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Abstract

Assumption-Based Argumentation (ABA) is a well-established rule-based formalism for modelling and reasoning
in non-monotonic settings, with a wide range of applications. However, the high computational complexity of
core reasoning tasks in ABA poses a significant challenge for its applicability in practice. This issue is further
exacerbated when ABA frameworks (ABAFs) are instantiated into graph-based argumentation formalisms, such
as Dung’s Argumentation Frameworks (AFs) and Argumentation Frameworks with Collective Attacks (SETAFs).
In the context of non-monotonic reasoning, a key strategy to address computational intractability is to optimise
reasoning over a given knowledge base through divide-and-conquer algorithms. A paradigmatic example of
this approach is splitting, where extensions of a given framework are computed incrementally, i.e. restricting
the search space to sub-frameworks only, and then combining the obtained results. This approach has been
successfully applied to SETAFs in the literature. Furthermore, a parametrised version has been introduced for
AFs under stable semantics. However, the exponential growth produced by the instantiation process might
undermine the usefulness of splitting on the argument graphs induced by ABAFs. For this reason, there is a
need for splitting-based algorithms tailored for ABA. To address this issue, our work investigates the concept of
splitting for ABAFs under common semantics. Furthermore, we generalise splitting to its parametrised version
both for SETAFs and ABAFs.
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1. Introduction

Computational models of argumentation in Al [1] offer formal approaches to represent and reason over
situations where contradicting or uncertain information is present. Among these, Assumption-Based
Argumentation (ABA) [2] captures argumentative scenarios by means of so-called ABA frameworks
(ABAFs), consisting of a set of defeasible sentences (assumptions) and inference rules. Argumentative
reasoning is then performed in a two-step process: first an argument graph comprising arguments and
their relations is generated from the ABAF, by means of the so-called instantiation procedure; then,
argumentation semantics are applied to the obtained graph in order to find acceptable sets of arguments.

Although ABA is a well-established formalism to perform non-monotonic reasoning, with applications
in medical decision-making, explainable Al and, more recently, causal discovery [3, 4, 5], the high
computational complexity of core reasoning tasks in ABA poses a significant challenge for its deployment
in practice. This issue is further exacerbated when ABA frameworks are instantiated into abstract
argumentation formalisms [6], such as Dung’s Argumentation Frameworks (AFs) [7] and Argumentation
Frameworks with Collective Attacks (SETAFs) [8].

In the context of non-monotonic reasoning, one prominent strategy to address computational in-
tractability is to optimise reasoning over a given knowledge base through divide-and-conquer algorithms.
A paradigmatic example of this approach is splitting, originally developed for answer-set programming
[9] and later adapted to other nonmonotonic formalisms, e.g. default theories [10] and recently Abstract
Argumentation [11, 12, 13, 14]. This approach focuses on incrementally computing the extensions of a
given abstract argumentation framework by means of the extension of its sub-frameworks, thereby
avoiding to consider the entire solution-space of the original framework. Nonetheless, when applied to
argument graphs derived from ABAFs, the exponential blow-up caused by the instantiation process
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can invalidate the usefulness of splitting. This motivates the need for splitting techniques that operate
directly on ABAFs. To this end, this paper makes the following contributions:

« We begin by reviewing existing notions of splitting for AFs (Section 2) and SETAFs (Section 3).

« We then introduce a novel notion of ABA splitting in Section 4, along with the syntactic adjust-
ments required to establish a splitting theorem, which we prove under standard argumentation
semantics.

« In Section 5, we extend our results to the more general framework of parameterised splitting [12],
showing that under the stable semantics, a splitting theorem holds for both ABAFs and SETAFs.

« Finally, Section 6 concludes with a summary and outlines directions for future research.

2. Preliminaries

Assumption-Based Argumentation We recall here the basic concepts of assumption-based argu-
mentation (ABA) [15]. Debates are represented by means of so-called ABA Frameworks (ABAFs), which
consist of a deductive system (£, R), where L is a set of sentences, and R is a set of rules over L. A
rule » € R has the form ag < aq,...,a, with a; € £, body(r) = {aq,...,a,} and head(r) = ay.

