) ⪯2

𝑡 (𝑇
′, 𝐹 ′) ∧ (𝑈 ′, 𝑃 ′) ⪯2

𝑡 (𝑈,𝑃 ),
• (𝑇, 𝑃 ) ⪯2

𝑝 (𝑇
′, 𝑃 ′) ∧ (𝐹,𝑈) ⪯2

𝑝 (𝐹
′, 𝑈 ′), and

• 𝑇 ⪯ℒ 𝑇 ′ ∧ 𝐹 ⪯ℒ 𝐹 ′ ∧ 𝑈 ′ ⪯ℒ 𝑈 ∧ 𝑃 ′ ⪯ℒ 𝑃

We take the process applied to ⟨𝐿,⪯ℒ⟩ to obtain ⟨ℒ2,⪯2
𝑡 ⟩ and ⟨ℒ2,⪯2

𝑝⟩, then we apply it to the
lattice ⟨ℒ2,⪯2

𝑡 ⟩. The result is a pair of complete lattices because bilattices are complete lattices [16].
The element 𝐹 of a pair will be used to carry false information, that is, the complement of 𝑃 . We
symmetrically define 𝑈 to carry information that is not true, however, 𝑈 does not seem as useful as 𝐹
and our approximators for logic programs do not make use of 𝑈 3. Most of the approximators defined on
the full tetralattice lattice are of no interest here. Thus, we restrict our attention to the approximators
which have a complementary relationship between 𝑃 and 𝐹 (also 𝑇 and 𝑈 ). We use the notation
𝑡𝑢𝑝𝑙𝑒2,3 to project multiple elements from a tuple (e.g. (𝑎, 𝑏, 𝑐, 𝑑)2,3 = (𝑏, 𝑐)).

Definition 5. A recurrent operator 𝑜(𝑇, 𝐹, 𝑈, 𝑃 ) : ℒ4 → ℒ4 is an operator on the tetralattice ℒ4 with
the inner components fixed such that the following equivalence is satisfied.

𝑜(𝑇, 𝐹, 𝑈, 𝑃 )2,3 =
(︀
𝑃 c, 𝑇 c

)︀
We call ⪯4

𝑝-monotone recurrent operators recurrent approximators.

3In Section 4, we make use of 𝑈 to define meta approximators.



By restricting the class of approximators, we ensure that 𝐹 is a carrier of false information. We
complement the information so that we can adopt the same orderings of AFT.

Note that 𝑜(𝑇, 𝐹, 𝑈, 𝑃 )2,3 is of type 𝐿4 → 𝐿2. To construct a recurrent operator, we only need to
define 𝑜(·, ·, ·, ·)1,4, a traditional approximator that additionally receives an older computation of 𝑇
and 𝑃 (in complement form) and returns a new approximation (𝑇 ′, 𝑃 ′). The utility of these additional
arguments is not fully apparent until they are embedded in the stable revision operator.

The least element of the lattice ⟨ℒ4,⪯4
𝑝⟩ is the pair ((⊥ℒ,⊥ℒ), (⊤ℒ,⊤ℒ)) which is equivalant to

(⊥⪯2
𝑡
,⊤⪯2

𝑡
).

Example 2. All approximators in AFT can easily be converted to a recurrent approximator. Let 𝑜 : ℒ2 → ℒ2
be an approximator over ⟨ℒ2,⪯2

𝑝⟩. We define a recurrent approximator 𝑜* : ℒ4 → ℒ4

𝑜*(𝑇, 𝐹, 𝑈, 𝑃 )1 := 𝑜(𝑇, 𝑃 )1

𝑜*(𝑇, 𝐹, 𝑈, 𝑃 )2 := 𝑃 c

𝑜*(𝑇, 𝐹, 𝑈, 𝑃 )3 := 𝑇 c

𝑜*(𝑇, 𝐹, 𝑈, 𝑃 )4 := 𝑜(𝑇, 𝑃 )2

This approximator does not make use of 𝐹 or 𝑈 , thus for any (𝑇, 𝑃 ) ∈ ℒ2 and 𝐹,𝑈 ∈ ℒ

𝑜(𝑇, 𝑃 ) = 𝑜*(𝑇, 𝐹, 𝑈, 𝑃 )1,4

Due to its underlying structure (an approximator formed from a bilattice), a recurrent approximator
is required to be ⪯4

𝑝-monotone. Because the inner components of the approximator are fixed, we can
simplify the process of checking whether a recurrent approximator is monotone.

