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Abstract
Assumption-Based Argumentation (ABA) is a well-established rule-based formalism for modelling and reasoning
in non-monotonic settings, with a wide range of applications. However, the high computational complexity of
core reasoning tasks in ABA poses a significant challenge for its applicability in practice. This issue is further
exacerbated when ABA frameworks (ABAFs) are instantiated into graph-based argumentation formalisms, such
as Dung’s Argumentation Frameworks (AFs) and Argumentation Frameworks with Collective Attacks (SETAFs).
In the context of non-monotonic reasoning, a key strategy to address computational intractability is to optimise
reasoning over a given knowledge base through divide-and-conquer algorithms. A paradigmatic example of
this approach is splitting, where extensions of a given framework are computed incrementally, i.e. restricting
the search space to sub-frameworks only, and then combining the obtained results. This approach has been
successfully applied to SETAFs in the literature. Furthermore, a parametrised version has been introduced for
AFs under stable semantics. However, the exponential growth produced by the instantiation process might
undermine the usefulness of splitting on the argument graphs induced by ABAFs. For this reason, there is a
need for splitting-based algorithms tailored for ABA. To address this issue, our work investigates the concept of
splitting for ABAFs under common semantics. Furthermore, we generalise splitting to its parametrised version
both for SETAFs and ABAFs.
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1. Introduction

Computational models of argumentation in AI [1] offer formal approaches to represent and reason over
situations where contradicting or uncertain information is present. Among these, Assumption-Based
Argumentation (ABA) [2] captures argumentative scenarios by means of so-called ABA frameworks
(ABAFs), consisting of a set of defeasible sentences (assumptions) and inference rules. Argumentative
reasoning is then performed in a two-step process: first an argument graph comprising arguments and
their relations is generated from the ABAF, by means of the so-called instantiation procedure; then,
argumentation semantics are applied to the obtained graph in order to find acceptable sets of arguments.

Although ABA is a well-established formalism to perform non-monotonic reasoning, with applications
in medical decision-making, explainable AI and, more recently, causal discovery [3, 4, 5], the high
computational complexity of core reasoning tasks in ABA poses a significant challenge for its deployment
in practice. This issue is further exacerbated when ABA frameworks are instantiated into abstract
argumentation formalisms [6], such as Dung’s Argumentation Frameworks (AFs) [7] and Argumentation
Frameworks with Collective Attacks (SETAFs) [8].

In the context of non-monotonic reasoning, one prominent strategy to address computational in-
tractability is to optimise reasoning over a given knowledge base through divide-and-conquer algorithms.
A paradigmatic example of this approach is splitting, originally developed for answer-set programming
[9] and later adapted to other nonmonotonic formalisms, e.g. default theories [10] and recently Abstract
Argumentation [11, 12, 13, 14]. This approach focuses on incrementally computing the extensions of a
given abstract argumentation framework by means of the extension of its sub-frameworks, thereby
avoiding to consider the entire solution-space of the original framework. Nonetheless, when applied to
argument graphs derived from ABAFs, the exponential blow-up caused by the instantiation process
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can invalidate the usefulness of splitting. This motivates the need for splitting techniques that operate
directly on ABAFs. To this end, this paper makes the following contributions:

• We begin by reviewing existing notions of splitting for AFs (Section 2) and SETAFs (Section 3).
• We then introduce a novel notion of ABA splitting in Section 4, along with the syntactic adjust-

ments required to establish a splitting theorem, which we prove under standard argumentation
semantics.

• In Section 5, we extend our results to the more general framework of parameterised splitting [12],
showing that under the stable semantics, a splitting theorem holds for both ABAFs and SETAFs.

• Finally, Section 6 concludes with a summary and outlines directions for future research.

2. Preliminaries

Assumption-Based Argumentation We recall here the basic concepts of assumption-based argu-
mentation (ABA) [15]. Debates are represented by means of so-called ABA Frameworks (ABAFs), which
consist of a deductive system (ℒ,ℛ), where ℒ is a set of sentences, andℛ is a set of rules over ℒ. A
rule 𝑟 ∈ ℛ has the form 𝑎0 ← 𝑎1, . . . , 𝑎𝑛 with 𝑎𝑖 ∈ ℒ, 𝑏𝑜𝑑𝑦(𝑟) = {𝑎1, . . . , 𝑎𝑛} and ℎ𝑒𝑎𝑑(𝑟) = 𝑎0.

Definition 1. An ABAF is a tuple (ℒ,ℛ,𝒜, ), where (ℒ,ℛ) is a deductive system, 𝒜 ⊆ ℒ a set of
assumptions, and : 𝒜 → ℒ is a total mapping, called contrary function.

For a set of assumptions, 𝑆 ⊆ 𝒜 we use 𝑆 to indicate the set of contraries of 𝑆. Conversely, we
define the partial function 𝛼 : ℒ ↦→ 𝒜 assigning an assumption to its contrary 𝑏 ∈ 𝒜 such that
𝛼(𝑏) = 𝑎 if 𝑏 = 𝑎. This generalises to sets of contraries as before. For a set of rules 𝑅, we fix
ℎ𝑒𝑎𝑑(𝑅) = {ℎ𝑒𝑎𝑑(𝑟) | 𝑟 ∈ 𝑅}, 𝑏𝑜𝑑𝑦(𝑅) = {𝑏𝑜𝑑𝑦(𝑟) | 𝑟 ∈ 𝑅}. Further we use 𝑎𝑡𝑜𝑚(𝑆) = {𝑝 ∈ ℒ |
𝑝 ∈ 𝑆, 𝛼(𝑝) ∈ 𝑆 or 𝑝 ∈ 𝑆}. In what follows, we read 𝑎𝑡𝑜𝑚(𝑝) as 𝑎𝑡𝑜𝑚({𝑝}). For a rule 𝑟 ∈ ℛ, we
say that 𝑟 is: a fact if 𝑏𝑜𝑑𝑦(𝑟) = ∅; a loop-rule is 𝑎 = ℎ𝑒𝑎𝑑(𝑟) and 𝑎 ∈ 𝑏𝑜𝑑𝑦(𝑟). A sentence 𝑞 ∈ ℒ is
tree-derivable from 𝑆 ⊆ 𝒜 and rules 𝑅 ⊆ ℛ, denoted by 𝑆 ⊢𝑅 𝑞, if there is a finite rooted labelled tree
𝑇 where: the root of 𝑇 is labelled with 𝑞; the set of labels for the leaves of 𝑇 is equal to 𝑆 or 𝑆 ∪ {⊤};
and for every inner node 𝑣 of 𝑇 there is a rule 𝑟 ∈ 𝑅 such that 𝑣 is labelled with ℎ𝑒𝑎𝑑(𝑟), and every
successor of 𝑣 is labelled with 𝑎 ∈ 𝑏𝑜𝑑𝑦(𝑟) or ⊤ if 𝑏𝑜𝑑𝑦(𝑟) = ∅. We sometimes write 𝑆 ⊢ 𝑞 instead of
𝑆 ⊢𝑅 𝑞 if it does not cause confusion. Moreover, we call 𝑇ℎ𝐷(𝑆) = {𝑝 ∈ ℒ | 𝑆 ⊢ 𝑝} the theory of 𝑆
w.r.t. the ABAF 𝐷. Throughout the paper, we assume that ABAFs do not contain dummy rules, whose
body is not derivable from any set of assumptions.

Definition 2. Let 𝐷 = (ℒ,ℛ,𝒜, ) be an ABAF. A set 𝑆 ⊆ 𝒜 attacks 𝑇 ⊆ 𝒜 if 𝑆′ ⊢ 𝑎 for some 𝑆′ ⊆ 𝑆
and 𝑎 ∈ 𝑇 . A set 𝑆 is conflict-free in an ABAF 𝐷 (𝑆 ∈ cf(𝐷)) if it does not attack itself; 𝑆 defends 𝑇 iff it
attacks each attacker of 𝑇 ; 𝑆 is admissible (𝑆 ∈ adm(𝐷)) if it is conflict-free and defends itself.

We say a set 𝑆 of assumptions attacks an assumption 𝑎 if 𝑆 attacks the singleton {𝑎}. In this paper, we
assume ABAFs to be flat, unless specified otherwise. We call an ABAF flat if every set 𝑆 of assumptions
is closed (i.e. 𝑆 ⊢ 𝑎 implies 𝑎 ∈ 𝑆) and non-flat otherwise. We next recall definitions for grounded,
complete, preferred, and stable ABA semantics (abbr. grd, com, pref, stb).

Definition 3. Let 𝐷 be an ABAF and let 𝑆 ∈ adm(𝐷). 𝑆 ∈ com(𝐷) iff 𝑆 contains every assumption
set it defends; 𝑆 ∈ grd(𝐷) iff 𝑆 is ⊆-minimal in com(𝐷); 𝑆 ∈ pref(𝐷) iff 𝑆 is ⊆-maximal in com(𝐷);
𝑆 ∈ stb(𝐷) iff 𝑆 attacks each {𝑥} ⊆ 𝒜 ∖ 𝑆. We call 𝜎(𝐷) the set of 𝜎-extensions of the ABAF 𝐷.

SETAF Instantiation König et al. [16] have shown that flat ABAFs naturally correspond to argumen-
tation frameworks with collective attacks (SETAFs) [8].

Definition 4. A SETAF is a pair 𝑆𝐹 = (𝐴,𝑅) where 𝐴 is a finite set of arguments, and 𝑅 ⊆ 2𝐴 ×𝐴 is
the attack relation. For an attack (𝑇, ℎ) ∈ 𝑅 we call 𝑇 the tail and ℎ the head of the attack. We write
(𝑡, ℎ) to denote the set-attack ({𝑡}, ℎ). For 𝑆 ⊆ 𝐴, we say 𝑆 attacks an argument 𝑎 ∈ 𝐴 if there is an
attack (𝑇, 𝑎) ∈ 𝑅 with 𝑇 ⊆ 𝑆. Moreover, for a set 𝐵 ⊆ 𝐴 we say that 𝑆 attacks 𝐵 if 𝑆 attacks some
𝑏 ∈ 𝐵. We use 𝑆+

𝑅 = {𝑎 | 𝑆 attacks 𝑎} and define the range of 𝑆 w.r.t. 𝑅 as 𝑆⊕𝑅 = 𝑆 ∪ 𝑆+
𝑅 .



Every ABAF 𝐷 = (ℒ,ℛ,𝒜, ) can be instantiated as the SETAF 𝑆𝐹𝐷 = (𝐴𝐷, 𝑅𝐷) by setting
𝐴𝐷 = 𝒜 and (𝑆, 𝑎) ∈ 𝑅𝐷 iff 𝑆 ⊢ 𝑎 [16].

Example 1. Consider an ABAF 𝐷 = (ℒ,ℛ,𝒜, ) with assumptions 𝒜 = {𝑎, 𝑏, 𝑐, 𝑑}, ℒ = 𝒜 ∪
𝒜 ∪ {𝑝} and rules ℛ = {𝑎 ← 𝑏, 𝑝; 𝑝 ← 𝑐; 𝑏 ← 𝑎; 𝑑 ← 𝑏}. The induced SETAF is 𝑆𝐹𝐷 =
({𝑎, 𝑏, 𝑐, 𝑑}, {({𝑏, 𝑐}, 𝑎), (𝑎, 𝑏), (𝑏, 𝑑)}).

Notice that such mapping is many-to-one. Indeed, we lose 𝑝 when instantiating the first two rules
into ({𝑏, 𝑐}, 𝑎). For this reason, SETAFs can be seen – syntactically – as a fragment of flat ABAFs.

Splitting We now recall Baumann’s splitting approach for AFs [11]. A splitting identifies two sub-
frameworks 𝐹1 and 𝐹2 separated by a set of attacks going from 𝐹1 to 𝐹2. Then, the information
contained in an extension of 𝐹1 is propagated, computing the so-called reduct of 𝐹2 accordingly.

