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Abstract
We explore the use of ordered binary decision diagrams (OBDDs) and multi-terminal binary decision diagrams

(MTBDDs) for compiling and executing defeasible reasoning, focusing on System Z, also known as rational

closure. We introduce an OBDD-based algorithm for System Z inference that parallels traditional SAT-based

approaches. Additionally, we investigate the use of MTBDDs for encoding ordinal conditional functions (OCFs),

providing a more general and unified knowledge compilation framework for defeasible reasoning tasks involving

ranking functions. While our primary focus is on System Z, the proposed techniques are applicable to other forms

of defeasible reasoning and conditional logic more broadly. Experimental results demonstrate that OBDDs can

significantly accelerate inference. However, our evaluation is limited to synthetically generated belief bases, and

further research is needed to validate benefits in real-world scenarios. Overall, our findings suggest that binary

decision diagrams offer a promising alternative to SAT-based methods for defeasible reasoning, and warrant

further investigation.

1. Introduction

Defeasible reasoning augments propositional logic with conditionals—statements of the form “if 𝛼, then

typically 𝛽”—whose semantics are inherently non-monotonic. A popular way to interpret such condi-

tionals is Spohn’s ordinal conditional functions (OCFs) [1], which rank possible worlds by plausibility.

System 𝑍 (also known as rational closure) constructs an OCF from a finite belief base of conditionals

[2]. It was shown by Goldszmidt and Pearl (1990) to be equivalent to rational closure [4].

The implementation challenge. Although System 𝑍 enjoys elegant theory, computing its inference

relation is PNP
‖ -complete [5]. Current practice therefore reduces each sub-problem to SAT and relies

on off-the-shelf CDCL solvers. This strategy is easy to code but can become expensive on large or

structurally complex inputs.

Knowledge compilation to the rescue. Knowledge compilation tackles intractability by prepro-

cessing a formula into a target language that supports polynomial-time queries [6]. Ordered binary

decision diagrams (OBDDs) are a well-known target whose strengths include constant-time equivalence

checking and fast model counting [7]. Our first contribution shows how the classic SAT-based algorithm

for System 𝑍 can be translated, step for step, into OBDD operations.

From OBDDs to ADDs. Because an OBDD stores only Boolean values in its sinks, a query may

still have to inspect several ranks before reaching a conclusion. We therefore turn to multi-terminal

BDDs (MTBDDs, or ADDs) [8, 9], whose sinks can carry arbitrary finite values. Encoding the rank

itself in each sink yields a single diagram for the whole OCF and reduces every inference to a constant

number of apply calls. The same idea extends to other ranking-based formalisms such as lexicographic

closure [10] and 𝑐-representations [11], giving a unified compilation framework.
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Preliminary results. On synthetically generated belief bases with up to 20 variables, our OBDD

solver answers queries up to 100× faster than a SAT baseline, while the MTBDD version is up to 50×
faster. The speed-up decreases with input size because random formulas lack the regularities that BDDs

exploit for compactness, and real-world datasets for conditional logic are still rare. Nonetheless, the

gains confirm that decision diagrams are a credible alternative to SAT.

Contributions. We summarize the main contributions of this paper as follows:

• An OBDD-based re-implementation of SAT-style System 𝑍 inference.

• An ADD compilation that directly encodes the System 𝑍 ranking function.

• An empirical comparison of SAT, OBDD, and ADD engines on synthetic data.

2. Preliminaries

In this section, we survey the necessary preliminaries on propositional logic (Sec. 2.1), conditional logic

(Sec. 2.2), ordinal conditional functions (Sec. 2.3) and inductive inference (Sec. 2.4). Lastly, we provide

the necessary preliminaries on ordered binary decision diagrams and diagram synthesis (Sec. 2.5).

2.1. Propositional Logic

Assuming a finite set of 𝑛 boolean variables Σ, we fix a variable ordering 𝑥0, 𝑥1, . . . , 𝑥𝑛−1. This ordering

remains fixed for all formulas in our propositional language ℒΣ (abbreviated to ℒ), which is constructed

using the usual connectives of propositional logic. A classical interpretation or possible world is a

mapping 𝜔 : Σ ↦→ {⊤,⊥}. The set of all such interpretations is Ω. We write 𝜔 |= 𝜙 if 𝜔 satisfies 𝜙, and

𝜔 ̸|= 𝜙 otherwise. The set of models of a formula 𝜙 is Mods(𝜙) = {𝜔 ∈ Ω | 𝜔 |= 𝜙}. For clarity, we

sometimes write 𝜙(𝑣0, 𝑣1, . . . , 𝑣𝑛−1) to denote the formula obtained by replacing each instance of 𝑥𝑖 in

𝜙 with 𝑣𝑖 ∈ {⊤,⊥, 𝑥𝑖}. If the assignment is clear or not relevant, we simply write 𝜙(𝜔) to denote the

formula resulting when every instance of 𝑥𝑖 is replaced by its truth assignment in 𝜔.

Definition 1 (conditioning). The conditioning of 𝜙 on a variable 𝑥𝑖 and constant 𝑐 ∈ {⊤,⊥} is the

formula obtained by replacing all instances of 𝑥𝑖 in 𝜙 with 𝑐. We denote this by

𝜙𝑥𝑖=𝑐 = 𝜙(𝑥0, . . . , 𝑥𝑖−1, 𝑐, 𝑥𝑖+1, . . . , 𝑥𝑛−1).

In the literature, 𝜙𝑥𝑖=⊤ and 𝜙𝑥𝑖=⊥ are often referred to the positive and negative cofactors of 𝜙 with

respect to 𝑥𝑖.