Lemma 1. For a tetralattice ⟨ℒ4,⪯4
𝑝⟩, a recurrent operator 𝑜(𝑇, 𝐹, 𝑈, 𝑃 ) is ⪯4

𝑝-monotone iff
for each (𝑇, 𝐹, 𝑈, 𝑃 ), (𝑇 ′, 𝐹 ′, 𝑈 ′, 𝑃 ′) ∈ 𝐿4 s.t. (𝑇, 𝐹, 𝑈, 𝑃 ) ⪯4

𝑝 (𝑇 ′, 𝐹 ′, 𝑈 ′, 𝑃 ′), we have
𝑜(𝑇, 𝐹, 𝑈, 𝑃 )1,4 ⪯2

𝑝 𝑜(𝑇
′, 𝐹 ′, 𝑈 ′, 𝑃 ′)1,4

Proof. (⇒) trivial.
(⇐) It’s sufficient to show 𝑜(𝑇, 𝐹, 𝑈, 𝑃 )2,3 ⪯2

𝑝 𝑜(𝑇
′, 𝐹 ′, 𝑈 ′, 𝑃 ′)2,3. We have 𝑜(𝑇, 𝐹, 𝑈, 𝑃 )2 = 𝑃 c and

𝑜(𝑇 ′, 𝐹 ′, 𝑈 ′, 𝑃 ′)2 = 𝑃 ′ c. Clearly since 𝑃 ′ ⪯ℒ 𝑃 , we have 𝑃 c ⪯ℒ 𝑃 ′ c. We have 𝑜(𝑇, 𝐹, 𝑈, 𝑃 )3 = 𝑇 c

and 𝑜(𝑇 ′, 𝐹 ′, 𝑈 ′, 𝑃 ′)3 = 𝑇 ′ c. From 𝑇 ⪯ℒ 𝑇 ′, we have 𝑇 ′ c ⪯ℒ 𝑇 c. We conclude (𝑃 c, 𝑇 c) ⪯2
𝑝

(𝑃 ′ c, 𝑇 ′ c).

When defining a new recurrent approximator, we need only focus on the 𝑇 /𝑃 components in the
image when proving monotonicity.

We can now rebuild Γ′′
𝒫 from Section 3.1 and show that it is ⪯4

𝑝-monotone. First, we need the
appropriate lattice for interpretations.

Definition 6. A powerset tetralattice ⟨℘(ℒ)4,⪯4
𝑝⟩ is the tetralattice formed from a powerset lattice

⟨℘(ℒ),⊆⟩ using 𝛼c = ℒ ∖ 𝛼 as the complement operation.

Example 3. Define Γ′′′
𝒫 as follows.

Γ′′′
𝒫 (𝑇, 𝐹, 𝑈, 𝑃 )1 := Γ𝒫(𝑇, 𝑃 )1

Γ′′′
𝒫 (𝑇, 𝐹, 𝑈, 𝑃 )4 := Γ𝒫(𝑇, 𝑃 )2 ∖ 𝑏𝑙𝑜𝑐𝑘′′′𝒫 (𝑇, 𝐹 )

𝑏𝑙𝑜𝑐𝑘′′′𝒫 (𝑇, 𝐹 ) := {𝑎 ∈ 𝐴𝑡𝑜𝑚𝑠(𝒫) | ∃𝑟′ ∈ 𝒫, ℎ𝑑(𝑟′) ⊆ 𝐹, 𝑟′ ∈ 𝑏𝑜𝑑𝑦𝑠𝑎𝑡(𝑇∪{𝑎},𝐹 c))}

As Γ′′′
𝒫 is a recurrent approximator, Γ′′′

𝒫 (𝑇, 𝐹, 𝑈, 𝑃 )2,3 is fixed. As (𝑇, 𝐹, 𝑈, 𝑃 ) becomes more precise w.r.t.
⪯4

𝑝, the sets 𝑇 and 𝐹 grow. With a larger 𝑇 and 𝐹 , there is more opportunity for a rule 𝑟 s.t. ℎ𝑑(𝑟′) ⊆ 𝐹
and 𝑟′ ∈ 𝑏𝑜𝑑𝑦𝑠𝑎𝑡(𝑇∪{𝑎},𝐹 c). Thus, 𝑏𝑙𝑜𝑐𝑘′′′𝒫 (𝑇, 𝐹 ) also grows. It follows that Γ′′′

𝒫 (𝑇, 𝐹, 𝑈, 𝑃 )4 shrinks
and then that Γ′′′

𝒫 (𝑇, 𝐹, 𝑈, 𝑃 )1,4 is monotone from ⪯4
𝑝 to ⪯2

𝑝. With Lemma 1, we can conclude Γ′′′
𝒫 is

⪯4
𝑝-monotone.