Definition 1. An ABAF is a tuple (L, R, A,”), where (L, R) is a deductive system, A C L a set of
assumptions, and ~ : A — L is a total mapping, called contrary function.

For a set of assumptions, S C A we use S to indicate the set of contraries of S. Conversely, we
define the partial function o : £ + A assigning an assumption to its contrary b € A such that
a(b) = a if b = a. This generalises to sets of contraries as before. For a set of rules R, we fix
head(R) = {head(r) | r € R}, body(R) = {body(r) | r € R}. Further we use atom(S) = {p € L |
p €S, a(p) € Sorp € S}. In what follows, we read atom(p) as atom({p}). For arule r € R, we
say that r is: a fact if body(r) = 0; a loop-rule is @ = head(r) and a € body(r). A sentence q € L is
tree-derivable from S C 4 and rules R C R, denoted by S R q, if there is a finite rooted labelled tree
T where: the root of 7 is labelled with g; the set of labels for the leaves of T" is equal to S or S U {T };
and for every inner node v of T there is a rule » € R such that v is labelled with head(r), and every
successor of v is labelled with a € body(r) or T if body(r) = (). We sometimes write S I ¢ instead of
S 1 ¢ if it does not cause confusion. Moreover, we call Thp(S) = {p € £ | S I p} the theory of S
w.r.t. the ABAF D. Throughout the paper, we assume that ABAFs do not contain dummy rules, whose
body is not derivable from any set of assumptions.

Definition 2. Let D = (£, R, A, ™) be an ABAF. A set S C A attacks T C A if S’ + a for some S’ C S
anda € T. A set S is conflict-free in an ABAF D (S € c¢f(D)) if it does not attack itself; S defends T' iff it
attacks each attacker of T ; S is admissible (S € adm(D)) if it is conflict-free and defends itself.

We say a set S of assumptions attacks an assumption a if S attacks the singleton {a}. In this paper, we
assume ABAFs to be flat, unless specified otherwise. We call an ABAF flat if every set S of assumptions
is closed (i.e. S+ a implies a € S) and non-flat otherwise. We next recall definitions for grounded,
complete, preferred, and stable ABA semantics (abbr. grd, com, pref; stb).

Definition 3. Let D be an ABAF and let S € adm(D). S € com(D) iff S contains every assumption
set it defends; S € grd(D) iff S is C-minimal in com(D); S € pref{D) iff S is C-maximal in com(D);
S € stb(D) iff S attacks each {x} C A\ S. We call (D) the set of c-extensions of the ABAF D.

SETAF Instantiation Konig et al. [16] have shown that flat ABAFs naturally correspond to argumen-
tation frameworks with collective attacks (SETAFs) [8].

Definition 4. A SETAF is a pair SF' = (A, R) where A is a finite set of arguments, and R C 24 x A is
the attack relation. For an attack (T',h) € R we call T' the tail and h the head of the attack. We write
(t,h) to denote the set-attack ({t}, h). For S C A, we say S attacks an argument a € A if there is an
attack (T,a) € R with T C S. Moreover, for a set B C A we say that S attacks B if S attacks some
b € B. Weuse S, = {a | S attacks a} and define the range of S wr.t. R as S5 = S U S.



Every ABAF D = (L, R,.A,”) can be instantiated as the SETAF SFp = (Ap, Rp) by setting
Ap = Aand (S,a) € Rp iff S+ a[16].

Example 1. Consider an ABAF D = (L, R, A,”) with assumptions A = {a,b,c,d}, L = AU
AU {p} and rules R = {@ < b,p; p < ¢; b + a; d < b}. The induced SETAF is SFp =
({a,b,c,d}, {({d,c}, a), (a,b), (b, d)}).

Notice that such mapping is many-to-one. Indeed, we lose p when instantiating the first two rules
into ({b, ¢}, a). For this reason, SETAFs can be seen — syntactically — as a fragment of flat ABAFs.

Splitting We now recall Baumann’s splitting approach for AFs [11]. A splitting identifies two sub-
frameworks F and F; separated by a set of attacks going from F) to F5. Then, the information
contained in an extension of F} is propagated, computing the so-called reduct of F accordingly.