2.2. Defeasible Reasoning With Conditionals

Propositional logic is extended to conditional logic by introducing conditionals, statements of the form

(𝛽 | 𝛼). The language of propositional conditional logic is given by (ℒ | ℒ) = {(𝛽 | 𝛼) | 𝛼, 𝛽 ∈ ℒ}.
For a world 𝜔, it is useful to define the semantics of conditionals as generalized indicator functions [12]:

(𝛽 | 𝛼)(𝜔) =

⎧⎪⎨⎪⎩
⊤, if (𝛼 ∧ 𝛽)(𝜔) = ⊤,
⊥, if (𝛼 ∧ ¬𝛽)(𝜔) = ⊤,
×, otherwise.

A world 𝜔 verifies a conditional 𝛿 if 𝛿(𝜔) = ⊤, falsifies it if 𝛿(𝜔) = ⊥, and is irrelevant otherwise (i.e.

when 𝜔 |= ¬𝛼, denoted 𝛿(𝜔) = ×). For a belief base Δ (a finite set of conditionals), we write:

Δ(𝜔) =

⎧⎪⎨⎪⎩
⊤, if ∀𝛿 ∈ Δ, 𝛿(𝜔) = ⊤,
⊥, if ∃𝛿 ∈ Δ, 𝛿(𝜔) = ⊥,
×, otherwise.



Intuitively, the value × marks worlds where the antecedent 𝛼 of a conditional is false—so the statement

is irrelevant—and, for a belief base Δ, it indicates that no conditional is falsified and at least one is

irrelevant. To use classical reasoning tools, one often uses materialization ℳ(𝛽 | 𝛼) = 𝛼 → 𝛽,

where (𝛼→ 𝛽) is considered only to check falsifications. We extend this to a belief base Δ such that

ℳ(Δ) =
⋀︀
{ℳ(𝛿) | 𝛿 ∈ Δ}.

2.3. Ordinal Conditional Functions

Ordinal conditional functions (OCFs) or ranking functions are a well- known semantics for conditional

logic introduced by Spohn [1988]. They assign to each world 𝜔 a non-negative integer reflecting its

degree of surprise. Higher values indicate less plausibility, and∞ impossibility.

Definition 2 (Ranking Function). A ranking function is a mapping 𝜅 : Ω → N ∪ {∞}. It extends to

formulas by

𝜅(𝜙) = min{𝜅(𝜔) | 𝜔 |= 𝜙},

with 𝑚𝑖𝑛∅ = ∞. We say 𝜅 accepts (𝛽 | 𝛼) if 𝜅(𝛼 ∧ 𝛽) < 𝜅(𝛼 ∧ ¬𝛽). In other words, a ranking

function accepts (𝛽 | 𝛼) if all the most plausible worlds satisfying 𝛼 also satisfy 𝛽. Also, |𝜅| denotes

|{ 𝑖 | ∃𝜔 ∈ Ω, 𝜅(𝜔) = 𝑖}| for 𝑖 <∞.

2.4. Inductive Inference and System Z

Inductive inference, or defeasible inference, involves the use of inference relations |∼Δ derived from a

conditional belief base Δ, known as inductive inference operators. Ranking functions offer a common

basis for generating a relation |∼𝜅
, where 𝛼 |∼𝜅 𝛽 holds if 𝜅 accepts (𝛽 | 𝛼). Notable examples of

such inference relations generated from ranking functions include System Z [2] (equivalent to rational

closure [4]), lexicographic closure [10], and c-representations [11]. This paper focuses on System Z.

System Z partitions a finite belief base Δ into groups of conditionals (a Z-partitioning) such that

each group collects conditionals mutually “tolerable.” A conditional 𝛿 is tolerated by Δ if there is some

𝜔 for which 𝛿(𝜔) = ⊤ and Δ(𝜔) ̸= ⊥. Classical formulas 𝛼 can also be included in Δ by representing

them as conditionals (⊥ | ¬𝛼). Such conditionals are inherently intolerable and are assigned to Δ∞.

The System Z ranking function 𝜅𝑍Δ is then defined through this partitioning.

Definition 3 (Z-partitioning and Z-Ranking). Let 𝑍Δ = (Δ0,Δ1, . . . ,Δ∞) be the Z-partitioning of Δ,

where Δ0 = {𝛿 ∈ Δ | Δ tolerates 𝛿} and (Δ1, . . . ,Δ∞) is the Z-partitioning of Δ ∖Δ0. The System Z

ranking 𝜅𝑍Δ is given by

𝜅𝑍Δ(𝜔) = min{ 𝑖 |
(︀⋃︁
𝑗≥𝑖

Δ𝑗

)︀
(𝜔) ̸= ⊥} (min ∅ =∞).

Intuitively, the Z-ranking orders worlds by how badly they violate the belief base: worlds satisfying

all high-priority (more tolerable) conditionals get lower ranks, while those that break less tolerable ones

are pushed to higher ranks, with classically impossible worlds assigned rank∞. Classical formulas

thus establish an initial distinction between worlds with finite ranks 𝑖 ∈ N and those deemed classically

impossible (assigned rank∞). Once the ranking function 𝜅𝑍Δ has been generated for a given belief base

Δ, it can then be used to perform inference under System Z.

Definition 4 (Z-inference). Given a belief base Δ, the inference relation |∼𝑍
Δ corresponding to System Z

inference is defined according to 𝜅𝑍Δ such that 𝛼 |∼𝑍
Δ 𝛽 iff 𝜅𝑍Δ accepts (𝛽 | 𝛼).