Now that we’ve established approximators that can capture Φ𝑃 , it remains to show that stable revision
works as expected. Because recurrent approximators are approximators over the lattice ⟨ℒ2,⪯2

𝑡 ⟩, stable
revision is already defined. For convenience, we repeat the definition of the stable revision operator
using the tetralattice.

𝑆 :
(︁
ℒ4 → ℒ4

)︁
→ ℒ4 → ℒ4

𝑆(𝑜)(𝑇, 𝐹, 𝑈, 𝑃 ) := (lfp⪯2
𝑡
(𝑜(·, (𝑈,𝑃 ))1,2), lfp⪯2

𝑡
(𝑜((𝑇, 𝐹 ), ·)3,4))

The stable operator is itself a recurrent approximator.

Proposition 1. For a recurrent approximator 𝑜, we have that 𝑆(𝑜) is ⪯2
𝑝-monotone and

𝑆(𝑜)(𝑇, 𝐹, 𝑈, 𝑃 )2,3 = (𝑃 c, 𝑇 c).

Proof. We show (i) that 𝑆(𝑜) is a recurrent operator and then (ii) that 𝑆(𝑜) is ⪯4
𝑝-monotone. (i) Let

(𝑇, 𝐹, 𝑈, 𝑃 ) ∈ ℒ4. The functions 𝑜(·, (𝑈,𝑃 ))2 and 𝑜((𝑇, 𝐹 ), ·)3 are constant, therefore

𝑆(𝑜)(𝑇, 𝐹, 𝑈, 𝑃 )2,3 = (ℒ ∖ 𝑃,ℒ ∖ 𝑇 )

(ii) By [7] and [1] the 𝑆(𝑜) operator is well-defined, that is, 𝑜 has fixpoints that exist when 𝑜 is
monotone. Let (𝑇, 𝐹, 𝑈, 𝑃 ), (𝑇 ′, 𝐹 ′, 𝑈 ′, 𝑃 ′) ∈ 𝐿4 such that (𝑇, 𝐹, 𝑈, 𝑃 ) ⪯4

𝑝 (𝑇 ′, 𝐹 ′, 𝑈 ′, 𝑃 ′). It is
sufficient to show

(a) lfp⪯2
𝑡
(𝑜(·, (𝑈,𝑃 ))1,2) ⪯2

𝑡 lfp⪯2
𝑡
(𝑜(·, (𝑈 ′, 𝑃 ′))1,2)

(b) lfp⪯2
𝑡
(𝑜((𝑇 ′, 𝐹 ′), ·)3,4) ⪯2

𝑡 lfp⪯2
𝑡
(𝑜((𝑇, 𝐹 ), ·)3,4)

(a) Let 𝑥 = lfp⪯2
𝑡
(𝑜(·, (𝑈 ′, 𝑃 ′))1,2). By the ⪯4

𝑝-monotonicity of 𝑜, we have

𝑜(𝑥, (𝑈,𝑃 )) ⪯2
𝑡 𝑜(𝑥, (𝑈

′, 𝑃 ′))

Here, 𝑥 is a prefixpoint of 𝑜(·, (𝑈,𝑃 )). lfp⪯2
𝑡
(𝑜(·, (𝑈,𝑃 ))1,2) corresponds to the least prefixpoint

of 𝑜 [7], thus lfp⪯2
𝑡
(𝑜(·, (𝑈,𝑃 ))1,2) ⪯2

𝑡 𝑥. A nearly identical procedure can be used to show that
lfp⪯2

𝑡
(𝑜((𝑇 ′, 𝐹 ′), ·)3,4) ⪯2

𝑡 lfp⪯2
𝑡
(𝑜((𝑇, 𝐹 ), ·)3,4). We conclude that 𝑆(𝑜) is ⪯4

𝑝 monotone and with (i)
it is a recurrent approximator.