Definition 5. Let F' = (A, R) be an AF, F} = (A1, R1) and F» = (As, Ry) two sub-frameworks of F'
st AINAy =0, A=A UAyand R= R URy U R3 with R3 C Ay x As. The triple (Fl,FQ, Rg) is
called a splitting of F'. For such a splitting and a set E C Ay, the (E, R3)-reduct is the AFAF' = (A', R')
with A" = A\ EE?) and R’ = Ry N (A’ x A"). Moreover, the set of undecided arguments wr.t. E C Aq

isUg :Al\Egl.

The reduct is designed to take care of arguments attacked by the extension E. Further, to account
for the propagation of undecided arguments w.r.t. E, a further modification is needed: self-attacks are
propagated from F} to arguments in F5.

Definition 6. Let (F}, Fs, R3) be a splitting for an AF F and E an extension of Fy. Moreover, take
F) = (A}, R)) as the (E, R3)-reduct of F» and Ug, as the set of undecided arguments w.r.t. E. The
(Ug, R3)-modification of F> is defined as mody, r,(F5) = (A4, RYU{(b,b) | Ja € Ug : (a,b) € R3}).

Using these definitions, Baumann [11] has shown that it is possible to split the AF and compute the
extensions for each sub-framework incrementally such that their combination yields extensions of the
original framework.

Theorem 1 ([11]). Let (F1, F», R3) be a splitting for an AF F = (A, R) with F; = (A;, R;) and
o € {cf, adm, stb, com, pref, grd}.

1. IfEy € o(F) and E3 € o(mody,, r,(Fy)), then Ey U Ey € o(F).
2. IfE € o(F), then EN Ay € o(Fy) and EN Ay € o(mody, rs(F)).

Later, this idea has been generalised by relaxing the strict separation requirement, which significantly
narrows the applicability of splitting, introducing so-called parametrised splitting [12]. Instead of
demanding that the first part is completely unaffected by the second, it allows some forms of interaction.
This generalisation is captured by the notion of quasi-splitting, where arguments in F; may be externally
attacked by arguments in F5. The goal is to preserve correctness while broadening the applicability of
splitting. This is achieved by enriching F with meta-information that encodes facts about potential
influences (e.g. attacks) from the second sub-framework. In particular, for each externally attacked
argument a, a fresh argument o’ is added to F} along with a symmetric attack on a, enforcing a choice
between a and @’ in F. Then, F; is modified accordingly: the previous choices are propagated in the
second sub-framework via the reduct as well as additional nodes and attacks. Stable extensions of the
entire AF are then recovered by composing compatible solutions from the two modified sub-frameworks.

3. Splitting Argumentation Frameworks with Collective Attacks

In this section, we recall fundamentals regarding splitting in the presence of collective attacks [14]. The
notion of splitting for SETAFs generalises the one for Dung-style AFs.



Definition 7. Let SF' = (A, R) be a SETAF, SF| = (A1, R1) and SF; = (Aa, Ra) two sub-frameworks
of SF suchthat AjNAs = 0, A = AjUAs and R = R{URsUR; with Ry C ((21\{0})U22) x Ay. We
call a splitting of SF the triple (SFy, SF, R3). Moreover, we call R the set of links wrt (SF1, SF», R3)
and say that a link is undecided if no argument in its tail is defeated, but at least one is undecided.

As for AFs, the general idea is to compute extensions of SF' as a combination of extensions of SF}
and SF5. Due to the links from SF) to SF, we have to modify SF; according to the extension(s) of
S F} to account for the prior accepted and rejected arguments. Following Baumann [11], we introduce
the notions of reduct and modification, in application to the second part (that is, SF?3) of the original
SETAFs. Intuitively, the reduct takes care of the arguments in S F5 that are already defeated by E; by
removing them, and modifies the links by leaving the remaining part of the attack in the reduct.