Example 1. Let

Δ =
{︀
(𝑤 | 𝑏),
(𝑓 | 𝑏),
(¬𝑓 | 𝑝),
(⊥ | ¬(𝑝→ 𝑏))

}︀
,



with 𝑏 = bird, 𝑝 = penguin, 𝑤 = has wings, and 𝑓 = can fly. System Z yields the partition

Δ0 = {(𝑤 | 𝑏), (𝑓 | 𝑏)},
Δ1 = {(¬𝑓 | 𝑝)},
Δ∞ = {(⊥ | ¬(𝑝→ 𝑏))}.

The induced ranking function 𝜅𝑍Δ assigns:

𝜅𝑍Δ(𝑝 ∧ 𝑏 ∧ 𝑓) = 2,

𝜅𝑍Δ(𝑝 ∧ 𝑏 ∧ ¬𝑓) = 1,

𝜅𝑍Δ(𝑝 ∧ ¬𝑏) =∞,
𝜅𝑍Δ(¬𝑝 ∧ 𝑏 ∧ 𝑓 ∧ 𝑤) = 0,

𝜅𝑍Δ(¬𝑝 ∧ 𝑏 ∧ 𝑓 ∧ ¬𝑤) = 1,

𝜅𝑍Δ(¬𝑝 ∧ 𝑏 ∧ ¬𝑓) = 1,

𝜅𝑍Δ(¬𝑝 ∧ ¬𝑏) = 0.

From this we infer, for instance:

𝑏 ∧ ¬𝑓 ̸|∼𝑍
Δ 𝑝, 𝑏 ∧ ¬𝑓 ̸|∼𝑍

Δ ¬𝑝, 𝑝 ̸|∼𝑍
Δ 𝑤.

2.5. OBDD Based Knowledge Compilation

Knowledge compilation seeks to address the computational difficulty inherent in general propositional

reasoning by dividing the task of query answering into two distinct phases:

Off-line Compile a general propositional formula 𝜙 ∈ ℒ into a logically equivalent representation

𝐹 ∈ 𝒯 , for a more computationally tractable target language 𝒯 . Although this compilation step

may be exponentially expensive in the worst case, it is performed only once.

On-line Efficiently answer queries, typically in polynomial time, using the previously compiled repre-

sentation 𝐹 .

The underlying rationale is that an initial, computationally intensive compilation phase significantly

reduces the complexity of subsequent queries, effectively amortizing the initial compilation cost over

multiple queries. A query 𝑞 (e.g., satisfiability, entailment, or model counting) is considered tractable on

a target language 𝒯 if there exists an algorithm that, for every formula 𝐹 ∈ 𝒯 , determines 𝑞(𝐹 ) within

polynomial time relative to the size |𝐹 | of its representation in 𝒯 . In this paper, the primary query

under consideration is entailment checking. Consequently, our analysis will focus on two prominent

target languages: CNF (Conjunctive Normal Form), the standard input format for most SAT solvers,

and OBDD (Ordered Binary Decision Diagrams), commonly used for tractable and efficient entailment

checking.

Definition 5 (CNF). A formula 𝜙 is in the language CNF if it can be expressed as:

𝜙 =

𝑚⋀︁
𝑖=1

𝜗𝑖, 𝜗𝑖 =

𝑘𝑖⋁︁
𝑗=1

ℓ𝑖𝑗 ,

where each literal ℓ𝑖𝑗 is either 𝑥 or ¬𝑥 for some variable 𝑥 ∈ Σ. The size |𝜙| is defined as the total number

of literal occurrences in 𝜙.

SAT solving on general CNF formulas is a well-known problem in NP, and thus CNF does not qualify

as a tractable target language for entailment checking. The next target language we consider, OBDD, is

in fact tractable for many key queries—most notably entailment checking. Ordered Binary Decision

Diagrams were first proposed by Bryant [7], building on earlier work by Lee [13] and Akers [14], and

remain the most prominent tractable representation in the literature.



Definition 6 (OBDD-structure). A graph Ψ is in the language OBDD if it is a rooted, directed acyclic

graph with two types of nodes:

• Variable nodes: Each has an index I(𝜈) < 𝑛 and two child nodes T(𝜈) and F(𝜈) satisfying

I(𝜈) < I(T(𝜈)) and I(𝜈) < I(F(𝜈)).

• Sink nodes: Each has a value V(𝜈) ∈ {⊤,⊥}.
Each variable node 𝜈 corresponds to a variable 𝑥𝑖 where I(𝜈) = 𝑖. Any world 𝜔 traces a unique path

from the root: going to T(𝜈) if 𝜔 |= 𝑥𝑖, and to F(𝜈) if 𝜔 |= ¬𝑥𝑖, until a sink node is reached. Therefore,

an OBDD is a graphical representation of the semantic behavior of all Boolean formulas equivalent to

some formula 𝛼, defined recursively as follows.

Definition 7 (OBDD-representation). An OBDD Ψ with root 𝜈 represents all formulas equivalent to 𝜙,

where 𝜙 is defined as follows:

• If 𝜈 is a sink node, then 𝜙 ≡ ⊤ if V(𝜈) = ⊤, or 𝜙 ≡ ⊥ if V(𝜈) = ⊥.

• If 𝜈 is a variable node with I(𝜈) = 𝑖, then

𝜙 ≡
(︀
𝑥𝑖 ∧ 𝜙𝑥𝑖=⊤

)︀
∨

(︀
¬𝑥𝑖 ∧ 𝜙𝑥𝑖=⊥

)︀
,

with T(𝜈) and F(𝜈) representing formulas equivalent to 𝜙𝑥𝑖=⊤ and 𝜙𝑥𝑖=⊥, respectively.