(lfp⪯2
𝑡
(𝑜(·, (𝑈,𝑃 ))1,2), lfp⪯2

𝑡
(𝑜((𝑇, 𝐹 ), ·)3,4)) ⪯

4
𝑝

(lfp⪯2
𝑡
(𝑜(·, (𝑈 ′, 𝑃 ′))1,2), lfp⪯2

𝑡
(𝑜((𝑇 ′, 𝐹 ′), ·)3,4))

Least fixpoints can be computed by repeated application of an operator on the least element. We
have the following:

(⊥⪯ℒ ,⊥⪯ℒ , 𝑈, 𝑃 ) ⪯4
𝑝 (⊥⪯ℒ ,⊥⪯ℒ , 𝑈

′, 𝑃 ′)

(𝑇, 𝐹,⊥⪯ℒ ,⊥⪯ℒ) ⪯
4
𝑝 (𝑇

′, 𝐹 ′,⊥⪯ℒ ,⊥⪯ℒ)

and with the ⪯4
𝑝-monotonicity of 𝑜, we have

𝑜(⊥⪯ℒ ,⊥⪯ℒ , 𝑈, 𝑃 )1,2 ⪯
2
𝑡 𝑜(⊥⪯ℒ ,⊥⪯ℒ , 𝑈

′, 𝑃 ′)1,2

𝑜(𝑇 ′, 𝐹 ′,⊥⪯ℒ ,⊥⪯ℒ)2,3 ⪯
2
𝑡 𝑜(𝑇, 𝐹,⊥⪯ℒ ,⊥⪯ℒ)2,3

With the⪯4
𝑝-monotonicity of 𝑜, this relation continues to hold when we reapply the operator inductively:

𝑜(𝑜(⊥⪯ℒ ,⊥⪯ℒ , 𝑈, 𝑃 )1,2, 𝑈, 𝑃 )
1,2
⪯2

𝑡 𝑜(𝑜(⊥⪯ℒ ,⊥⪯ℒ , 𝑈
′, 𝑃 ′)1,2, 𝑈

′, 𝑃 ′)
1,2

𝑜(𝑇 ′, 𝐹 ′, 𝑜(𝑇 ′, 𝐹 ′,⊥⪯ℒ ,⊥⪯ℒ)3,4)3,4
⪯2

𝑡 𝑜(𝑇, 𝐹, 𝑜(𝑇, 𝐹,⊥⪯ℒ ,⊥⪯ℒ)3,4)3,4



We conclude the following

lfp⪯2
𝑡
(𝑜(·, (𝑈,𝑃 ))1,2) ⪯

2
𝑡 lfp⪯2

𝑡
(𝑜(·, (𝑈 ′, 𝑃 ′))1,2)

lfp⪯2
𝑡
(𝑜((𝑇 ′, 𝐹 ′), ·)3,4) ⪯

2
𝑡 lfp⪯2

𝑡
(𝑜((𝑇, 𝐹 ), ·)3,4)

We now return to our example this time to compute the least stable fixpoint.

Example 4. Let 𝒫 be our program from before.

← 𝑐 𝑏← 𝑛𝑜𝑡 𝑎 𝑐← 𝑎 𝑎← 𝑛𝑜𝑡 𝑏

Using Γ′′′
𝒫 from Example 3, we begin to compute its least stable fixpoint, beginning with the least element

(∅, ∅, 𝐴𝑡𝑜𝑚𝑠(𝒫), 𝐴𝑡𝑜𝑚𝑠(𝒫)). Note that for this element 𝐹 = 𝑃 c and 𝑈 = 𝑇 c.

𝑆(Γ′′′
𝒫 )(∅, ∅, 𝐴𝑡𝑜𝑚𝑠(𝒫), 𝐴𝑡𝑜𝑚𝑠(𝒫)) =

(︀
(lfp Γ′′′

𝒫 (·, ·, 𝐴𝑡𝑜𝑚𝑠(𝒫), 𝐴𝑡𝑜𝑚𝑠(𝒫)))1,2,
(lfp Γ′′′

𝒫 (∅, ∅, ·, ·)3,4
)︀

Because the first component is computed by Γ and the second component is 𝑃 c, we have

lfp Γ′′′
𝒫 (·, ·, 𝐴𝑡𝑜𝑚𝑠(𝒫), 𝐴𝑡𝑜𝑚𝑠(𝒫)))1,2 = (∅, 𝐴𝑡𝑜𝑚𝑠(𝒫)c)