Definition 5. Let 𝐹 = (𝐴,𝑅) be an AF, 𝐹1 = (𝐴1, 𝑅1) and 𝐹2 = (𝐴2, 𝑅2) two sub-frameworks of 𝐹
s.t. 𝐴1 ∩𝐴2 = ∅, 𝐴 = 𝐴1 ∪𝐴2 and 𝑅 = 𝑅1 ∪𝑅2 ∪𝑅3 with 𝑅3 ⊆ 𝐴1 ×𝐴2. The triple (𝐹1, 𝐹2, 𝑅3) is
called a splitting of 𝐹 . For such a splitting and a set 𝐸 ⊆ 𝐴1, the (𝐸,𝑅3)-reduct is the AF 𝐴𝐹 ′ = (𝐴′, 𝑅′)
with 𝐴′ = 𝐴2 ∖𝐸+

𝑅3
and 𝑅′ = 𝑅2 ∩ (𝐴′ ×𝐴′). Moreover, the set of undecided arguments w.r.t. 𝐸 ⊆ 𝐴1

is 𝑈𝐸 = 𝐴1 ∖ 𝐸⊕𝑅1
.

The reduct is designed to take care of arguments attacked by the extension 𝐸. Further, to account
for the propagation of undecided arguments w.r.t. 𝐸, a further modification is needed: self-attacks are
propagated from 𝐹1 to arguments in 𝐹2.

Definition 6. Let (𝐹1, 𝐹2, 𝑅3) be a splitting for an AF 𝐹 and 𝐸 an extension of 𝐹1. Moreover, take
𝐹 ′2 = (𝐴′2, 𝑅

′
2) as the (𝐸,𝑅3)-reduct of 𝐹2 and 𝑈𝐸 as the set of undecided arguments w.r.t. 𝐸. The

(𝑈𝐸 , 𝑅3)-modification of 𝐹2 is defined as 𝑚𝑜𝑑𝑈𝐸 ,𝑅3(𝐹
′
2) = (𝐴′2, 𝑅

′
2 ∪{(𝑏, 𝑏) | ∃𝑎 ∈ 𝑈𝐸 : (𝑎, 𝑏) ∈ 𝑅3}).

Using these definitions, Baumann [11] has shown that it is possible to split the AF and compute the
extensions for each sub-framework incrementally such that their combination yields extensions of the
original framework.

Theorem 1 ([11]). Let (𝐹1, 𝐹2, 𝑅3) be a splitting for an AF 𝐹 = (𝐴,𝑅) with 𝐹𝑖 = (𝐴𝑖, 𝑅𝑖) and
𝜎 ∈ {cf, adm, stb, com, pref, grd}.

1. If 𝐸1 ∈ 𝜎(𝐹1) and 𝐸2 ∈ 𝜎(𝑚𝑜𝑑𝑈𝐸 ,𝑅3(𝐹
′
2)), then 𝐸1 ∪ 𝐸2 ∈ 𝜎(𝐹 ).

2. If 𝐸 ∈ 𝜎(𝐹 ), then 𝐸 ∩𝐴1 ∈ 𝜎(𝐹1) and 𝐸 ∩𝐴2 ∈ 𝜎(𝑚𝑜𝑑𝑈𝐸 ,𝑅3(𝐹
′
2)).

Later, this idea has been generalised by relaxing the strict separation requirement, which significantly
narrows the applicability of splitting, introducing so-called parametrised splitting [12]. Instead of
demanding that the first part is completely unaffected by the second, it allows some forms of interaction.
This generalisation is captured by the notion of quasi-splitting, where arguments in 𝐹1 may be externally
attacked by arguments in 𝐹2. The goal is to preserve correctness while broadening the applicability of
splitting. This is achieved by enriching 𝐹1 with meta-information that encodes facts about potential
influences (e.g. attacks) from the second sub-framework. In particular, for each externally attacked
argument 𝑎, a fresh argument 𝑎′ is added to 𝐹1 along with a symmetric attack on 𝑎, enforcing a choice
between 𝑎 and 𝑎′ in 𝐹1. Then, 𝐹2 is modified accordingly: the previous choices are propagated in the
second sub-framework via the reduct as well as additional nodes and attacks. Stable extensions of the
entire AF are then recovered by composing compatible solutions from the two modified sub-frameworks.

3. Splitting Argumentation Frameworks with Collective Attacks

In this section, we recall fundamentals regarding splitting in the presence of collective attacks [14]. The
notion of splitting for SETAFs generalises the one for Dung-style AFs.



Definition 7. Let 𝑆𝐹 = (𝐴,𝑅) be a SETAF, 𝑆𝐹1 = (𝐴1, 𝑅1) and 𝑆𝐹2 = (𝐴2, 𝑅2) two sub-frameworks
of𝑆𝐹 such that𝐴1∩𝐴2 = ∅, 𝐴 = 𝐴1∪𝐴2 and𝑅 = 𝑅1∪𝑅2∪𝑅3 with𝑅3 ⊆

(︀
(2𝐴1∖{∅})∪2𝐴2

)︀
×𝐴2. We

call a splitting of 𝑆𝐹 the triple (𝑆𝐹1, 𝑆𝐹2, 𝑅3). Moreover, we call 𝑅3 the set of links wrt (𝑆𝐹1, 𝑆𝐹2, 𝑅3)
and say that a link is undecided if no argument in its tail is defeated, but at least one is undecided.

As for AFs, the general idea is to compute extensions of 𝑆𝐹 as a combination of extensions of 𝑆𝐹1

and 𝑆𝐹2. Due to the links from 𝑆𝐹1 to 𝑆𝐹2 we have to modify 𝑆𝐹2 according to the extension(s) of
𝑆𝐹1 to account for the prior accepted and rejected arguments. Following Baumann [11], we introduce
the notions of reduct and modification, in application to the second part (that is, 𝑆𝐹2) of the original
SETAFs. Intuitively, the reduct takes care of the arguments in 𝑆𝐹2 that are already defeated by 𝐸1 by
removing them, and modifies the links by leaving the remaining part of the attack in the reduct.

Definition 8 (Reduct). Let (𝑆𝐹1, 𝑆𝐹2, 𝑅3) be a splitting for a SETAF 𝑆𝐹 . We define the (𝐸1, 𝑅3)-
reduct (or simply reduct) of 𝑆𝐹2 for some extension 𝐸1 of 𝑆𝐹1 as the SETAF 𝑆𝐹 ′2 = (𝐴′2, 𝑅

′
2) where,

𝐴′2 = {𝑎 ∈ 𝐴2 | 𝑎 /∈ (𝐸1)
+
𝑅3
} and

𝑅′2 ={(𝑇, ℎ) ∈ 𝑅2 | 𝑇 ⊆ 𝐴′2, ℎ ∈ 𝐴′2} ∪
{(𝑇 ∩𝐴′2, ℎ) | (𝑇, ℎ) ∈ 𝑅3, 𝑇 ∩𝐴′2 ̸= ∅, ℎ ∈ 𝐴′2, 𝑇 ∩𝐴1 ⊆ 𝐸1, 𝑇 ∩ (𝐸1)

+
𝑅3

= ∅}.

When dealing with undecidedness, what guides our intuition towards a certain modification is not
the status of the arguments in 𝑆𝐹1, but rather the status of the links. Hence, we decide to slightly tweak
the original definition and base our notion solely on the undecided links.

Definition 9 (Undecided Links). Given a splitting (𝑆𝐹1, 𝑆𝐹2, 𝑅3) for a SETAF 𝑆𝐹 and an extension
𝐸1 ∈ 𝑆𝐹1 we define the set of undecided links w.r.t. 𝐸1 as:

𝑈𝐸1
𝑅3

= {(𝑇, ℎ) ∈ 𝑅3 | 𝑇 ∩ (𝐸1)
+
𝑅1∪𝑅3

= ∅ and ∃𝑡 ∈ 𝑇 : 𝑡 ∈ 𝐴1 ∖ (𝐸1)
⊕
𝑅1
}.

In what follows, we define the modification, which is applied on the reduct, and accounts for the
effects of the undecided links. In particular, we add to 𝑆𝐹2 one self-attacking argument which also
partially attacks the target for each undecided attack in 𝑅3.

Definition 10 (Modification). Let (𝑆𝐹1, 𝑆𝐹2, 𝑅3) be a splitting for a SETAF 𝑆𝐹 and 𝐸1 an extension of
𝑆𝐹1. Take 𝑆𝐹 ′2 as the (𝐸1, 𝑅3)-reduct of 𝑆𝐹2 and 𝑈𝐸1

𝑅3
as the set of undecided links w.r.t. 𝐸1. We denote

with 𝑚𝑜𝑑𝐸1
𝑅3

(𝑆𝐹 ′2) the 𝑈𝐸1
𝑅3

-modification (or simply modification) of 𝑆𝐹 ′2 s.t.:

𝑚𝑜𝑑𝐸1
𝑅3

(𝑆𝐹 ′2) = (𝐴′2, 𝑅
′
2 ∪ {((𝑇 ∩𝐴′2) ∪ {ℎ}, ℎ) | (𝑇, ℎ) ∈ 𝑈𝐸1

𝑅3
, ℎ ∈ 𝐴′2}).

Before we present the splitting theorem we illustrate Definitions 8–10 in the following example.

Example 2. In (a) we have a SETAF 𝑆𝐹 with a splitting that separates the arguments 𝐴1 = {𝑎, 𝑏, 𝑐, 𝑑}
from 𝐴2 = {𝑣, 𝑤, 𝑥, 𝑦, 𝑧}. We see that 𝐸1 = {𝑐} is admissible in the left part of the splitting. In (b) we see
the reduct w.r.t. the set {𝑐}, where 𝑎 and 𝑑 are defeated by 𝑐 (as {𝑐}+𝑅1

= {𝑎, 𝑑}) and 𝑏 is undecided. This
reduct contains from the right part all arguments except 𝑧, which is defeated by 𝑐 (as {𝑐}+𝑅3

= {𝑧}). We
see that most attacks are removed from the right part, but (𝑥,𝑤) persists (since it is in 𝑅2 and all involved
arguments remain), and the attack ({𝑐, 𝑦}, 𝑥) is changed to (𝑦, 𝑥). The attack ({𝑏, 𝑧}, 𝑦) is removed since
𝑧 is defeated. The attack ({𝑏, 𝑤}, 𝑣) is also removed, as 𝑏 is undecided (i.e., {𝑏, 𝑤} ∩𝐴1 ⊈ 𝐸1). However,
in (c) we see that the latter case is important for the modification: the attack ({𝑏, 𝑤}, 𝑣) is an undecided
link, which means in the modification we introduce the attack ({𝑣, 𝑤}, 𝑣). Now, since {𝑦, 𝑤} is admissible,
we obtain {𝑐, 𝑦, 𝑤} as an admissible set for 𝑆𝐹 .

𝑎 𝑏

𝑐

𝑑

𝑣

𝑤

𝑧

𝑥 𝑦

(a) SETAF 𝑆𝐹

𝑎 𝑏

𝑐

𝑑

𝑣

𝑤

𝑧

𝑥 𝑦

(b) ({𝑐}, 𝑅3)-reduct

𝑎 𝑏

𝑐

𝑑

𝑣

𝑤

𝑧

𝑥 𝑦

(c) 𝑈{𝑐}𝑅3
-modification



Having these notions at hand, we now establish the adequacy of the splitting technique for SETAFs.
We start by establishing that (a) conflict-freeness of the sub-frameworks 𝑆𝐹1 and 𝑆𝐹2 carries over to
the whole SETAF 𝑆𝐹 , and (b) conflict-free sets of 𝑆𝐹 induce conflict-free subsets in 𝑆𝐹1 and 𝑆𝐹 ′2.