This relies on Shannon expansion [15] (also known as Boole’s expansion theorem [16]), where a formula

is recursively decomposed into positive and negative cofactors for each variable in the ordering.

Definition 8 (Isomorphic). Two OBDDs, Ψ1 and Ψ2, are isomorphic provided there exists a bijection 𝜓
between their nodes such that for every node 𝜈1 in Ψ1 with 𝜓(𝜈1) = 𝜈2 in Ψ2, one of the following holds:

• Both 𝜈1 and 𝜈2 are sink nodes with V(𝜈1) = V(𝜈2).

• Both 𝜈1 and 𝜈2 are variable nodes with I(𝜈1) = I(𝜈2), and the bijection preserves their children:

𝜓(T(𝜈1)) = T(𝜈2) and 𝜓(F(𝜈1)) = F(𝜈2).

Definition 9 (Reduced). An OBDD is fully reduced if it contains no redundant nodes such thatT(𝜈) = F(𝜈)
and no pair of isomorphic subgraphs.

In practice, an “OBDD” refers by default to a fully reduced diagram. This complete reduction yields

a unique, canonical form for each Boolean function, making equivalence checking a straightforward

graph-isomorphism test. Moreover, when compiling multiple functions, it is standard to embed them

in a single shared DAG: identical subgraphs are factored out and reused, resulting in a very compact

representation that exploits redundancy across formulas, an example of this is shown in Figure 4.

2.5.1. General Complexity of OBDD Operations

Most OBDD transformations rely on Bryant’s apply algorithm [7], which performs Boolean operations

(e.g. ∧, ∨, ⊕) by simultaneously traversing two operand diagrams and at the same time producing

the diagram resulting from the operation. In practice, one compiles a complex formula by recursively

descending its parse tree and invoking apply at each connective—this “recursive-descent parsing”

makes apply the workhorse of OBDD construction.

A crucial feature is that each reduced subgraph is assigned a unique numeric ID. Whenever apply
produces a new subgraph, it checks whether an identical one (i.e. isomorphic) has been seen before; if

so, it reuses that existing ID. This scheme means that two OBDDs represent the same function precisely

when their root IDs coincide—equivalence checking reduces to a single ID comparison in 𝑂(1) time.

Memoization further accelerates apply by caching every computed result for a given pair of operand

IDs and operator. If the same operation is requested again, apply simply looks up the cached outcome

instead of re-descending the diagrams. Together, these ideas guarantee that apply runs in𝑂(|Ψ1| · |Ψ2|)
time in the worst case, while trivializing equivalence tests and leaving other queries—satisfiability

in 𝑂(1), model counting in 𝑂(|Ψ|), and model evaluation in 𝑂(𝑛)—as simple graph traversals or ID

checks.



Operation Time Complexity

Satisfiability 𝑂(1)
apply 𝑂(|Ψ1| · |Ψ2|)
Equivalence checking 𝑂(1)
Model counting 𝑂(|Ψ|)
Model evaluation (assignment) 𝑂(𝑛)

Table 1
Time complexity of common queries and transformations on an OBDD Ψ, or two OBDDs Ψ1 and Ψ2.

2.5.2. Variable Ordering

The succinctness of an OBDD depends critically on the variable ordering chosen—a problem that is

NP-hard in the worst case [17]. Thankfully, a range of effective heuristics (such as sifting, dynamic

reordering, and even genetic-algorithm approaches) typically find good orders in practice. Even so, most

arbitrary Boolean functions admit no compact OBDD representation, and exponential blow-up remains

possible. The practical power of OBDDs, therefore, derives largely from the fact that meaningful, real-

world formulas often exhibit substantial structural regularity and redundancy, which these diagrams

can exploit to remain tractable.

3. A SAT–Based Implementation of System Z

Constructing the𝑍–partition of a conditional belief base is FPNP
‖ -complete, and performing𝑍–inference

once this partition is known is PNP
‖ -complete [18, 5]. In the absence of an NP-oracle, the standard

remedy is to reduce the relevant sub-tasks to instances of propositional satisfiability and to rely on a

modern SAT solver—typically a conflict-driven clause-learning (CDCL) engine [19, 20, 21]—to answer

each query.

3.1. Encoding the Z–partition

Definition 10 (Z-vector). Let (Δ0,Δ1, . . . ,Δ∞) be the 𝑍–partition of Δ. The 𝑍-vector (𝛿𝑍0 , . . . , 𝛿
𝑍
𝑛 )

is obtained by

𝛿𝑍𝑖 = ℳ
(︁⋃︁
𝑗≥𝑖

Δ𝑗

)︁
,

whereℳ materialises every conditional as an implication and 𝑛 is the largest index that actually occurs:

𝑛 =

⎧⎨⎩min{ 𝑖 | Δ𝑖 = ∅} if Δ∞ ̸= ∅,

max{ 𝑖 | Δ𝑖 ̸= ∅} otherwise.

Each component 𝛿𝑍𝑖 is translated once into CNF and handed to the SAT solver as a separate formula.

3.2. SAT procedure for Z–inference

Freund’s original SAT-based procedure [22], refined by Casini et al. [23], is reproduced in Algorithm 1.

The routine scans the 𝑍-vector from the lowest to the highest rank, searching for the first level whose

conjunction with the antecedent 𝛼 is satisfiable. Once such a level 𝑖 is found, a second SAT call decides

whether some world of the same rank also violates the consequent 𝛽.