Now for the other side,

lfp Γ′′′
𝒫 (∅, ∅, ·, ·)3,4 = (∅c, {𝑎, 𝑏})

Because Φ𝑃 is empty (𝐹 here), we derive 𝑎 and 𝑏 to be unknown as normal. Our resulting four pair is
(∅, ∅, 𝐴𝑡𝑜𝑚𝑠(𝒫), {𝑎, 𝑏}). However, on the next iteration of stable revision, 𝐹 will be updated. That is,

𝑆(Γ′′′
𝒫 )((∅, ∅, 𝐴𝑡𝑜𝑚𝑠(𝒫), {𝑎, 𝑏}))2 = {𝑎, 𝑏}c = {𝑐}

The other components remain unchanged. Now that 𝐹 = {𝑐}, our approximator can block the derivation
of 𝑎.

𝑆(Γ′′′
𝒫 )((∅, {𝑐}, 𝐴𝑡𝑜𝑚𝑠(𝒫), {𝑎, 𝑏}))4 = {𝑏}

After several more iterations, we obtain the least stable fixpoint.

𝑆(Γ′′′
𝒫 )(({𝑏}, {𝑐, 𝑎}, {𝑏}

c, {𝑏}))1,4 = ({𝑏}, {𝑏})

We have defined approximators with enhanced stable revision that can leverage false information
computed on previous iterations. Because our developments exist within the confines of AFT, that is,
every recurrent approximator is an approximator, it has the properties of an approximator.

4. Increasing/Decreasing Approximators

Despite both utilizing fixpoint operators, AFT semantics and traditional fixpoint semantics are not
always compatible. For example, the solver we define for hybrid MKNF knowledge bases [17] performs
all of its propagation using a fixpoint operator. In order for the solver to function correctly, this operator
𝑜 must be increasing, that is, Γ* can be defined such that the following holds.

𝑜(𝑇, 𝑃 ) := (Γ*(𝑇, 𝑃 )1 ∪ 𝑇,Γ*(𝑇, 𝑃 )2 ∪ 𝑃 )

While this holds for approximators when applied to pairs that are postfixpoints, a solver must occasion-
ally select some unknown atoms and assign them a value of true or false. The stable revision operator
may “revert” these assignments which is undesirable, thus a stable revision operator is not increasing.



We say that an approximator 𝑜 is increasing (resp. decreasing) if every pair (𝑇, 𝑃 ) is a postfixpoint
(resp. a prefixpoint), that is, (𝑇, 𝑃 ) ⪯2

𝑝 𝑜(𝑇, 𝑃 ) (resp. 𝑜(𝑇, 𝑃 ) ⪯2
𝑝 (𝑇, 𝑃 )). Another use for recurrent

approximators is a method to turn any approximator into an increasing/descreasing approximator.
Given an approximator 𝑜 : ℘(ℒ2)→ ℘(ℒ2), we define variants which are increasing and decreasing,
which we denote as 𝑜+ and 𝑜− respectively.

𝑜+(𝑇, 𝐹, 𝑈, 𝑃 )1,4 :=
(︁
(𝑜(𝑇, 𝑃 )1 ∪ 𝑈 c), (𝑜(𝑇, 𝑃 )2 ∖ 𝐹 )

)︁
𝑜−(𝑇, 𝐹, 𝑈, 𝑃 )1,4 :=

(︁
(𝑜(𝑇, 𝑃 )1 ∩ 𝑈), (𝑜(𝑇, 𝑃 )2 ∪ 𝐹 c)

)︁
Both 𝑜+ and 𝑜− are recurrent approximators. As an example, if we apply 𝑜+(𝑇, 𝑃 c, 𝑇 c, 𝑃 )1,4, we

get (𝑜(𝑇, 𝑃 )1 ∪ 𝑇, 𝑜(𝑇, 𝑃 ) ∩ 𝑃 ) which is ⪯2
𝑝-increasing.

Their stable operators are also ⪯2
𝑝-increasing.