Proposition 1 (Buraglio et al. [14]). Let (𝑆𝐹1, 𝑆𝐹2, 𝑅3) be a splitting for a SETAF 𝑆𝐹 = (𝐴,𝑅) with
𝑆𝐹1 = (𝐴1, 𝑅1) and 𝑆𝐹2 = (𝐴2, 𝑅2). Let 𝑆𝐹 ⋆

2 = 𝑚𝑜𝑑𝐸1
𝑅3

(𝑆𝐹 ′2).
1. If 𝐸1 ∈ cf(𝑆𝐹1) and 𝐸2 ∈ cf(𝑆𝐹 ⋆

2 ), then 𝐸1 ∪ 𝐸2 ∈ cf(𝑆𝐹 ).
2. If 𝐸 ∈ cf(𝑆𝐹 ), then 𝐸 ∩𝐴1 ∈ cf(𝑆𝐹1) and 𝐸 ∩𝐴2 ∈ cf(𝑆𝐹 ′2).

Finally, we are ready to characterize the splitting algorithm by generalising the splitting theorem for
SETAFs under the standard Dung semantics.

Theorem 2 (Buraglio et al. [14]). Let (𝑆𝐹1, 𝑆𝐹2, 𝑅3) be a splitting for a SETAF 𝑆𝐹 = (𝐴,𝑅) with
𝑆𝐹1 = (𝐴1, 𝑅1), 𝑆𝐹2 = (𝐴2, 𝑅2), and 𝜎 ∈ {stb, adm, com, pref, grd}.

1. If 𝐸1 ∈ 𝜎(𝑆𝐹1) and 𝐸2 ∈ 𝜎
(︀
𝑚𝑜𝑑𝐸1

𝑅3
(𝑆𝐹 ′2)

)︀
, then 𝐸1 ∪ 𝐸2 ∈ 𝜎(𝑆𝐹 ).

2. If 𝐸 ∈ 𝜎(𝑆𝐹 ), then 𝐸 ∩𝐴1 ∈ 𝜎(𝑆𝐹1) and 𝐸 ∩𝐴2 ∈ 𝜎
(︀
𝑚𝑜𝑑𝐸∩𝐴1

𝑅3
(𝑆𝐹 ′2)

)︀
.

While the existing instantiation procedure from ABA frameworks to SETAFs provides a founda-
tion for defining splitting, attempting to directly replicate the SETAF-style idea of splitting among
assumptions fails to yield a natural notion of splitting. This disconnect stems from a fundamental
structural difference: in SETAFs, attacks are primitive, whereas in ABA, they are derived from the
underlying deductive system (ℒ,ℛ). As a result, naively mimicking SETAF-style splitting in ABA
would require (i) arbitrarily partitioning the assumption set into 𝒜1 and 𝒜2, and (ii) computing attacks
as derivations from assumptions in 𝒜1 to those in 𝒜2. However, splitting should be possible solely by
inspecting the knowledge base at hand. Moreover, while instantiating ABAFs into SETAFs has been
shown useful in specific contexts [5, 17], this approach comes with a critical drawback: it can yield an
exponential growth in the number of collective attacks generated, thus increasing in input size. This
inefficiency motivates many ABA solvers to operate directly on ABAFs rather than relying on their
abstract representations. Therefore, to enable an efficient form of splitting, we propose a dedicated
splitting algorithm tailored to the syntactic structure of ABAFs.

4. Splitting in Assumption-Based Argumentation

In this section we present splitting results for ABAFs. The rule-set of an ABAF is split into a bottom and
a top part whenever no assumption occurs in the bottom part whose contrary is derived by some rule
in the top. This ensures that the assumptions in the bottom can be evaluated independently of what
can be deduced by inspecting the top part. We capture this intuition via the notion of splitting set:

Definition 11. Given an ABAF 𝐷 = (ℒ,ℛ,𝒜, ), a set 𝑆 ⊆ ℒ is a splitting set (or simply a splitting) of
𝐷 if 𝑆 = 𝑎𝑡𝑜𝑚(𝑆) and for all 𝑟 ∈ ℛ, ℎ𝑒𝑎𝑑(𝑟) ∈ 𝑆 implies 𝑏𝑜𝑑𝑦(𝑟) ⊆ 𝑆.

A splitting set partitions the deductive system into two sub-systems (ℒ1,ℛ1) and (ℒ2,ℛ2), called
the ‘bottom’ and ‘top’. In particular, we have (i) ℒ1 = 𝑆 and ℛ1 = {𝑟 ∈ ℛ | ℎ𝑒𝑎𝑑(𝑟) ∈ 𝑆} and
(ii) ℒ2 = ℒ ∖ 𝑆 and ℛ2 = {𝑟 ∈ ℛ | ℎ𝑒𝑎𝑑(𝑟) /∈ 𝑆}. These induce respectively two sub-frameworks
𝐷1 = (ℒ1,ℛ1,𝒜1,

1) and 𝐷2 = (ℒ2,ℛ2,𝒜2,
2) with 𝒜𝑖 = ℒ𝑖 ∩ 𝒜 and the contrary function 𝑖

defined over 𝒜𝑖.

Example 3. Consider the ABAF 𝐷 = (ℒ,ℛ,𝒜, ) corresponding to the SETAF of Example 2, where
𝒜 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑣, 𝑤, 𝑥, 𝑦, 𝑧}, ℒ = 𝒜 ∪𝒜 ∪ {𝑝, 𝑞}, and the rule-setℛ consists of the following:

𝑤 ← 𝑞 𝑞 ← 𝑥 𝑥← 𝑐, 𝑦 𝑦 ← 𝑧, 𝑝 𝑧 ← 𝑑 𝑣 ← 𝑝, 𝑤

𝑝← 𝑏 𝑏← 𝑏 𝑏← 𝑎, 𝑑 𝑑← 𝑐 𝑎← 𝑐 𝑐← 𝑎

Take the set 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑎, 𝑏, 𝑐, 𝑑, 𝑝}. It can be easily checked that 𝑆 is a splitting set of 𝐷, through
which we obtain two sub-systems (ℒ1,ℛ1) and (ℒ2,ℛ2) withℛ1 (bottom) andℛ2 (top) are exactly the
second line and the first line of rules inℛ. Moreover, ℒ1 = 𝑆 and ℒ2 = ℒ ∖ 𝑆.



Notice that some atoms contained in ℒ1 (but not in ℒ2) may occur in the body of some rule inℛ2

(𝑐 and 𝑝 in Example 3). This intermediate mismatch will be resolved later by the notion of reduct.
Moreover, their occurrence in the top rules does not affect the acceptance status of such atoms. In fact,
a first sanity check, we observe that our notion of splitting prevents building attacks from assumptions
of 𝐷2 towards assumptions of 𝐷1 using top-rules inℛ2. This is ensured by the fact that contraries of
assumptions occurring in the bottom part are not derived via rules in the top part (via construction of
ℛ2). As a result, assumptions in 𝒜1 are attacked only via rules inℛ1 by assumptions in 𝒜1. Thus, no
attack generated from 𝒜2 (by means of rules inℛ2) is directed towards 𝒜1.

Proposition 2. Let 𝐷 be an ABAF and 𝑆 a set of literals that splits 𝐷 into 𝐷1 and 𝐷2. For every derivation
𝑇 ⊢𝑅 𝑎 with 𝑎 ∈ 𝒜1, it holds that 𝑅 ⊆ ℛ1 and 𝑇 ⊆ 𝒜1.

The attacks of the bottom part can be extended in a conservative way: whatever happens in the
second sub-framework does not affect the acceptability status of assumptions in 𝐷1. Thus, to compute
incrementally an extension of an ABAF 𝐷, we can first select an extension 𝐸 of 𝐷1 and later modify 𝐷2

according to the information contained in 𝐸. Consequently, we can evaluate the modified framework
𝐷2 and augment its extensions with 𝐸. Again, we follow the approach of Baumann and appeal to the
notions of reduct and modification to realise the modification of 𝐷2 in a two-step process. First, we
propagate all the information we get from a 𝜎-extension 𝐸 of 𝐷1 to ensure that rules which are in
contrast with 𝐸 are removed. The outcome is called the 𝐸-reduct of 𝐷2.

Definition 12. Let 𝐷 = (ℒ,ℛ,𝒜, ) be an ABAF, 𝑆 a set that splits 𝐷 into two sub-frameworks 𝐷1 and
𝐷2 and 𝐸 a 𝜎-extension of 𝐷1. We call 𝐷𝐸

2 = (ℒ2,ℛ𝐸
2 ,𝒜2,

2) the 𝐸-reduct (or simply reduct) of 𝐷2,
whereℛ𝐸

2 is obtained by deleting:

• each rule 𝑟 ∈ ℛ2 with 𝑏𝑜𝑑𝑦(𝑟) ∩ 𝑆 ̸⊆ Th𝐷1(𝐸);
• all literals in Th𝐷1(𝐸) from the remaining rules.

As we anticipated, all and only the atoms occurring in the rule-set of the reduct are contained in
ℒ2. Therefore, the reduct can be evaluated in complete isolation from 𝐷1. In the second step, we
modify the reduct to propagate the information about assumptions (or their contraries) which are not
contained in Th𝐷1(𝐸). We call these assumptions undecided, as they are not in 𝐸 nor their contrary
is derivable from it (i.e. are not attacked by 𝐸). Then, the set of undecided assumptions of 𝐷1 w.r.t.
𝐸 is UA𝐷1(𝐸) = {𝑎 ∈ 𝒜1 | 𝑎 /∈ 𝐸 and 𝑎 /∈ Th𝐷1(𝐸)}. Since their status can be transmitted to
other assumptions via rules, we need to introduce the concept of undecided theory of 𝐷1, capturing all
statements derivable from a set of undecided (and not defeated) assumptions.

Definition 13. Let 𝐷 = (ℒ,ℛ,𝒜, ) be an ABAF and 𝐸 ∈ 𝜎(𝐷). The undecided theory of 𝐷 w.r.t. 𝐸 is

UT𝐷(𝐸) = {𝑝 ∈ ℒ | ∃𝑇 ⊆ 𝒜 s.t. 𝑇 ⊢ 𝑝, 𝑇 ∩ UA𝐷(𝐸) ̸= ∅, 𝑇 ∩ 𝑇ℎ𝐷(𝐸) = ∅}.

Rules in 𝐷2 whose body contain elements of UT𝐷1(𝐸) might carry over undecidedness from 𝐷1.
However, this scenario could be overwritten by the presence of incompatible sentences w.r.t 𝐸, captured
by IS𝐷1(𝐸) = 𝑇ℎ𝐷1(𝐸

+
ℛ1

) ∪ 𝐸, where 𝐸+
ℛ1

= {𝑎 ∈ 𝒜1 | 𝐸 ⊢𝑅 𝑎,𝑅 ⊆ ℛ1}. Hence, a set of
sentences from 𝐷1 will carry undecidedness to sentences in 𝐷2 if and only if (i) none of its elements is
incompatible and (ii) at least one of its elements is in the undecided theory w.r.t. the previously selected
extension. This concept mirrors the notion of undecided links for SETAFs.

We are now in the position to formally define the modification of 𝐷𝐸
2 . First, we expand the set of

sentences with a fresh assumption 𝑥𝑢 and corresponding contrary. Further, we introduce (i) a loop-rule
for 𝑥𝑢 and (ii) a modified version of every rule with some undecided (but no incompatible) sentence in
the body. In particular, we expand their body with 𝑥𝑢, after projecting to ℒ2.