Complexity. In the worst case the loop invokes the solver |𝜅𝑍Δ| times; each call can take 𝑂(2|Σ|),
giving a bound of 𝑂(|𝜅𝑍Δ| · 2|Σ|).



Input: 𝑍–vector (CNF(𝛿𝑍0 ), . . . ,CNF(𝛿
𝑍
𝑛 )); conditional (𝛽 | 𝛼)

Output: true iff 𝜅𝑍Δ accepts (𝛽 | 𝛼)
𝛼← CNF(𝛼)
¬𝛽 ← CNF(¬𝛽)
𝑖← 0
while 𝑖 ≤ 𝑛 do

𝛿 ← 𝛿𝑍𝑖 ∧ 𝛼
if SAT(𝛿) then

return ¬SAT( 𝛿 ∧ ¬𝛽 )
end
𝑖← 𝑖+ 1

end
return false

Algorithm 1: ZinfSAT

3.3. Correctness

Lemma 1. For the 𝑍-vector (𝛿𝑍0 , . . . , 𝛿
𝑍
𝑛 ) of Δ,

{𝜔 | 𝜅𝑍Δ(𝜔) = 0} = Mods(𝛿𝑍0 ),

and for every 𝑖 > 0,

{𝜔 | 𝜅𝑍Δ(𝜔) = 𝑖} = Mods(𝛿𝑍𝑖 ) ∖ Mods(𝛿𝑍𝑖−1).

Proof. Straightforward induction on 𝑖, using 𝜅𝑍Δ(𝜔) = min{𝑗 | (
⋃︀

𝑘≥𝑗 Δ𝑘)(𝜔) ̸= ⊥}.

Theorem 2. For any belief base Δ with 𝑍-vector (𝛿𝑍0 , . . . , 𝛿
𝑍
𝑛 ) and any conditional (𝛽 | 𝛼), ZinfSAT

terminates and returns true exactly when 𝜅𝑍Δ accepts (𝛽 | 𝛼).

Proof. Termination follows from the bounded loop over 𝑖. For soundness, let 𝑖 = 𝜅𝑍Δ(𝛼). By Lemma 1,

𝛿𝑍𝑖 ∧𝛼 is satisfiable and 𝛿𝑍𝑗 ∧𝛼 is unsatisfiable for 𝑗 < 𝑖, so the loop stops at the correct level. Acceptance

then hinges on the (un)satisfiability of 𝛿𝑍𝑖 ∧ 𝛼 ∧ ¬𝛽, which equals 𝜅𝑍Δ(𝛼 ∧ ¬𝛽) = 𝑖. Completeness is

the converse argument.

4. An OBDD–Based Implementation of System Z

Binary decision diagrams are a natural alternative to the SAT encoding of Sect. 3: equivalence checking

is constant-time, Boolean operations are handled by a single apply routine. We therefore compile

each level of the 𝑍–partition into an OBDD, obtaining the OBDD 𝑍-vector (Ψ𝑍
0 , . . . ,Ψ

𝑍
𝑛 ), and answer

queries by a short sweep through that vector. An example of the optimal shared DAG representing the

OBDD Z-vector for the belief base in Example 1 is illustrated in Figure 1.

4.1. OBDD procedure for Z–inference

Let Ψ𝛼 and Ψ𝛽 be the OBDDs for 𝛼 and 𝛽. Algorithm 2 (ZinfOBDD) tests successive ranks until it finds

the first 𝑖 such that Ψ𝑍
𝑖 ∧Ψ𝛼 is satisfiable; a second test then checks whether any world of that same

rank falsifies 𝛽.

Complexity. An apply call on two diagrams of size |Ψ𝑍
𝑖 | and |Ψ𝛼| runs in 𝑂(|Ψ𝑍

𝑖 | · |Ψ𝛼|). In the

worst case the loop iterates |𝜅𝑍Δ| times, giving

𝑂
(︀
|Ψ𝛼| ·

∑︀|𝜅𝑍
Δ|

𝑖=0 |Ψ𝑍
𝑖 |
)︀
,

which improves on the SAT bound 𝑂(|𝜅𝑍Δ| · 2|Σ|) whenever the diagrams are compact.



Figure 1: Shared DAG representing Z-vector from Example 1

Input: 𝑍-vector (OBDD(Ψ𝑍
0 ), . . . ,OBDD(Ψ

𝑍
𝑛 )); conditional (𝛽 | 𝛼)

Output: true iff 𝜅𝑍Δ accepts (𝛽 | 𝛼)
Ψ𝛼 ← OBDD(𝛼)
¬Ψ𝛽 ← OBDD(¬𝛽)
𝑖← 0
while 𝑖 ≤ 𝑛 do

Ψ← Ψ𝑍
𝑖 ∧Ψ𝛼

if Ψ ̸= ⊥ then
return

(︀
Ψ ∧ ¬Ψ𝛽

)︀
= ⊥

end
𝑖← 𝑖+ 1

end
return false

Algorithm 2: ZinfOBDD

4.2. Correctness

Theorem 3. Given the OBDD 𝑍-vector (Ψ𝑍
0 , . . . ,Ψ

𝑍
𝑛 ) and an OBDD conditional (Ψ𝛽 | Ψ𝛼), ZinfOBDD

terminates and returns true exactly when 𝜅𝑍Δ accepts (𝛽 | 𝛼).