Lemma 2. For an approximator 𝑜(𝑇, 𝑃 ) : ℘(ℒ2)→ ℘(ℒ2), we have for any pair (𝑇, 𝑃 )

(𝑇, 𝑃 ) ⪯2
𝑝 𝑆(𝑜

+)(𝑇, 𝑃 c, 𝑇 c, 𝑃 )1,4

𝑆(𝑜−)(𝑇, 𝑃 c, 𝑇 c, 𝑃 )1,4 ⪯2
𝑝 (𝑇, 𝑃 )

With this, we can repeatedly invoke a stable operator to obtain more precise pairs. We’ve limited the
theory above to approximators over the powerset lattice, however, its straightforward to extend it to
recurrent approximators over any tetralattice.

The approximator 𝑜+ can be interleaved with any other propagation method within a solver without
the worry that a fixpoint will not be reached. In Algorithm 1 below, we briefly sketch a solver that uses
Γ′′′
𝒫 to find two-valued answer sets of a program 𝒫 . Given an interpretation (𝑇, 𝑃 ), the algorithm will

Algorithm 1 A solver for normal programs with constraints
Require: 𝑇, 𝑃 ∈ ℒ, 𝑇 ⊆ 𝑃

while 𝑆(Γ′′′
𝒫 )(𝑇, 𝑃

c, 𝑇 c, 𝑃 )1,4 ̸= (𝑇, 𝑃 ) do
while ∃𝑎 ∈ 𝐴𝑡𝑜𝑚𝑠(𝒫), (𝑇, 𝑃 )(𝑎) = 𝑢 do

(𝑇 ′, 𝑃 ′)← (𝐴𝑡𝑜𝑚𝑠(𝒫), ∅)
while (𝑇 ′, 𝑃 ′) ̸= (𝑇, 𝑃 ) do

(𝑇 ′, 𝑃 ′)← (𝑇, 𝑃 )
(𝑇, 𝑃 )← 𝑆(Γ

′′′+)(𝑇, 𝑃 c, 𝑇 c, 𝑃 )1,4 ◁ Use increasing stable revision
end while
if ∃𝑟 ∈ 𝑏𝑜𝑑𝑦𝑠𝑎𝑡(𝑇,𝑃 )(𝒫) ∩ 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠(𝒫) then

backtrack choice or report no answer set.
else

choose some 𝑎 where (𝑇, 𝑃 )(𝑎) = 𝑢 to be 𝑓 or 𝑡
end if

end while
backtrack choice or report no answer set.

end while
Terminate: (𝑇, 𝑃 ) is an answer set

attempt to extend it to a two-valued answer set of 𝒫 . It uses the increasing stable revision operator to
reduce the search space.

5. Discussion

We have introduced recurrent approximators, a new type of approximator that can leverage additional
false information during stable revision. This formalizes the approximators used in our prior work for



hybrid MKNF knowledge bases [4]. The simplicity of this approach is surprising, as approximation
fixpoint theory does not need to be modified to support the technique. As a result, other semantics
defined with approximators could be extended to define more precise variations using our method.
More uses of recurrent approximators remain to be discovered.

Given that the propagations are well-founded, the technique could allow AFT treatment of grounding
procedures. This would be interesting for hybrid MKNF knowledge bases in particular, which have not
received a thorough investigation of grounding techniques. For hybrid MKNF knowledge bases, compu-
ing the well-founded model is intractable [18]. In our prior work, we applied recurrent approximators
to identify a larger class of polynomial computable well-founded models [4]. Such has implications for
grounding. The ability to perform further propagation with false information can likely be applied to
other hybrid reasoning systems such as DL-programs [19] or HEX [20], both of which have received
treatment by AFT.

We’ve shown that recurrent approximators can be made ⪯2
𝑝-monotone. The 𝑜+ operator bears

some resemblance to stable revision in consistent AFT, which limits the image of 𝑆(𝑜)(𝑇, 𝑃 ) s.t.
𝑆(𝑜)(𝑇, 𝑃 ) ⪯2

𝑝 (𝑃, 𝑇 ). The relationship between consistent and traditional AFT is not yet fully
understood. It has been shown that, for nonsymmetric approximators, the stable fixpoints are not the
same for stable revision and consistent stable revision [21]. We believe that recurrent approximators
could play a role in further understanding this relationship because of their ability to limit a stable
operator s.t. 𝑆(𝑜)(𝑇, 𝑃 ) ⪯2

𝑝 (𝑃, 𝑇 ).
Various techniques in answer set solving involve backward-chaining. The recent s(CASP) system [22]

blends forward- and backward-reasoning for answer set programming. Additionally, SAT-solver style
answer set solvers, such as Clingo [23], use a variety of backward-chaining techniques to perform
constraint propagation. It would be interesting to see if these approaches could be characterized using
recurrent AFT.