Definition 14. Let 𝐷 be an ABAF, 𝑆 a set that splits 𝐷 into two sub-frameworks 𝐷1 and 𝐷2 and 𝐸 an
extension of 𝐷1. Let 𝐷′2 be the 𝐸-reduct of 𝐷2. We use 𝑚𝑜𝑑𝐸𝐷1

(𝐷′2) = 𝐷⋆
2 = (ℒ⋆2,ℛ⋆

2,𝒜⋆
2,

⋆) to denote
the 𝐸-modification (or simply modification) of 𝐷′2 such that 𝐷⋆

2 = 𝐷′2 if UA𝐷1(𝐸) = ∅, and otherwise:

ℒ⋆2 =ℒ2 ∪ {𝑥𝑢, 𝑥𝑢};



ℛ⋆
2 =ℛ′2 ∪ {𝑥𝑢 ← 𝑥𝑢} ∪ {ℎ𝑒𝑎𝑑(𝑟)← (𝑏𝑜𝑑𝑦(𝑟) ∩ ℒ2) ∪ {𝑥𝑢} |

𝑟 ∈ ℛ2, 𝑏𝑜𝑑𝑦(𝑟) ∩ IS𝐷1(𝐸) = ∅, 𝑏𝑜𝑑𝑦(𝑟) ∩ UT𝐷1(𝐸) ̸= ∅}.

Example 4. Consider again the ABAF 𝐷 = (ℒ,ℛ,𝒜, ) from Example 3 and splitting set 𝑆 =

{𝑎, 𝑏, 𝑐, 𝑑, 𝑎, 𝑏, 𝑐, 𝑑, 𝑝}. We know that {𝑐} ∈ pref(𝐷1). Therefore, the {𝑐}-reduct of 𝐷2 is 𝐷
{𝑐}
2 =

(ℒ2,ℛ{𝑐}2 ,𝒜2,
2), where the rule-setℛ{𝑐}2 is:

𝑤 ← 𝑞 𝑞 ← 𝑥 𝑥← 𝑦, 𝑐 𝑦 ← 𝑧, 𝑝 𝑧 ← 𝑑 𝑣 ← 𝑝, 𝑤

Moreover, the set of undecided assumptions is UA𝐷1({𝑐}) = {𝑏} and UT𝐷1({𝑐}) = {𝑏, 𝑏, 𝑝}. We then
compute the modification by expanding the set of sentences with {𝑥𝑢, 𝑥𝑢} andℛ{𝑐}2 such that:

𝑤 ← 𝑞 𝑞 ← 𝑥 𝑥← 𝑦 𝑦 ← 𝑧, 𝑥𝑢 𝑧 ← 𝑣 ← 𝑤, 𝑥𝑢 𝑥𝑢 ← 𝑥𝑢

It is easy to see that {𝑦, 𝑤} ∈ pref(𝑚𝑜𝑑𝐸𝐷1
(𝐷′2)), and retrieve {𝑐, 𝑦, 𝑤}, as for Example 2.

We can now prove that our procedure preserves conflict-free sets under incremental computation as
well as projection to sub-frameworks, similarly to Section 3.

Proposition 3. Let 𝑆 be a splitting set for an ABAF 𝐷 into 𝐷1 and 𝐷2.

1. if 𝐸1 ∈ cf(𝐷1) and 𝐸2 ∈ cf(𝑚𝑜𝑑𝐸1
𝐷1

(𝐷𝐸1
2 )), then 𝐸1 ∪ 𝐸2 ∈ cf(𝐷).

2. if 𝐸 ∈ cf(𝐷), then 𝐸1 = 𝐸 ∩ 𝒜1 ∈ cf(𝐷1) and 𝐸2 = 𝐸 ∩ 𝒜2 ∈ cf(𝐷𝐸1
2 ).

Proof. For notational convenience, let 𝐸 = 𝐸1 ∪𝐸2 and let 𝐷′2 = (ℒ2,ℛ′2,𝒜2,
2) be the reduct of 𝐷2

w.r.t. 𝐸1 = 𝐸 ∩𝒜1. (1.) To prove the statement we need to show that there is no 𝑎 ∈ 𝐸1 ∪𝐸2 and and
𝑅 ∈ ℛ such that 𝐸1 ∪ 𝐸2 ⊢𝑅 𝑎. Towards contradiction, assume there is indeed such an 𝑎. Thus either
(i) 𝑎 ∈ 𝐸1 or (ii) 𝑎 ∈ 𝐸2. Assume (i) is true, that is ∃𝑎 ∈ 𝐸1 such that 𝐸1 ∪ 𝐸2 ⊢𝑅 𝑎 and 𝑅 ∈ ℛ. From
Proposition 2, we know that 𝐸2 = ∅ and 𝑅 ⊆ ℛ1. Thus, 𝐸1 ⊢𝑅 𝑎, in contradiction with 𝐸1 ∈ cf(𝐷1).
Assume now that (ii) is true, i.e. ∃𝑎 ∈ 𝐸2 and 𝑅 ∈ ℛ such that 𝐸1 ∪ 𝐸2 ⊢𝑅 𝑎. Hence, there is a
tree-derivation 𝜏 from 𝐸1 ∪𝐸2 ∪ {⊤} rooted in 𝑎 and a non-empty set of rules 𝑅2 = 𝑅∩ℛ2. For each
rule 𝑟 ∈ 𝑅2, there are three possible outcomes when computing 𝑚𝑜𝑑𝐸1

𝐷1
(𝐷𝐸1

2 ) = 𝐷⋆
2 : (a) 𝑟 does not get

removed when computing the reduct; (b) 𝑟 gets removed and later added in the modification; (c) 𝑟 gets
removed for good. Assume (a) is the case. If a rule 𝑟 is not removed when computing the reduct, it is
modified into a rule 𝑟′ ∈ ℛ′2 such that 𝑏𝑜𝑑𝑦(𝑟′) = 𝑏𝑜𝑑𝑦(𝑟) ∖𝑇ℎ𝐷1(𝐸1) and ℎ𝑒𝑎𝑑(𝑟′) = ℎ𝑒𝑎𝑑(𝑟). Thus,

𝑏𝑜𝑑𝑦(𝑟′) consists of elements of 𝐸2 or atoms derivable from it. Therefore, 𝐸2 ⊢ℛ
𝐸1
2 𝑎 and consequently

𝐸2 ⊢ℛ
⋆
2 𝑎 (more rules). Finally, we get 𝐸 /∈ cf(𝐷⋆

2), contradicting our hypothesis. Assume now (b) is
the case. By definition of derivation, this means that 𝐸2 derives 𝑎 in 𝐷⋆

2 only if 𝑥𝑢 ∈ 𝐸2. However,
this contradicts conflict-freeness of 𝐸2 in the modification. Finally, consider case (c). Since 𝑟 gets
removed, but not added in the modification, we infer that 𝑏𝑜𝑑𝑦(𝑟) ∩ IS𝐷1(𝐸1) ̸= ∅. Hence, either
𝐸1∩𝑏𝑜𝑑𝑦(𝑟) ̸= ∅ or 𝑇ℎ𝐷1((𝐸1)

+
ℛ1

)∩𝑏𝑜𝑑𝑦(𝑟) ̸= ∅. However, since 𝐸1 ∈ cf(𝐷1), this means that either
𝑟 is a dummy rule or that ∃𝑏 ∈ 𝑏𝑜𝑑𝑦(𝑟) ∩ 𝒜1 ̸⊆ 𝐸1. Thus, in both cases 𝐸1 ∪ 𝐸2 ̸⊢𝑅 𝑎, contradicting
our assumption.

(2.) Suppose now that 𝐸 ∈ cf(𝐷). From this we derive that 𝐸 ∩ 𝒜1 ∈ cf(𝐷1) (subset of a conflict-
free set). We now show that 𝐸 ∩ 𝒜2 ∈ cf(𝐷′2). Towards contradiction, assume 𝐸 ∩ 𝒜2 /∈ cf(𝐷′2).
There is an 𝑎 ∈ 𝐸 ∩ 𝒜2 such that 𝐸 ∩ 𝒜2 ⊢ℛ

′
2 𝑎. By definition of reduct, we know that each

𝑟′ ∈ ℛ′2 is obtained from a corresponding rule 𝑟 ∈ ℛ2 such that 𝑏𝑜𝑑𝑦(𝑟) ⊆ 𝑏𝑜𝑑𝑦(𝑟′) ∪ 𝑇ℎ𝐷1(𝐸 ∩𝒜1).
Therefore, (𝐸 ∩𝒜1)∪ (𝐸 ∩𝒜2) ⊢ℛ1∪ℛ2 𝑎. By definition of splitting, we know thatℛ = ℛ1 ∪ℛ2 and
𝐸 = (𝐸 ∩ 𝒜1) ∪ (𝐸 ∩ 𝒜2), deriving 𝐸 ⊢ℛ 𝑎, and finally 𝐸 /∈ cf(𝐷). Contradiction.

We prove our algorithm is adequate with respect to most common semantics. Due to space constraints
we present proof details only for stable and admissible semantics, which are prototypical for the others.

Theorem 3. Let 𝑆 be a splitting set for an ABAF 𝐷 into 𝐷1 and 𝐷2 and 𝜎 = {stb, adm, com, pref, grd}.



1. if 𝐸1 ∈ 𝜎(𝐷1) and 𝐸2 ∈ 𝜎(𝑚𝑜𝑑𝐸1
𝐷1

(𝐷𝐸1
2 )), then 𝐸1 ∪ 𝐸2 ∈ 𝜎(𝐷).

2. if 𝐸 ∈ 𝜎(𝐷), then 𝐸1 = 𝐸 ∩ 𝒜1 ∈ 𝜎(𝐷1) and 𝐸2 = 𝐸 ∩ 𝒜2 ∈ 𝜎(𝑚𝑜𝑑𝐸1
𝐷1

(𝐷𝐸1
2 )).

Proof. (stable). First notice that from 𝐸1 ∈ stb(𝐷1), we get 𝑈𝐷1(𝐸1) = ∅, and consequently 𝒜′2 = 𝒜⋆
2.

(1.) From Proposition 3 together with the hypotheses that 𝐸1 ∈ stb(𝐷1) and 𝐸2 ∈ stb(𝐷⋆
2), we

know that 𝐸1 ∪ 𝐸2 ∈ cf(𝐷). Thus, for any 𝑎 ∈ 𝒜 ∖ 𝐸, we show that 𝑎 ∈ 𝐸+
𝑅 , i.e. 𝐸 ⊢𝑅 𝑎 for some

𝑅 ⊆ ℛ. We proceed by cases. Let 𝑎 ∈ 𝒜1. From hypothesis we know that 𝐸1 ⊢𝑅1 𝑎 for some 𝑅1 ⊆ ℛ1

which immediately implies 𝑎 ∈ 𝐸+
𝑅1

. Let 𝑎 ∈ 𝒜2. From hypothesis, we know that 𝐸2 ⊢𝑅2 𝑎 for some
𝑅2 ⊆ ℛ′2. Thus, for each rule 𝑟′ ∈ ℛ′2 there is a rule 𝑟 ∈ ℛ2 such that 𝑏𝑜𝑑𝑦(𝑟) ⊆ 𝑏𝑜𝑑𝑦(𝑟)∪𝑇ℎ𝐷1(𝐸1).
Hence, it follows directly that 𝐸1 ∪ 𝐸2 = 𝐸 ⊢𝑅 𝑎 for some 𝑅 ⊆ ℛ1 ∪ℛ2 = ℛ.