Proof. Termination is immediate from the bounded loop. By Lemma 1, Ψ𝑍
𝑖 ∧Ψ𝛼 ̸= ⊥ holds precisely

when 𝜅𝑍Δ(𝛼) = 𝑖. The additional test Ψ ∧ ¬Ψ𝛽 = ⊥ is therefore equivalent to 𝜅𝑍Δ(𝛼 ∧ ¬𝛽) > 𝜅𝑍Δ(𝛼),
i.e. to the acceptance criterion for (𝛽 | 𝛼) under System Z.

5. An ADD Representation of System Z

An algebraic decision diagram (ADD) [9, 8] is a rooted, directed acyclic graph analogous to an OBDD,

except that its sink nodes may carry values from an arbitrary finite domain 𝑅 rather than just ⊤,⊥.

ADDs inherit the efficient reduce and apply algorithms of OBDDs, making them a powerful compila-

tion target for a wide range of reasoning tasks. By generalizing this compilation target to encompass

arbitrary ranking functions, we obtain a single, coherent knowledge-compilation framework for all

defeasible-reasoning formalisms based on ordinal conditional functions. In particular, this unified

approach subsumes not only System Z but also other ranking-based inference mechanisms such as

lexicographic closure [10] and c-representations [11]. Because the compiled structure directly encodes

the ranking function, it additionally permits efficient execution of model-centric operations—including

model checking, model enumeration, and model counting—without resorting to costly SAT-based

procedures. We therefore refer to any multi-terminal BDD over N ∪ {∞} that represents a ranking

function as a ranked binary decision diagram (RBDD).



5.1. Representation

Definition 11 (RBDD). A reduced ADD Ψ𝜅
whose sinks are labelled by non-negative integers or∞ is an

RBDD. Every variable node 𝜈 (index I(𝜈)) has high and low children T(𝜈) and F(𝜈) consistent with the

variable ordering. Additionally, we record at every node the set of reachable ranks

R(𝜈) =

{︃
{V(𝜈)} 𝜈 sink,

R(T(𝜈)) ∪ R(F(𝜈)) otherwise,

which later allows 𝑂(1) existence checks, and 𝑂(𝑛) model checking for a given rank.

We say any graph adhereing to these requirements is in the language RBDD. Before giving the

recursive semantics of an RBDD, we must introduce the notion of conditioning, which captures how

a ranking function behaves when one variable is fixed. Conditioning yields sub-ranking functions

corresponding to each truth value of the chosen variable, and will serve as the basis for the node-wise

interpretation of the diagram.

Definition 12 (Conditioning / cofactor of a ranking function). Let 𝜅 : Ω → N ∪ {∞} be a ranking

function over the set of worlds Ω, and let 𝑥𝑖 ∈ Σ be a propositional variable. For 𝑐 ∈ {⊤,⊥}, the

conditioning (or cofactor) of 𝜅 with respect to 𝑥𝑖 = 𝑐 is the function

𝜅𝑥𝑖=𝑐(𝜔) = 𝜅
(︀
𝜔[𝑥𝑖 ↦→𝑐]

)︀
, 𝑐 ∈ {⊤,⊥},

where 𝜔[𝑥𝑖 ↦→𝑐] denotes the world obtained from 𝜔 by fixing the value of 𝑥𝑖 to 𝑐 while leaving all other

variables unchanged.

Conditioned on different values of 𝑥𝑖, each sub-ranking function 𝜅𝑥𝑖=𝑐 restricts 𝜅 to a simpler domain,

capturing its behavior when 𝑥𝑖 is permanently fixed. By iterating this process over successive variables,

we generate a hierarchy of increasingly specialized ranking functions. An RBDD compactly represents

this entire hierarchy: each internal node corresponds to one such conditioning step, and its outgoing

edges lead to the sub-ranking functions that arise when the node’s variable is set to ⊤ or ⊥.

Definition 13 (Recursive semantics of an RBDD). Let 𝜈 be the root of Ψ𝜅
. The ranking function

represented by the diagram is defined recursively:

• Sink node. If 𝜈 is a sink, then 𝜅(𝜔) = V(𝜈) for all worlds 𝜔.

• Variable node. If I(𝜈) = 𝑖, denote by 𝜅+ = 𝜅𝑥𝑖=⊤ the function represented by T(𝜈) and by

𝜅− = 𝜅𝑥𝑖=⊥ the function represented by F(𝜈). Then for every world 𝜔

𝜅(𝜔) =

⎧⎨⎩𝜅
+(𝜔) if 𝜔 |= 𝑥𝑖,

𝜅−(𝜔) otherwise.

The optimal RBDD for the belief base in Example 1 is shown in Figure 2.

Figure 2: MTBDD representing 𝜅𝑍Δ



5.2. Compilation

The usual OBDD reduction rules—eliminating redundant nodes and merging isomorphic

sub-graphs—carry over unchanged, and we henceforth treat every RBDD as fully reduced unless

noted otherwise. As argued earlier, the practical construction of large decision diagrams proceeds

by successive applications of the apply algorithm: complex structures are built from a collection of

smaller, already-compiled components. For System Z we first compile each level of the Z-partitioning

into an OBDD, obtaining the Z-vector (Ψ𝑍
0 , . . . ,Ψ

𝑍
𝑛 ) such that Ψ𝑍

𝑖 = OBDD(𝛿𝑍𝑖 ). These OBDDs can

then be relabelled and combined to yield a single RBDD encoding the entire System Z ranking function,

as stated next.

Theorem 4. Let (Ψ𝑍
0 , . . . ,Ψ

𝑍
𝑛 ) be the OBDD Z-vector of a belief base Δ. Replace every sink label ⊤ in

Ψ𝑍
𝑖 by the integer 𝑖 and every sink label ⊥ by∞. Then

Ψ𝑍
𝜅 = min

(︀
Ψ𝑍

0 ,Ψ
𝑍
1 , . . . ,Ψ

𝑍
𝑛

)︀
is an RBDD that represents the System Z ranking function 𝜅𝑍Δ.