Acknowledgments

Spencer Killen was partially supported by Alberta Innovates and Alberta Advanced Education.

Declaration on Generative AI

The authors have not employed any Generative AI tools.

References

[1] M. Denecker, V. Marek, M. Truszczyński, Approximations, stable operators, well-founded fixpoints
and applications in nonmonotonic reasoning, in: Logic-Based Artificial Intelligence, Springer,
2000, pp. 127–144. doi:10.1007/978-1-4615-1567-8_6.

[2] L. Vanbesien, M. Bruynooghe, M. Denecker, Analyzing semantics of aggregate answer set pro-
gramming using approximation fixpoint theory, Theory Pract. Log. Program. 22 (2022) 523–537.
doi:10.1017/S1471068422000126.

[3] S. Marynissen, B. Bogaerts, M. Denecker, On the relation between approximation fixpoint theory
and justification theory, in: Z. Zhou (Ed.), Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August
2021, ijcai.org, 2021, pp. 1973–1980. doi:10.24963/ijcai.2021/272.

[4] S. Killen, W. Gao, J. You, Expanding the class of polynomial time computable well-founded
semantics for hybrid MKNF, in: J. Arias, S. Batsakis, W. Faber, G. Gupta, F. Pacenza, E. Papadakis,
L. Robaldo, K. Rückschloß, E. Salazar, Z. G. Saribatur, I. Tachmazidis, F. Weitkämper, A. Z. Wyner
(Eds.), Proceedings of the International Conference on Logic Programming 2023 Workshops co-
located with the 39th International Conference on Logic Programming (ICLP 2023), London, United

http://dx.doi.org/10.1007/978-1-4615-1567-8_6
http://dx.doi.org/10.1017/S1471068422000126
http://dx.doi.org/10.24963/ijcai.2021/272


Kingdom, July 9th and 10th, 2023, volume 3437 of CEUR Workshop Proceedings, CEUR-WS.org,
2023. URL: https://ceur-ws.org/Vol-3437/paper8ASPOCP.pdf.

[5] B. Motik, R. Rosati, Reconciling description logics and rules, J. ACM 57 (2010) 30:1–30:62.
doi:10.1145/1754399.1754403.

[6] S. Roman, Lattices and Ordered Sets, Springer New York, 2008. doi:10.1007/
978-0-387-78901-9.

[7] A. Tarski, A lattice-theoretical fixpoint theorem and its applications., Pacific Journal of Mathematics
5 (1955) 285 – 309. doi:10.2140/pjm.1955.5.285.

[8] F. Liu, J. You, Alternating fixpoint operator for hybrid MKNF knowledge bases as an approximator
of AFT, Theory Pract. Log. Program. 22 (2022) 305–334. doi:10.1017/S1471068421000168.

[9] M. Denecker, V. W. Marek, M. Truszczynski, Ultimate approximation and its application in
nonmonotonic knowledge representation systems, Inf. Comput. 192 (2004) 84–121. doi:10.1016/
J.IC.2004.02.004.

[10] T. C. Przymusinski, The well-founded semantics coincides with the three-valued stable semantics,
Fundam. Inform. 13 (1990) 445–463.

[11] N. D. Belnap, A Useful Four-Valued Logic, Springer Netherlands, Dordrecht, 1977, pp. 5–37.
doi:10.1007/978-94-010-1161-7_2.

[12] M. Gelfond, V. Lifschitz, The stable model semantics for logic programming, in: R. Kowalski, Bowen,
Kenneth (Eds.), Proceedings of International Logic Programming Conference and Symposium,
MIT Press, 1988, pp. 1070–1080. URL: http://www.cs.utexas.edu/users/ai-lab?gel88.

[13] S. Killen, J.-H. You, J. Heyninck, An alternative theory of stable revision for nondeterministic
approximation fixpoint theory and the relationships, in: Thirty-Ninth AAAI Conference on
Artificial Intelligence, AAAI 2025, AAAI Press, 2025.

[14] T. C. Przymusinski, Stable semantics for disjunctive programs, New Gener. Comput. 9 (1991)
401–424. doi:10.1007/BF03037171.