(2.) Assume 𝐸 ∈ stb(𝐷). From this we know that 𝐸 ∪ 𝐸+
ℛ = 𝐸⊕ℛ = 𝒜 = 𝒜1 ∪ 𝒜2. We first

prove that 𝐸1 = 𝐸 ∩ 𝒜1 ∈ stb(𝐷1). From Proposition 3 we know 𝐸 ∩ 𝒜1 ∈ cf(𝐷1). Moreover, from
Proposition 2, we know that any set of assumptions which is not entirely contained in 𝒜1 attacks
𝑎 ∈ 𝒜1 via rules inℛ1, therefore we get 𝐸 ∩ 𝒜1 ⊢𝑅1 𝑎 for all 𝑎 ∈ 𝒜1 ∖ 𝐸 for some 𝑅1 ⊆ ℛ1. Hence,
𝐸1 ∈ stb(𝐷1). We know turn to prove 𝐸2 = 𝐸 ∩ 𝒜2 ∈ stb(𝐷′2). We know conflict-freeness holds
from Proposition 3. Hence, we only need to show that for every 𝑎 ∈ 𝒜′2 ∖ 𝐸2, 𝐸2 ⊢𝑅

′
2 𝑎 for some

𝑅′2 ⊆ ℛ′2. Since 𝐸 ⊢𝑅 𝑎 in 𝐷, we have two possibilities: (a) 𝐸1 = ∅ or (b) 𝐸1 ̸= ∅. If (a) holds,
we get 𝑅 ⊆ ℛ2 and 𝐸 = 𝐸2 ⊢𝑅 𝑎 where 𝐸2 ⊆ 𝒜′2 and 𝑎 ∈ 𝒜′2. Thus, 𝐸2 ⊢𝑅 𝑎 holds for some
𝑅 ⊆ ℛ′2. If (b) holds, 𝐸1 ∪ 𝐸2 ⊢𝑅 𝑎 in 𝐷. Therefore, each rule 𝑟 ∈ 𝑅 ∩ ℛ2 has a corresponding
rule 𝑟′ ∈ ℛ′2 such that 𝑏𝑜𝑑𝑦(𝑟′) = 𝑏𝑜𝑑𝑦(𝑟) ∖ 𝑇ℎ𝐷1(𝐸1). Since 𝐸1 ∪ 𝐸2 ∈ cf(𝐷) by hypothesis, we
know that 𝑇ℎ𝐷1(𝐸1) ∩ 𝐸2 = ∅. Hence, (𝐸 ∖ 𝐸1) ⊢𝑅

′
2 𝑎 where 𝑅′2 ⊆ ℛ′2. In both cases we have

𝐸2 ∪ (𝐸2)
+
ℛ′2

= 𝒜′2, concluding 𝐸2 ∈ stb(𝐷′2).
(admissible). (1.) Since admissibility implies confict-freeness from Proposition 3, we know that

𝐸 = 𝐸1 ∪ 𝐸2 ∈ cf(𝐷). Thus we only need to show that 𝐸 defends itself in 𝐷, i.e. for all 𝑎 ∈ 𝐸, if
𝑇 ⊢ 𝑎, then 𝑇 ′ ⊢ 𝑡 for some 𝑡 ∈ 𝑇 and 𝑇 ′ ⊆ 𝐸. If 𝑎 ∈ 𝐸1, we know that 𝑎 is defended by 𝐸1 in𝒜1 from
hypothesis. Thus, from Proposition 2, we can deduce that 𝐸1 ∈ adm(𝐷). Consider now an assumption
𝑎 ∈ 𝐸2 and some 𝑇 ⊆ 𝒜 such that 𝑇 ⊢𝑅 𝑎 and 𝑅 ⊆ ℛ. If 𝑇 ∩ 𝑇ℎ𝐷1(𝐸1) ̸= ∅, then 𝐸1 defends 𝑎
against 𝑇 in 𝐷. If 𝑇 ∩ 𝑇ℎ𝐷1(𝐸1) = ∅, this means that 𝑇 ⊆ 𝒜2 and 𝑇 ⊢ 𝑎 in 𝐷′2 (𝑎 is attacked in the
reduct) or 𝑇 ∪ 𝑥𝑢 ⊢𝑅 𝑎 in 𝐷⋆

2 (𝑎 is attacked in the modification). In both cases, since 𝐸2 is conflict-free
and defends 𝑎 in 𝐷⋆

2 , there is a 𝑇 ′ ⊆ 𝐸2 such that 𝑇 ′ ⊢ 𝑡 with 𝑡 ∈ 𝑇 . We distinguish two cases: either
(i) 𝑇 ′ ⊢ 𝑡 already in 𝐷2, in which case 𝑎 is defended by 𝐸 in 𝐷, or (ii) there is some 𝑇 ′′ ⊃ 𝑇 ′ such that
𝑇 ′′ ⊢ 𝑡 in 𝐷 and 𝑇 ′′ ∩𝒜1 ⊆ 𝐸1. Thus, since 𝑇 ⊆ 𝐸1 ∪𝐸2, 𝑎 is defended by 𝐸1 ∪𝐸2 in 𝐷. In any case
𝑎 is defended in 𝐷 by 𝐸, i.e. 𝐸 ∈ adm(𝐷).

(2.) By Proposition 3, we get 𝐸1 ∈ cf(𝐷1) and 𝐸2 ∈ cf(𝐷′2). First, we know that 𝐸1 ∈ adm(𝐷1)
because 𝐸 defends itself in 𝐷 and 𝐸1 is not attacked by a subset of 𝒜2 (Proposition 2). It remains to
prove that 𝐸2 ∈ adm(𝐷⋆

2). Take an assumption 𝑎 ∈ 𝐸2 such that 𝑇 ⊢ 𝑎 in 𝐷⋆
2 . Each such derivation

corresponds to exactly one derivation 𝑇 ′ ⊢𝑅 𝑎 with 𝑅 ⊆ ℛ. There are two cases: either (i) 𝑇 ′ = 𝑇 ⊆ 𝒜2

and 𝑅 ⊆ ℛ2 or (ii) 𝑇 ′ ⊃ 𝑇 ∖ {𝑥𝑢} where 𝑇 ′ ∖ 𝑇 ⊆ 𝐸1 (assumptions deleted from simplified rules in
the reduct). From both (i) and (ii) we deduce that 𝑇 ′ ∩ 𝑇ℎ𝐷1(𝐸1) = ∅: for (i) because it would entail
𝑇 ̸⊆ 𝒜2; for (ii) because otherwise 𝑇 ̸⊢ 𝑎 in 𝐷⋆

2 . Nonetheless, since 𝐸 defends 𝑎 in 𝐷, in case (i) there
is a counter-attack 𝑇 ′′ ⊢ℛ2 𝑡 such that 𝑇 ′′ ⊆ 𝐸 and 𝑡 ∈ (𝑇 ∖ {𝑎}). In case (ii), the same holds but
𝑡 ∈ (𝑇 ′ ∖ {𝑎, 𝑥𝑢}). If 𝑇 ′′ ∩𝒜1 = ∅, we know that {𝑡} ⊆ 𝒜′2 and together with the fact that 𝑇 ′′ ⊆ 𝐸, we
derive 𝑇 ′′ ⊆ 𝐸 ∩ 𝒜′2 = 𝐸2. Hence, 𝑇 ′′ defends 𝑎 from 𝑇 in 𝐷⋆

2 . If 𝑇 ′′ ∩ 𝒜1 ̸= ∅, then 𝑇 ′′ ∩ 𝒜1 ⊆ 𝐸1.
Therefore, from 𝑇 ′′ ⊆ 𝐸 we get 𝑇 ′′ ∩ 𝒜′2 ⊢ℛ

′
2 𝑡, which defends 𝑎 against 𝑇 in 𝐷⋆

2 . Thus 𝑎 is always
defended in 𝐷⋆

2 , as desired.

5. Parametrised Splitting

We now introduce a more general version of splitting for ABAFs and SETAFs, called parametrised
splitting [12]. This relaxes the structural constraint for the application of splitting, allowing assumptions
(resp. arguments) in the bottom part to be attacked from assumptions (resp. arguments) in the top.



The number of these assumptions/arguments represents a measure of how far we are from obtaining a
splitting.

5.1. Assumption-Based Argumentation

We first introduce a parametrised version of splitting for ABA. In contrast with the previous notion, we
allow some contraries of assumptions occurring in bodies ofℛ1 to appear as the heads of rules inℛ2.
The concept of a splitting set is then generalised accordingly in the following way:

Definition 15. For any ABAF 𝐷 = (ℒ,ℛ,𝒜, ), a set 𝑆 ⊆ ℒ is a called quasi-splitting of 𝐷 if
𝑆 = 𝑎𝑡𝑜𝑚(𝑆) and for all 𝑟 ∈ ℛ, ℎ𝑒𝑎𝑑(𝑟) ∈ 𝑆 implies 𝑏𝑜𝑑𝑦(𝑟) ∖ 𝒜 ⊆ 𝑆. Let 𝑉←𝑆 = {𝑏 ∈ 𝒜 ∖ 𝑆 |
∃𝑟, 𝑟′ ∈ ℛ : 𝑏 ∈ 𝑏𝑜𝑑𝑦(𝑟) ∩ 𝒜, ℎ𝑒𝑎𝑑(𝑟) ∈ 𝑆, ℎ𝑒𝑎𝑑(𝑟′) = 𝑏, 𝑟 ̸= 𝑟′}. We call 𝑆:

• 𝑘-splitting of 𝐷, if |𝑉←𝑆 | = 𝑘;
• (proper) splitting of 𝐷, if |𝑉←𝑆 | = 0.

As before, the rule-set is split into a bottom and top part, depending on the rule-head respectively
being or not in 𝑆. As a result, 𝑉←𝑆 is the set of assumptions in the bottom whose contrary is derived in
the top. We call 𝑉←𝑆 the set of vulnerabilities with respect to 𝑆, since it contains assumptions that are
attacked by 𝑆. Whenever |𝑉←𝑆 | ≠ 0, there are some heads inℛ2 whose corresponding assumption may
appear in bodies ofℛ1. Therefore, the notion of splitting of Definition 11 corresponds to a 0-splitting.

To account for elements of 𝑉←𝑆 , the ABAFs 𝐷1 and 𝐷2 induced by the chosen splitting set are
constructed in a slightly different way than before. In particular, we fix 𝐷1 and 𝐷2 as before, but let
ℒ1 = 𝑆 ∪ 𝑉←𝑆 ∪ 𝑉←𝑆 . Moreover, since contraries in 𝑉←𝑆 may be derived by top rules, the status of their
corresponding assumptions in the bottom depends on rules in the top. Consequently 𝐷1 cannot be
evaluated in complete isolation from the rest, in contrast with proper splitting.

For computing extension of the sub-framework 𝐷1, we first need to modify the ABAF. First, we
modify the rules by removing body-atoms not inℒ1. Indeed, these atoms occur inℒ2 and are unattacked
in 𝐷, therefore they can be disregarded when evaluating 𝐷1. Further, we proceed by adding: (i) a fresh
assumption 𝑏′ (and its contrary 𝑏′) for each 𝑏 ∈ 𝑉←𝑆 ; (ii) rules which encode the choice for or against
the presence of each assumption 𝑏 ∈ 𝑉←𝑆 in the extension. In this way, we store at the object level the
meta-information regarding our choices on each 𝑏 ∈ 𝑉←𝑆 .

Definition 16. Let 𝐷 = (ℒ,ℛ,𝒜, ) be an ABAF, 𝑆 ⊆ ℒ be a quasi-splitting of 𝐷 inducing the
sub-frameworks 𝐷1 and 𝐷2. Moreover, let 𝑉←𝑆 be the set of vulnerabilities of 𝐷1 with respect to 𝑆 and
(ℛ1)↓ℒ1 = {ℎ𝑒𝑎𝑑(𝑟)← 𝑏𝑜𝑑𝑦(𝑟) ∩ ℒ1 | 𝑟 ∈ ℛ1}. We construct ⌞𝐷1⌟ = (⌞ℒ1⌟, ⌞ℛ1⌟, ⌞𝒜1⌟, ) as the
ABAF obtained from 𝐷1 by letting:

• ⌞ℒ1⌟ = ℒ1 ∪ {𝑏′, 𝑏′ | 𝑏 ∈ 𝑉←𝑆 };
• ⌞ℛ1⌟ = (ℛ1)↓ℒ1 ∪ {𝑏← 𝑏′, 𝑏′ ← 𝑏 | 𝑏 ∈ 𝑉←𝑆 }.