Proof. By Lemma 1, the OBDD Ψ𝑍
𝑖 (after relabelling) evaluates to a finite rank ≤ 𝑖 precisely on those

worlds whose System Z rank is at most 𝑖, and to∞ otherwise. Taking the pointwise minimum of these

diagrams therefore assigns to each world 𝜔 the smallest 𝑖 for which 𝜅𝑍Δ(𝜔) = 𝑖; if no such 𝑖 exists,

every operand contributes∞ and the minimum is∞. Consequently the resulting diagram encodes

exactly 𝜅𝑍Δ.

5.3. Defeasible Entailment

We now show how a constant number of apply operations suffices to decide whether a conditional

(𝛽 | 𝛼) is accepted by a ranking function 𝜅 represented as an RBDD Ψ𝜅. The key is an operator that

restricts a rank to cases in which a Boolean formula holds and maps all other cases to∞.

Definition 14 (Restriction operator ∝). For 𝑣1 ∈ N ∪ {∞} and 𝑣2 ∈ {⊤,⊥} define

𝑣1 ∝ 𝑣2 =

{︃
𝑣1 if 𝑣2 = ⊤,
∞ if 𝑣2 = ⊥.

Given an RBDD Ψ𝜅 and an OBDD Ψ𝜙, the diagram Ψ𝜅 ∝ Ψ𝜙 is obtained by applying this operator

node-wise via the standard apply algorithm. The result is an RBDD that represents the restricted ranking

function

𝜅𝜙(𝜔) =

{︃
𝜅(𝜔) if 𝜔 |= 𝜙,

∞ otherwise.

Let Ψ𝛼 and Ψ𝛽 be the OBDDs for 𝛼 and 𝛽, respectively, and set

𝜈1 = root(Ψ𝜅 ∝ Ψ𝛼), 𝜈2 = root
(︀
(Ψ𝜅 ∝ Ψ𝛼) ∝ ¬Ψ𝛽

)︀
.

Theorem 5. The ranking function 𝜅 accepts the conditional (𝛽 | 𝛼) iff

minR(𝜈1) < minR(𝜈2).

Proof. If 𝜅(𝛼) = ∞ then Ψ𝜅 ∝ Ψ𝛼 is a single sink labelled ∞, and the second synthesis yields

the same; the inequality fails and the conditional is rejected. Otherwise minR(𝜈1) = 𝜅(𝛼) and

minR(𝜈2) = 𝜅(𝛼 ∧ ¬𝛽). Hence

minR(𝜈1) < minR(𝜈2) ⇐⇒ 𝜅(𝛼) < 𝜅(𝛼 ∧ ¬𝛽),

which is equivalent to the acceptance condition 𝜅(𝛼 ∧ 𝛽) < 𝜅(𝛼 ∧ ¬𝛽).



Consequently, a single entailment check requires just three apply operations—two applications of

the restriction operator and one final rank comparison—yielding a worst-case time complexity of

𝑂
(︀
|Ψ𝜅| · |Ψ𝛼| · |Ψ𝛽|

)︀
,

which is typically governed by the size of Ψ𝜅. In contrast to the OBDD-based method, which may

invoke apply up to |𝜅| times, our RBDD approach bounds calls to a constant.

5.4. General Complexity of RBDD Operations

Recall that each node 𝜈 stores the set of reachable ranks R(𝜈). This additional cache—absent from

a plain ADD—lets us answer several rank-specific questions without exploring the whole diagram:

for instance, testing whether any world has rank 𝑖 is just the membership check 𝑖 ∈ R(root), and

generating a witness of rank 𝑖 requires at most one edge choice per variable. Combined with the

canonical reduce/apply machinery inherited from OBDDs, these cached rank sets yield the bounds

in Table 2. As usual, |Ψ𝛼| and |Ψ𝛽| are assumed to be tiny compared with |Ψ𝜅|.

Operation on RBDDs Time complexity

Rank lookup 𝜅(𝜔) 𝑂(𝑛)

Existence of rank 𝑖 (𝑖 ∈ R(root)) 𝑂(1)

Diagram equivalence (root ID comparison) 𝑂(1)

Binary synthesis (apply) 𝑂(|Ψ1| · |Ψ2|)
Conditioning by formula 𝛼 𝑂(|Ψ𝜅| · |Ψ𝛼|)
Entailment (𝛽 | 𝛼) 𝑂(|Ψ𝜅| · |Ψ𝛼| · |Ψ𝛽 |)
Model counting 𝜅(𝜔) = 𝑖 𝑂(|Ψ𝜅|)

Table 2
Complexities of common queries and transformations on a ranked binary decision diagram Ψ𝜅. Constant-time
tests rely on the cached rank sets R(𝜈), whereas apply-based operations inherit the usual 𝑂(|Ψ1| · |Ψ2|) worst
case from OBDDs.

6. A Brief Comparison

System-𝑍 inference can be driven by a direct SAT encoding, by per-level OBDDs, or by a single ranked

ADD. The SAT route is parameter-free and benefits from decades of solver engineering, but every

query incurs several solver calls whose worst-case time remains exponential. OBDDs move most

work off-line: once the 𝑍-vector is compiled, an inference requires at most |𝜅| apply calls, yielding

large speed-ups when the diagram stays compact. Replacing the 𝑍-vector by one ADD folds all ranks

into one structure, cutting each query to three apply calls and enabling richer model-level questions.