[15] M. Gelfond, V. Lifschitz, Classical negation in logic programs and disjunctive databases, New
Gener. Comput. 9 (1991) 365–386. doi:10.1007/BF03037169.

[16] M. Fitting, Fixpoint semantics for logic programming a survey, Theor. Comput. Sci. 278 (2002)
25–51. doi:10.1016/S0304-3975(00)00330-3.

[17] S. Killen, J. You, Unfounded sets for disjunctive hybrid MKNF knowledge bases, in: M. Bienvenu,
G. Lakemeyer, E. Erdem (Eds.), Proceedings of the 18th International Conference on Principles of
Knowledge Representation and Reasoning, KR 2021, Online event, November 3-12, 2021, 2021, pp.
432–441. doi:10.24963/kr.2021/41.

[18] F. Liu, J. You, Three-valued semantics for hybrid MKNF knowledge bases revisited, Artif. Intell.
252 (2017) 123–138. doi:10.1016/j.artint.2017.08.003.

[19] T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, H. Tompits, Combining answer set programming
with description logics for the semantic web, Artif. Intell. 172 (2008) 1495–1539. URL: https:
//doi.org/10.1016/j.artint.2008.04.002. doi:10.1016/J.ARTINT.2008.04.002.

[20] T. Eiter, G. Ianni, R. Schindlauer, H. Tompits, A uniform integration of higher-order reasoning
and external evaluations in answer-set programming, in: L. P. Kaelbling, A. Saffiotti (Eds.),
IJCAI-05, Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence,
Edinburgh, Scotland, UK, July 30 - August 5, 2005, Professional Book Center, 2005, pp. 90–96. URL:
http://ijcai.org/Proceedings/05/Papers/1353.pdf.

[21] Y. Bi, J.-H. You, Z. Feng, A generalization of approximation fixpoint theory and application, in:
R. Kontchakov, M.-L. Mugnier (Eds.), Web Reasoning and Rule Systems, Springer International
Publishing, Cham, 2014, pp. 45–59.

[22] J. Arias, M. Carro, E. Salazar, K. Marple, G. Gupta, Constraint answer set programming with-
out grounding, Theory Pract. Log. Program. 18 (2018) 337–354. URL: https://doi.org/10.1017/
S1471068418000285. doi:10.1017/S1471068418000285.

[23] M. Gebser, B. Kaufmann, T. Schaub, Conflict-driven answer set solving: From theory to practice,
Artif. Intell. 187 (2012) 52–89. doi:10.1016/j.artint.2012.04.001.

https://ceur-ws.org/Vol-3437/paper8ASPOCP.pdf
http://dx.doi.org/10.1145/1754399.1754403
http://dx.doi.org/10.1007/978-0-387-78901-9
http://dx.doi.org/10.1007/978-0-387-78901-9
http://dx.doi.org/10.2140/pjm.1955.5.285
http://dx.doi.org/10.1017/S1471068421000168
http://dx.doi.org/10.1016/J.IC.2004.02.004
http://dx.doi.org/10.1016/J.IC.2004.02.004
http://dx.doi.org/10.1007/978-94-010-1161-7_2
http://www.cs.utexas.edu/users/ai-lab?gel88
http://dx.doi.org/10.1007/BF03037171
http://dx.doi.org/10.1007/BF03037169
http://dx.doi.org/10.1016/S0304-3975(00)00330-3
http://dx.doi.org/10.24963/kr.2021/41
http://dx.doi.org/10.1016/j.artint.2017.08.003
https://doi.org/10.1016/j.artint.2008.04.002
https://doi.org/10.1016/j.artint.2008.04.002
http://dx.doi.org/10.1016/J.ARTINT.2008.04.002
http://ijcai.org/Proceedings/05/Papers/1353.pdf
https://doi.org/10.1017/S1471068418000285
https://doi.org/10.1017/S1471068418000285
http://dx.doi.org/10.1017/S1471068418000285
http://dx.doi.org/10.1016/j.artint.2012.04.001

	1 Introduction
	2 Preliminaries
	2.1 Approximation Fixpoint Theory
	2.2 Logic Programming

	3 Recurrent Approximators
	3.1 An Illustrative Sketch
	3.2 A Formalization of ΦP

	4 Increasing/Decreasing Approximators
	5 Discussion