Intuitively, the additional rules allow us to choose whether we want to accept an extension 𝐸 of
⌞𝐷1⌟ containing 𝑏 or one that does not. After this choice, we can safely compute the 𝐸-reduct of 𝐷2, as
for proper splitting. In this way, we propagate the meta-information to which we committed by means
of our choice. A further modification of 𝐷2 is now needed to make sure that our hypothesis regarding
𝑏 is ensured: we add a fact-rule 𝑏← or a loop-rule 𝑏← 𝑏, depending on whether the previously chosen
extension 𝐸 contains 𝑏 or 𝑏′. These represent a form of (positive and negative) constraints in ABA.

Definition 17. Let 𝐷 = (ℒ,ℛ,𝒜, ) be an ABAF, 𝑆 a quasi-splitting of 𝐷 into 𝐷1 and 𝐷2. Moreover,
let 𝑉←𝑆 be the set of vulnerabilities with respect to 𝑆 and 𝐷𝐸

2 the 𝐸-reduct of 𝐷2 for some 𝐸 ∈ 𝜎(⌞𝐷1⌟).
We denote with ⌜𝐷𝐸

2 ⌝ = (ℒ2, ⌜ℛ𝐸
2 ⌝,𝒜2,

2) the ABAF obtained augmentingℛ𝐸
2 with:

{𝑏←| 𝑏 ∈ 𝐸 ∩ 𝑉←𝑆 } ∪ {𝑏← 𝑏 | 𝑏′ ∈ 𝐸}.

Notice that such modification might make the ABAF ⌜𝐷𝐸
2 ⌝ non-flat, as 𝑐𝑙(∅) = {𝑏 | 𝑏 ∈ 𝐸 ∩ 𝑉←𝑆 }.

For stable semantics, however, this does not result in a higher complexity for the same reasoning tasks.



Example 5. Consider the ABAF 𝐷 = (ℒ,ℛ,𝒜, ) where𝒜 = {𝑎, 𝑏, 𝑐, 𝑑}, ℒ = 𝒜∪𝒜∪{𝑝}, and rule-set
ℛ as follows:

𝑏← 𝑎 𝑑← 𝑏 𝑎← 𝑝, 𝑐 𝑝← 𝑏

First notice that 𝐸 = {𝑏, 𝑐} and 𝐸′ = {𝑎, 𝑐, 𝑑} are stable extensions in 𝐷. Now let 𝑆 = {𝑎, 𝑎, 𝑑, 𝑑, 𝑝} be a
quasi-splitting of 𝐷 and 𝑉←𝑆 = {𝑏} the set of vulnerabilities w.rt. 𝑆. We get ⌞ℒ1⌟ = 𝑆∪{𝑏}∪{𝑏}∪{𝑏′, 𝑏′}
and ⌞ℛ1⌟ such that:

𝑑← 𝑏 𝑎← 𝑝, 𝑐 𝑝← 𝑏 𝑏′ ← 𝑏 𝑏← 𝑏′

We derive two stable extensions 𝐸1 = {𝑏} and 𝐸′1 = {𝑏′, 𝑎, 𝑑}. Now consider 𝐷2 with ℒ2 = ℒ ∖ 𝑆 =
{𝑏, 𝑐, 𝑏, 𝑐}. For the former we get ⌜𝐷𝐸1

2 ⌝ with ⌜ℛ𝐸1
2 ⌝ = ∅ ∪ {𝑏←} from which we derive 𝐸2 = {𝑏, 𝑐} as

a stable extension. For the latter we get ⌜𝐷𝐸′1
2 ⌝ with ⌜ℛ𝐸1

2 ⌝ = {𝑏←} ∪ {𝑏← 𝑏} from which we derive
𝐸′2 = {𝑐} as a stable extension. We then obtain 𝐸 = (𝐸1 ∩ 𝑆) ∪ 𝐸2 and 𝐸′ = (𝐸′1 ∩ 𝑆) ∪ 𝐸′2.

Theorem 4. For an ABAF 𝐷 = (ℒ,ℛ,𝒜, ) and a quasi-splitting 𝑆 ⊆ ℒ of 𝐷:

1. if 𝐸1 ∈ stb(⌞𝐷1⌟) and 𝐸2 ∈ stb(⌜𝐷𝐸1
2 ⌝), then (𝐸1 ∩ 𝑆) ∪ 𝐸2 ∈ stb(𝐷).

2. if 𝐸 ∈ stb(𝐷), then there is a set 𝑋 ⊆ {𝑎′ | 𝑎 ∈ 𝑉←𝑆 } such that 𝐸1 = (𝐸 ∩ 𝑆) ∪𝑋 ∈ stb(⌞𝐷1⌟)
and 𝐸2 = 𝐸 ∩ 𝒜2 ∈ stb(⌜𝐷𝐸1

2 ⌝).

Proof. In what follows, for notational convenience, let 𝐸 = 𝐸1 ∪ 𝐸2 and let 𝐷′2 = (ℒ2,ℛ′2,𝒜2,
2) be

the reduct of 𝐷2 w.r.t. 𝐸1 = (𝐸 ∩ 𝑆) ∪𝑋 .
(1.) To prove the statement we need to show (𝐸1 ∩ 𝑆) ∪ 𝐸2 ∈ cf(𝐷) and ((𝐸1 ∩ 𝑆) ∪ 𝐸2)

⊕
ℛ = 𝒜.

We start with conflict-freeness. Since 𝐸1 ∈ cf(⌞𝐷1⌟), then 𝐸1 ∩ 𝑆 ∈ cf(⌞𝐷1⌟) (less assumptions)
and 𝐸1 ∩ 𝑆 ∈ cf(𝐷1) (less attacks). Since ℒ1 = ℒ ∩ 𝑆, ℛ1 = {𝑟 ∈ ℛ | ℎ𝑒𝑎𝑑(𝑟) ∈ 𝑆}, we
can derive 𝐸1 ∩ 𝑆 ∈ cf(𝐷). Consider now 𝐸2 ∈ stb(⌜𝐷′2⌝). Since being stable implies conflict-
freeness we immediately get 𝐸2 ∈ cf(⌜𝐷′2⌝). Again, since ℛ′2 ⊆ ⌜ℛ′2⌝, we obtain 𝐸2 ∈ cf(𝐷′2).
Furthermore, Proposition 3 for proper splittings, together with 𝐸1 ∩ 𝑆 ∈ cf(𝐷1) and 𝐸2 ∈ cf(𝐷′2),
entail (𝐸1 ∩ 𝑆) ∪ 𝐸2 ̸⊢𝑅 𝑎 for any 𝑎 ∈ 𝐸2 and 𝑅 ⊆ ℛ. It only remains to consider possible attacks
from 𝐸2 to 𝐸1 ∩ 𝑆 in 𝐷. Suppose that there are 𝑇 ⊆ 𝐸2 and 𝑎 ∈ 𝐸1 ∩ 𝑆 such that 𝑇 ⊢𝑅 𝑎 for some
𝑅 ⊆ ℛ. First, notice that since 𝑇 ⊆ 𝐸2, we get 𝑏𝑜𝑑𝑦(𝑅) ∩ 𝑆 = ∅ ⊆ 𝑇ℎ𝐷1(𝐸1), and thus 𝑅 ⊆ ℛ′2.
Moreover, 𝑎 ∈ 𝑉←𝑆 so that ⌜ℛ′2⌝ = ℛ′2 ∪ {𝑎←}. Therefore, 𝑇 ⊢𝑅 𝑎 and 𝑇 ⊢𝑅 𝑎 for some 𝑅 ⊆ ⌜ℛ′2⌝,
i.e. 𝐸2 is either not conflict-free or not closed in ⌜𝐷′2⌝.

We now show that ((𝐸1 ∩ 𝑆) ∪ 𝐸2)
⊕
ℛ = 𝒜. Towards contradiction, consider an assumption 𝑎 /∈

((𝐸1 ∩ 𝑆) ∪ 𝐸2)
⊕
ℛ. Assume 𝑎 ∈ 𝑆. By hypothesis, 𝐸1 ∈ stb(⌞𝐷1⌟), i.e. either 𝑎 ∈ 𝐸1 or 𝐸1 ⊢𝑅 𝑎

for some 𝑅 ⊆ ⌞ℛ1⌟. From our assumption, we get 𝑎 /∈ (𝐸1 ∩ 𝑆)⊕ℛ, that is (i) 𝑎 /∈ 𝐸1 ∩ 𝑆 and (ii)
𝐸1∩𝑆 ̸⊢𝑅 𝑎 for any 𝑅 ⊆ ℛ. If (i) holds, we immediately derive 𝐸1 ⊢𝑅 𝑎 for some 𝑅 ⊆ ⌞ℛ1⌟. Consider
now our assumption (ii). Because 𝑎 ∈ 𝑆 we know that every rule of 𝑅 is contained inℛ1. For the same
reason such rules are in ⌞ℛ1⌟ (𝑏 /∈ 𝑉←𝑆 ). Therefore, 𝐸1 ∩ 𝑆 ̸⊢𝑅 𝑎 for any 𝑅 ⊆ ⌞ℛ1⌟ in contradiction
with our hypothesis. Assume now 𝑎 ∈ 𝒜 ∖ 𝑆. By hypothesis we know either 𝑎 ∈ 𝐸2 or 𝐸2 ⊢𝑅 𝑎 for
some 𝑅 ⊆ ⌜ℛ′2⌝. From the assumption, we get 𝑎 /∈ (𝐸2)

⊕
ℛ, that is (i) 𝑎 /∈ 𝐸2 and (ii) 𝐸2 ̸⊢𝑅 𝑎 for any

𝑅 ⊆ ℛ. As before, from (i) and our hypothesis we derive 𝐸2 ⊢𝑅 𝑎 must hold for some 𝑅 ⊆ ⌜ℛ′2⌝. If
𝑎 ∈ 𝑉←𝑆 , there are two possibilities: 𝑎 ∈ 𝐸1∖𝑆 or 𝑎 /∈ 𝐸1∖𝑆. In the first scenario, ⌜ℛ′2⌝ = ℛ′2∪{𝑎←}.
Again, 𝐸2 ⊢𝑅 𝑎 and 𝐸2 ⊢𝑅 𝑎 for some 𝑅 ⊆ ⌜ℛ′2⌝, in contradiction with the fact that 𝐸2 is a stable
extension of ⌜𝐷′2⌝. If 𝑎 /∈ 𝐸1 ∖ 𝑆, then 𝑎′ ∈ 𝐸1, which means ⌜ℛ′2⌝ = ℛ′2 ∪ {𝑎← 𝑎}. Since 𝑎 /∈ 𝐸2,
the loop-rule 𝑎← 𝑎 is not in 𝑅, therefore 𝑅 ⊆ ℛ′2. Thus, for each rule 𝑟′ ∈ ℛ′2 there is a rule 𝑟 ∈ ℛ2

such that 𝑏𝑜𝑑𝑦(𝑟) ⊆ 𝑏𝑜𝑑𝑦(𝑟) ∪ 𝑇ℎ𝐷1(𝐸1). Hence, it follows directly that (𝐸1 ∩ 𝑆) ∪ 𝐸2 ⊢𝑅 𝑎 for
some 𝑅 ⊆ ℛ1 ∪ ℛ2 = ℛ. If 𝑎 /∈ 𝑉←𝑆 , then 𝑎 /∈ 𝒜1. If 𝐸2 ⊢𝑅 𝑎 for some 𝑅 ⊆ ⌜ℛ′2⌝, it is not
because {𝑎 ← 𝑎} ⊆ ⌜ℛ′2⌝. Thus 𝑅 ⊆ ℛ′2. As before, for each rule 𝑟′ ∈ ℛ′2 there is exactly one rule
𝑟 ∈ ℛ2 such that 𝑏𝑜𝑑𝑦(𝑟) ⊆ 𝑏𝑜𝑑𝑦(𝑟′) ∪ 𝑇ℎ𝐷1(𝐸1 ∩ 𝑆). As a result, in the entire rule-setℛ we obtain
(𝐸1 ∩ 𝑆) ∪ 𝐸2 ⊢ 𝑎 is a derivation in 𝐷. This contradicts our assumption.