Because a fully reduced ADD is canonical for its variable ordering, two belief bases induce the same

diagram iff they are equivalent under the chosen OCF semantics; a single root-ID comparison thus

gives the first tractable equivalence test for ranking-based formalisms. Neither decision-diagram method

dominates the other—for some variable orderings an ADD can grow larger than the sum of its OBDD

components—but in the worst case, where a query must examine every rank, the ADD per-query cost is

likely to be much lower.

Aspect SAT OBDD ADD

Compile effort None Per rank Whole ranking
Ordering sens. None High Very high
Per-query cost |𝜅|× SAT |𝜅|× apply 3× apply
Model queries Costly Easy Easiest



(|Δ|, |Σ|) (6,6) (8,8) (10,10) (12,12) (14,14) (16,16) (18,18) (20,20)

SAT 122.22𝜇𝑠 146.37𝜇𝑠 161.17𝜇𝑠 172.28𝜇𝑠 180.78𝜇𝑠 190.69𝜇𝑠 197.93𝜇𝑠 203.24𝜇𝑠

OBDD 1.22𝜇𝑠 1.97𝜇𝑠 2.31𝜇𝑠 2.78𝜇𝑠 3.56𝜇𝑠 4.86𝜇𝑠 6.17 7.92𝜇𝑠
Speedup 100.18 74.3 69.77 61.97 50.78 39.23 32.08 25.66

RBDD 2.4𝜇𝑠 4.06𝜇𝑠 4.98𝜇𝑠 6.82𝜇𝑠 8.38𝜇𝑠 11.01𝜇𝑠 14.39𝜇𝑠 18.53𝜇𝑠
Speedup 50.93 36.05 32.36 25.26 21.57 17.32 13.75 10.97

Table 3
Preliminary runtimes (microseconds) averaged over 1000 queries per setting.

7. Experimental Results

We evaluated ZinfOBDD, ZinfSAT, and inference with RBDDs on the synthetically generated CLKR-

PS004 dataset [24], which contains 100 belief bases with 10 queries each, spanning various (|Δ|, |Σ|)
pairs. We used the CaDiCal solver for SAT [25], which uses CDCL, and CUDD for OBDD and ADD

operations [26]. All were implemented in C++. Correctness of our implementation was also verified

against the implementation used in [27]. The evaluation was run on an M1 Pro with 16GB of RAM.

We used CUDD’s built in dynamic variable ordering algorithm to find a good variable ordering for

representing the OBDDs and ADDs. For our small-scale preliminary analysis we restricted our experi-

ments to belief bases with |Σ| ≤ 20. For fairness, the time required to construct each (Ψ𝛽 | Ψ𝛼) using

diagram synthesis was included in the total inference time for each query.

Table 3 summarizes the average runtimes (in microseconds) over 1000 queries per setting. At smaller

problem sizes, the OBDD and RBDD approaches are up to three orders of magnitude faster than the

SAT based approach, demonstrating that, when OBDDs and RBDDs are relatively compact, they can

significantly speed up inference. As |Δ| and |Σ| grow, however, the speedup narrows in both cases.

This behavior is expected in synthetic data, as purely synthetic belief bases often lack the redundancies

and symmetries OBDDs exploit for efficiency with real-world data. It is well-known that almost all

formulas require at least 2𝑛/2𝑛 nodes even for the optimal ordering [28]. We also observe that the

RBDD approach is consistently approximately half as efficient as the OBDD approach. This is likely

because the queries generated for the dataset were not designed to enforce the worst case, where all

ranks must be checked until a result is achieved. In most instances, both ZinfSAT and ZinfOBDD only

needed to evaluate the lower ranks.

Nonetheless, our results indicate that both OBDDs and RBDDs could offer significant performance

advantages over SAT-based methods. Since large-scale, real-world conditional logic datasets remain

rare, the exact gains are difficult to quantify and will depend on the specific application. At the very

least, these findings demonstrate that these techniques warrant further investigation in real-world

applications.

8. Conclusion and Future Work

Decision diagrams represent a promising alternative to SAT-based methods for performing inference in

System-Z reasoning. Using per-rank OBDDs significantly reduces query time, while employing a single

MTBDD further restricts the worst-case computational cost to three apply operations, irrespective of

the number of ranks. Our empirical evaluation on synthetic datasets demonstrates notable performance

improvements, achieving of up to two orders of magnitude.

Two main factors currently influence the practical adoption of these methods:

• Variable ordering: Existing heuristics are general-purpose and may not exploit characteristics

unique to conditional logic. Tailoring these heuristics specifically for conditional logic could

further reduce diagram sizes or prevent significant size growth.



• Benchmarks: Real-world knowledge bases, such as regulatory rules or semantic-web ontologies,

frequently contain structural redundancies absent in synthetic datasets. Developing and releasing

comprehensive benchmark datasets is crucial for objectively evaluating these methods.

Future work will focus on several key directions:

1. Developing structure-aware reordering methods to optimize variable ordering.

2. Investigating incremental compilation techniques to efficiently update diagrams in response to

changes in the underlying belief base without complete reconstruction.

3. Extending the MTBDD framework to support more expressive ranking-based reasoning for-

malisms.

4. Conducting extensive experiments using large-scale, realistic datasets as they become available.

5. Exploring a broader range of knowledge compilation targets, including sentential decision dia-

grams (SDDs).

Overall, our findings indicate that decision-diagram approaches offer reliable and efficient infer-

ence for defeasible reasoning, with considerable potential for further optimization and expansion to

alternative knowledge compilation representations.
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