(2.) First we get 𝐸 ∈ cf(𝐷) and thus 𝐸 ∩ 𝑆 ∈ cf(𝐷1) (less attacks). Now let 𝐵 = 𝒜1 ∖ (𝐸 ∩ 𝑆)⊕ℛ.
Since 𝐸 ∈ stb(𝐷), it attacks every other assumption. Hence, we can infer that assumptions in 𝐵 are
contained in𝒜1 and attacked by 𝐸∩𝒜2 in 𝐷, that is 𝐵 ⊆ 𝐸+

ℛ∖(𝐸∩𝑆)
⊕
ℛ = (𝐸∩𝒜2)

+
ℛ. Therefore there

is a rule 𝑟 ∈ ℛ2 with ℎ𝑒𝑎𝑑(𝑟) = 𝑏 for each 𝑏 ∈ 𝐵, meaning that 𝐵 = 𝑉←𝑆 . Now let 𝑋 = {𝑏′ | 𝑏 ∈ 𝐵}.
Thus ⌜ℛ′2⌝ contains a pair of rule {𝑏 ← 𝑏′, 𝑏′ ← 𝑏} for each 𝑏 ∈ 𝐵. Consequently, conflict-freeness
of (𝐸 ∩ 𝑆) ∪𝑋 is ensured since 𝑏 /∈ 𝐸 ∩ 𝑆 for all 𝑏 ∈ 𝐵. Moreover, 𝑋 attacks every 𝑏 ∈ 𝐵 in ⌞𝐷1⌟,
making (𝐸 ∩ 𝑆) ∪𝑋 stable.

It now remains to show 𝐸2 = 𝐸∩𝒜2 ∈ stb(⌜𝐷′2⌝). As before, we know that 𝐸∩𝒜2 ∈ cf(𝐷2) since 𝐸
is conflict-free in 𝐷 (less assumptions), and 𝐸∩𝒜2 ∈ cf(𝐷′2) because 𝑇ℎ𝐷′2(𝐸∩𝒜2) ⊆ 𝑇ℎ𝐷2(𝐸∩𝒜2)
(less rules and attacks). Consider now the modified framework ⌜𝐷′2⌝ wrt (𝐸 ∩𝑆)∪𝑋 . By construction,
𝐸 ∩ 𝒜2 /∈ cf(⌜𝐷′2⌝) only if 𝑏 ∈ 𝐵 ∩ (𝐸 ∩ 𝒜2). Recall that 𝐵 ⊆ (𝐸 ∩ 𝒜2)

+
ℛ. Thus, 𝐸 ∩ 𝒜2 /∈ cf(𝐷).

By contradiction, we derive that 𝐸 ∩ 𝒜2 is conflict free in ⌜𝐷′2⌝. We now show that 𝐸2 ⊢𝑅 𝑎 for
all 𝑎 ∈ 𝒜2 ∖ 𝐸2 and some 𝑅 ⊆ ⌜ℛ′2⌝. Towards contradiction, we assume there is an 𝑎 ∈ 𝒜2 ∖ 𝐸2

such that 𝐸2 ̸⊢𝑅 𝑎, i.e. 𝑎 /∈ 𝑇ℎ⌜𝐷′2⌝(𝐸2). Therefore, since 𝑎 /∈ 𝐸2, we get 𝑎 /∈ 𝑇ℎ𝐷′2(𝐸2). Hence,
before the reduct is applied, it holds that (𝐸 ∩ 𝑆) ∪ 𝐸2 ̸⊢𝑅 𝑎 with 𝑅 ⊆ ℛ2. Since no rule 𝑟 ∈ ℛ1

is such that ℎ𝑒𝑎𝑑(𝑟) = 𝑎, we derive (𝐸 ∩ 𝑆) ∪ 𝐸2 ̸⊢𝑅 𝑎 in 𝐷, in contradiction with out hypothesis.
Finally, we ensure that 𝑐𝑙(𝐸2) = 𝐸2 in ⌜𝐷′2⌝. Assume the contrary holds. Since 𝐷′2 is flat, that means
{𝑎 ←} ⊆ ⌜ℛ′2⌝ and 𝑎 /∈ 𝐸2. These facts respectively entail 𝑎 ∈ 𝐸1 and 𝐸2 ⊢ 𝑎 (from previous
paragraph). This contradicts the conflict-freeness of 𝐸. Thus, 𝐸2 is conflict-free, closed and attacks
every other assumption.

5.2. Argumentation Frameworks with Collective Attacks

In this section we investigate a notion of parametrised splitting for SETAFs, which generalises the one
for AFs [12]. First, we introduce the notion of quasi-splitting for SETAFs.

Definition 18. Let 𝑆𝐹 = (𝐴,𝑅) be a SETAF, 𝑆𝐹1 = (𝐴1, 𝑅1) and 𝑆𝐹2 = (𝐴2, 𝑅2) two sub-
frameworks of 𝑆𝐹 such that 𝐴1 ∩ 𝐴2 = ∅ and 𝐴 = 𝐴1 ∪ 𝐴2. We call a quasi-splitting of 𝑆𝐹 the
tuple (𝑆𝐹1, 𝑆𝐹2, 𝑅

←
3 , 𝑅→3 ) with 𝑅→3 ⊆

(︀
(2𝐴1 ∖ {∅}) ∪ 2𝐴2

)︀
× 𝐴2, 𝑅←3 ⊆

(︀
(2𝐴2 ∖ {∅}) ∪ 2𝐴1

)︀
× 𝐴1

and 𝑅 = 𝑅1 ∪𝑅2 ∪𝑅3. Moreover, we say that 𝑅←3 and 𝑅→3 are the set of incoming and outgoing links
w.r.t. the splitting. The splitting (𝑆𝐹1, 𝑆𝐹2, 𝑅

←
3 , 𝑅→3 ) is called:

• the 𝑘-splitting of 𝑆𝐹 , if |𝑅←3 | = 𝑘;
• (proper) splitting of 𝑆𝐹 , if |𝑅←3 | = 0.

While the idea of quasi-splitting is carried out in a conceptually similar manner than for ABAFs, the
concrete modifications that we require are fairly different. In particular, we start by augmenting 𝑆𝐹1

with fresh arguments that encode meta-information regarding incoming links. For each of these, we
introduce symmetric attacks to force a choice between the target of the incoming link and the new one.

Definition 19. Let 𝑆𝐹 = (𝐴,𝑅) be a SETAF, (𝑆𝐹1, 𝑆𝐹2, 𝑅
←
3 , 𝑅→3 ) be a quasi-splitting of 𝑆𝐹 inducing

the sub-frameworks 𝑆𝐹1 and 𝑆𝐹2. We construct ⌞𝑆𝐹1⌟ = (⌞𝐴1⌟, ⌞𝑅1⌟) as the SETAF obtained from
𝑆𝐹1 by letting:

• ⌞𝐴1⌟ = 𝐴1 ∪ {𝑏′ | 𝑏 ∈ 𝐴+
𝑅←3
};

• ⌞𝑅1⌟ = 𝑅1 ∪ {({𝑏}, 𝑏′), ({𝑏′} ∪ (𝑇 ∩ 𝒜1), 𝑏) | (𝑇, 𝑏) ∈ 𝑅←3 }.

We call 𝐸 a conditional extension of 𝑆𝐹1 iff it is a stable extension of ⌞𝑆𝐹1⌟.

As for proper splitting, 𝐸1 is used to compute the reduct of 𝑆𝐹2. Further, in this setting the the
meta-information in 𝐸1 plays a role. In particular, if 𝑎 /∈ 𝐸1 and is not attacked by 𝐸1 ∩ 𝐴1, then it
must be attacked externally.



Definition 20. Let 𝑆𝐹 be a SETAF and (𝑆𝐹1, 𝑆𝐹2, 𝑅
←
3 , 𝑅→3 ) be a quasi-splitting of 𝑆𝐹 . Moreover, let

𝐸1 be a conditional extension of 𝑆𝐹1. We call

𝐸𝐴𝐸1
1 = {𝑎 ∈ 𝐴1 ∖ 𝐸1 | 𝑎 /∈ (𝐸1 ∩𝐴1)

+
𝑅}

the set of externally attacked arguments in 𝑆𝐹1 w.r.t. 𝐸1.

Next, we introduce a modification of 𝑆𝐹𝐸1
2 that takes into account information regarding incoming

links. First, we add set-self-attacks to make coflicting those sets of arguments attacking 𝐸1 via 𝑅←3 .
Further, for each of these externally attacked arguments, we introduce a self-attacking argument 𝑎𝑖𝑛
attacked by the remaining part of an incoming link.

Definition 21. Let 𝑆𝐹 be a SETAF and (𝑆𝐹1, 𝑆𝐹2, 𝑅
←
3 , 𝑅→3 ) be a quasi-splitting of 𝑆𝐹 . Moreover, let

𝐸1 be a conditional extension of 𝑆𝐹1 and 𝐸𝐴𝐸1
1 = {𝑎 ∈ 𝐴1 ∖ 𝐸1 | 𝑎 /∈ (𝐸1 ∩ 𝐴1)

+
𝑅}. We denote with

⌜𝑆𝐹𝐸1
2 ⌝ = (⌜𝐴𝐸1

2 ⌝, ⌜𝑅𝐸1
2 ⌝) the SETAF where:

⌜𝐴𝐸1
2 ⌝ =𝐴𝐸1

2 ∪ {𝑎𝑖𝑛 | 𝑎 ∈ 𝐸𝐴𝐸1
1 };

⌜𝑅𝐸1
2 ⌝ =𝑅𝐸1

2 ∪ {(𝑇, 𝑏) | 𝑏 ∈ 𝑇 ⊆ 𝐴𝐸1
2 , (𝑇,𝐸1) ∈ 𝑅←3 }∪

{𝑎𝑖𝑛, 𝑎𝑖𝑛), (𝑇, 𝑎𝑖𝑛) | 𝑎 ∈ 𝐸𝐴𝐸1
1 , 𝑇 ⊆ 𝐴𝐸1

2 , ∃𝑇 ′ ⊇ 𝑇 s.t. (𝑇 ′, 𝑎) ∈ 𝑅←3 }.

Example 6. Consider the SETAF 𝑆𝐹 = (𝐴,𝑅) where 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑} and 𝑅 =
{(𝑎, 𝑏), ({𝑏, 𝑐}, 𝑎), (𝑏, 𝑑)} and its quasi-splitting as depicted below (a). We have two possible stable exten-
sions 𝐸 = {𝑏, 𝑐} and 𝐸′ = {𝑎, 𝑐, 𝑑}. After modification, the first sub-framework ⌞𝑆𝐹1⌟ (b) has two stable
extensions: 𝐸1 = {𝑎′, 𝑏} and 𝐸′1 = {𝑎}. These yield two different modifications ⌜𝑆𝐹𝐸1

2 ⌝ (c) and ⌜𝑆𝐹
𝐸′1
2 ⌝

(d), with respect to 𝐸𝐴𝐸1
1 = {𝑎} and 𝐸𝐴

𝐸′1
1 = ∅. Consequently, their only stable extensions are 𝐸2 = {𝑐}

and 𝐸′2 = {𝑐, 𝑑} respectively.

𝑏 𝑑

𝑎 𝑐

(a) 𝑆𝐹

𝑏 𝑑

𝑎 𝑐
𝑎′

(b) ⌞𝑆𝐹1⌟

𝑏 𝑑

𝑎 𝑐
𝑎′ 𝑎𝑖𝑛

(c) ⌜𝑆𝐹𝐸1
2 ⌝

𝑏 𝑑

𝑎 𝑐
𝑎′

(d) ⌜𝑆𝐹𝐸′1
2 ⌝

Towards proving the splitting theorem, we adapt a useful lemma from [12] in the context of SETAFs.

Lemma 1. Let 𝑆𝐹 = (𝐴,𝑅) be a SETAF with ℬ, 𝒞1, . . . , 𝒞𝑛 ⊆ 2𝐴 sets of sets of arguments in 𝑆𝐹 .
Moreover, let 𝐷 = {𝑑1, . . . , 𝑑𝑛} be fresh arguments such that 𝐷 ∩𝐴 = ∅. The stable extensions of

𝑆𝐹 ′ = (𝐴 ∪𝐷,𝑅 ∪ {(𝐵, 𝑏) | 𝑏 ∈ 𝐵 ∈ ℬ} ∪ {(𝑑𝑖, 𝑑𝑖), (𝐶, 𝑑𝑖) | 𝑑𝑖 ∈ 𝐷,𝐶 ∈ 𝒞𝑖, 1 ≤ 𝑖 ≤ 𝑛})

are exactly the stable extensions 𝐸 of 𝑆𝐹 such that (i) 𝐵 ̸⊆ 𝐸 for any 𝐵 ∈ ℬ and (ii) 𝐶 ⊆ 𝐸 for at least
one 𝐶 ∈ 𝒞𝑖 and every 𝒞𝑖 with 𝑖 ∈ {1, . . . , 𝑛}.

Proof. Suppose 𝐸 ∈ stb(𝑆𝐹 ) such that (i) and (ii) hold. Since 𝐸 ⊆ 𝐴 and (i) holds, we get 𝐸 ∈ cf(𝑆𝐹 ′).
Moreover, from (ii) we derive that 𝐸⊕𝑅(𝑆𝐹 ′) = 𝐸⊕𝑅(𝑆𝐹 ) ∪𝐷 = 𝐴 ∪𝐷, deriving 𝐸 ∈ stb(𝑆𝐹 ′). Assume
𝐸 ∈ stb(𝑆𝐹 ′). Since every 𝑑𝑖 is self-attacking, we know that 𝐸 ⊆ 𝐴. Thus 𝐸 ∈ cf(𝑆𝐹 ) (less attacks).
Further, 𝐸⊕𝑅(𝑆𝐹 ′) = 𝐴∪𝐷 from hypothesis, and 𝐸⊕𝑅(𝑆𝐹 ) = 𝐸⊕𝑅(𝑆𝐹 ′) ∖𝐷 = (𝐴∪𝐷) ∖𝐷 = 𝐴, proving
that 𝐸 ∈ stb(𝑆𝐹 ). We now show (i) and (ii). For (i) notice that for all 𝐵 ⊆ ℬ𝑖, we have 𝐵 ̸⊆ 𝐸 because
𝐸 is conflict-free in 𝑆𝐹 ′. For (ii), each 𝒞𝑗 is the set of sets attacking the corresponding 𝑑𝑗 ∈ 𝐷. Therefore,
at least one of such attacking sets 𝐶 ∈ 𝒞𝑗 is guaranteed to be in 𝐸 since 𝐸⊕𝑅(𝑆𝐹 ′) = 𝐴 ∪𝐷.

Notice that the SETAFs 𝑆𝐹 and 𝑆𝐹 ′ in the lemma above corresponds exactly to 𝑆𝐹𝐸1
2 and ⌜𝑆𝐹𝐸1

2 ⌝,
where ℬ is the set of sets attacking 𝐸1 and each 𝒞𝑖 the set of sets attacking each 𝑎𝑖𝑛 ∈ 𝐸𝐴𝐸1

1 . The
lemma is thus utilised to show the following parametrised splitting theorem focusing on 𝑆𝐹𝐸1

2 only.



Theorem 5. Let 𝑆𝐹 be a SETAF and (𝑆𝐹1, 𝑆𝐹2, 𝑅
←
3 , 𝑅→3 ) be a quasi-splitting of 𝑆𝐹 . Moreover, let

⌞𝑆𝐹1⌟ and ⌜𝑆𝐹 ′2⌝ = ⌜𝑆𝐹𝐸1
2 ⌝ be as per Definitions 19 and 21.

1. If 𝐸1 ∈ stb(⌞𝑆𝐹1⌟) and 𝐸2 ∈ stb(⌜𝑆𝐹 ′2⌝), then (𝐸1 ∩𝐴1) ∪ 𝐸2 ∈ stb(𝑆𝐹 ).
2. If𝐸 ∈ stb(𝑆𝐹 ), then there is a set𝑋 ⊆ {𝑏′ | 𝑏 ∈ 𝐴+

𝑅←3
} such that𝐸1 = (𝐸∩𝐴1)∪𝑋 ∈ stb(⌞𝑆𝐹1⌟)

and 𝐸2 = 𝐸 ∩𝐴2 ∈ stb(⌜𝑆𝐹 ′2⌝).

Proof. (1.) We first prove conflict-freeness. From hypothesis, 𝐸1 ∈ cf(⌞𝑆𝐹1⌟) implies 𝐸∩𝐴1 ∈ cf(𝑆𝐹1)
since 𝐸 ∩𝐴1 ⊆ 𝐸1 and 𝑅1 ⊆ ⌞𝑅1⌟. Thus, 𝐸 ∩𝐴1 ∈ cf(𝑆𝐹 ) because 𝑅1 = 𝑅 ∩ (2𝐴1 ×𝐴1). From the
fact that 𝐸2 ∈ stb(⌜𝑆𝐹 ′2⌝) together with Lemma 1, we know that 𝐸2 ∈ stb(𝑆𝐹 ′2), and thus 𝐸2 ∈ cf(𝑆𝐹 ).
We now consider possible attacks from 𝐸1 ∩ 𝐴1 to 𝐸2 and viceversa. Clearly, (𝐸1 ∩ 𝐴1, 𝐸2) /∈ 𝑅
since 𝐸1 ∩ 𝐴1 ⊆ 𝐴1 and 𝐸2 ⊆ 𝐴′2 (recall 𝐴′2 = 𝐴2 ∖ (𝐸1)

+
𝑅←3

). Assume towards contradiction that
(𝐸2, 𝐸1 ∩𝐴1) ∈ 𝑅, i.e. (𝑇, 𝑎) ∈ 𝑅←3 for some 𝑇 ⊆ 𝐸2 ⊆ 𝐴′2 and 𝑎 ∈ 𝐸1 ∩𝐴1. If this is the case, then
by construction of ⌜𝑆𝐹 ′2⌝ we have (𝑇, 𝑏) ∈ ⌜𝑅′2⌝ for some 𝑏 ∈ 𝑇 , violating the coflict-freeness of 𝐸2

in ⌜𝑆𝐹 ′2⌝. Hence, (𝐸1 ∩ 𝐴1) ∪ 𝐸2 ∈ cf(𝑆𝐹 ). We show that ((𝐸1 ∩ 𝐴1) ∪ 𝐸2)
⊕
𝑅 = 𝐴1 ∪ 𝐴2 = 𝐴 by

contradiction. Assume 𝑎 /∈ ((𝐸1 ∩𝐴1) ∪ 𝐸2)
⊕
𝑅 . If 𝑎 ∈ 𝐴1, we deduce that 𝑎 ∈ 𝐸𝐴𝐸1

1 . As before, given
that 𝐸2 ∈ stb(⌜𝑆𝐹 ′2⌝), it holds that 𝐸2 ∈ stb(𝑆𝐹 ′2) via Lemma 1, and (𝐸2, 𝑎𝑖𝑛) ∈ ⌜𝑅′2⌝. Therefore, 𝐸2

attacks 𝑎 via 𝑅←3 in 𝑆𝐹 , contradicting our assumption. If 𝑎 ∈ 𝐴2, together with our assumption, we
get 𝑎 ∈ 𝐴′2 (elements in 𝐸1 ∖ 𝐴1 do not attack arguments in 𝐴2). Again, since 𝐸2 ∈ stb(⌜𝑆𝐹 ′2⌝), it
holds that 𝐸2 ∈ stb(𝑆𝐹 ′2) via Lemma 1. Thus, 𝑎 ∈ (𝐸2)

⊕
𝑅, contradicting our assumption. Therefore,

((𝐸1 ∩𝐴1) ∪ 𝐸2)
⊕
𝑅 = 𝐴 and (𝐸1 ∩𝐴1) ∪ 𝐸2 ∈ stb(𝐹 ).

(2.) We first show that (𝐸 ∩ 𝐴1) ∪𝑋 ∈ stb(⌞𝑆𝐹1⌟). Let 𝐵 = {𝑏1, . . . , 𝑏𝑛} = 𝐴1 ∖ (𝐸 ∩ 𝐴1)
⊕
𝑅 and

𝑋 = {𝑏′𝑖 | 𝑏𝑖 ∈ 𝐵}. Since 𝐸 ∈ stb(𝑆𝐹 ), it follows that 𝐵 ⊆ (𝐸2)
+
𝑅 . Hence, by construction of ⌞𝑅1⌟, we

derive that (𝐸 ∩𝐴1) ∪𝑋 ∈ stb(⌞𝑆𝐹1⌟). Consider now 𝐸2. From 𝐸 ∈ stb(𝑆𝐹 ), we get 𝐸2 ∈ stb(𝑆𝐹 ′2)
because each 𝑎 ∈ 𝐴′2 is attacked by 𝐸2 in 𝑆𝐹 . Moreover, since 𝐸 is conflict-free in 𝑆𝐹 , there is no
𝑇 ⊆ 𝐸2 such that (𝑇,𝐸1) ∈ 𝑅←3 (𝐸2 satisfies (i)). Notice that 𝐵 = 𝐸𝐴𝐸1

1 , i.e. each 𝑏𝑖 ∈ 𝐵 is in 𝐴1 and
externally attacked. Recall that 𝐵 ⊆ (𝐸2)

+
𝑅. Therefore, there is some 𝑇 ′ ⊆ 𝐸2 such that (𝑇 ′, 𝑏𝑖) for

each 𝑏𝑖 ∈ 𝐸𝐴𝐸1
1 . By construction of ⌜𝑆𝐹 ′2⌝, a fresh argument (𝑏𝑖)𝑖𝑛 = 𝑑𝑖 is introduced for each 𝑏𝑖 ∈ 𝐵

along with (𝑇 ′, 𝑑𝑖) (𝐸2 satisfies (ii)). Thus Lemma 1 applies, concluding 𝐸2 ∈ stb(⌜𝑆𝐹 ′2⌝).

6. Conclusion and Future Work

In this paper, we have presented a modification-based approach to splitting assumption-based argumen-
tation frameworks. In particular, we have shown that 1. if one computes an extension 𝐸1 in 𝐷1, then
applies the reduct and modification, and obtains an extension 𝐸2 of the remaining sub-framework, their
set-union is an extension of the whole framework. This characterises the incremental computation of
the extension 𝐸 by evaluating the two sub-frameworks. Conversely, we show that 2. if we project an
arbitrary extension 𝐸 of the whole framework to its sub-frameworks, we obtain extensions 𝐸1 for 𝐷1

and 𝐸2 for the (𝐸1)-modified version of 𝐷2. Since this is bound to specific structure of the underlying
ABAF, we have considered a more general variant of splitting called parametrised splitting inspired by
Baumann et al. [12]. Results in this setting have been presented for both ABAFs and SETAFs. Moreover,
it is easy to see that each of the steps involved can be carried out efficiently and implemented on top of
common ABA (or SETAF) solvers. Therefore, an obvious next step is that of implementing our algorithm
and perform an experimental evaluation in the spirit of Baumann et al. [18]. In particular, we believe
that parametrised splitting could be helpful in the context of the recently proposed Argumentative
Causal Discovery, which faces a major challenge in terms of its scalability and exhibits suboptimal
performance on larger instances [5].
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