Definition 8 (Reduct). Let (SFi, SFy, R3) be a splitting for a SETAF SF. We define the (E1, R3)-
reduct (or simply reduct) of SF» for some extension E1 of SF as the SETAF SF; = (A}, R,) where,
Ay={acAy|a¢ (El)ES} and
Ry ={(T,h) € Ry | T C Ay,h € AL} U
{(T N A5, h) [ (T,h) € R3, TN Ay #0,h € Ay, TN A CE,TN(E)f, =0}
When dealing with undecidedness, what guides our intuition towards a certain modification is not

the status of the arguments in S F1, but rather the status of the links. Hence, we decide to slightly tweak
the original definition and base our notion solely on the undecided links.

Definition 9 (Undecided Links). Given a splitting (SF1,SF», R3) for a SETAF SF' and an extension
E, € SFy we define the set of undecided links w.r.t. £ as:

Uﬁ; ={(T,h) € R3 | TN (E1)f; yp, =P and3t e T:t e A\ (E1)g, }-

In what follows, we define the modification, which is applied on the reduct, and accounts for the
effects of the undecided links. In particular, we add to SF5 one self-attacking argument which also
partially attacks the target for each undecided attack in R3.

Definition 10 (Modification). Let (SFy, SFy, R3) be a splitting for a SETAF SF and E; an extension of
SFy. Take SF} as the (E1, Rs)-reduct of SF» and Ug; as the set of undecided links w.r.t. E,. We denote
with mod% (SF) the Ugsl -modification (or simply modification) of SF} s.t.:

mody (SFy) = (A, Ry U{((T N Ay) U{h},h) | (T,h) € ULL, h € Ab}).

Before we present the splitting theorem we illustrate Definitions 8-10 in the following example.
Example 2. In (a) we have a SETAF SF with a splitting that separates the arguments A1 = {a, b, c, d}
from Ay = {v,w, x,y, z}. We see that E1 = {c} is admissible in the left part of the splitting. In (b) we see
the reduct wr.t. the set {c}, where a and d are defeated by c (as {c}}; = {a,d}) and b is undecided. This
reduct contains from the right part all arguments except z, which is defeated by c (as {c}j{23 ={z}). We
see that most attacks are removed from the right part, but (x,w) persists (since it is in Ry and all involved
arguments remain), and the attack ({c,y}, ) is changed to (y, x). The attack ({b, z},y) is removed since
z is defeated. The attack ({b,w},v) is also removed, as b is undecided (i.e., {b,w} N A; ¢ E1). However,

in (c) we see that the latter case is important for the modification: the attack ({b,w},v) is an undecided
link, which means in the modification we introduce the attack ({v,w}, v). Now, since {y, w} is admissible,

we obtain {c,y,w} as an admissible set for SF'.

o | @

(a) SETAF SF (b) ({c}, R3)-reduct (c) UL -modification




Having these notions at hand, we now establish the adequacy of the splitting technique for SETAFs.
We start by establishing that (a) conflict-freeness of the sub-frameworks SF} and SF5 carries over to
the whole SETAF SF, and (b) conflict-free sets of SF' induce conflict-free subsets in SF} and SF3.

Proposition 1 (Buraglio et al. [14]). Let (SFy, SF», R3) be a splitting for a SETAF SF = (A, R) with
SFy = (A1, Ry) and SFy = (A, Ry). Let SFy = mod}} (SF}).

1. IfEy € ¢flSF1) and E5 € ¢f(SFY), then E4 U Ey € ¢fiSF).

2. IfE € ¢f(SF), then EN Ay € ¢fSF1) and EN Ag € cfISF}).

Finally, we are ready to characterize the splitting algorithm by generalising the splitting theorem for
SETAFs under the standard Dung semantics.

Theorem 2 (Buraglio et al. [14]). Let (SFy, SF», R3) be a splitting for a SETAF SF' = (A, R) with
SF; = (A1, Ry1), SFy = (A2, R2), and o € {stb, adm, com, pref, grd}.

1. IfEy € 0(SF1) and E € U(mod}%(SFé)), then E1 U Ey € o(SF).
2. IfE € 0(SF), then EN Ay € 0(SFy) and EN Ay € o (modpy, "' (SF})).

While the existing instantiation procedure from ABA frameworks to SETAFs provides a founda-
tion for defining splitting, attempting to directly replicate the SETAF-style idea of splitting among
assumptions fails to yield a natural notion of splitting. This disconnect stems from a fundamental
structural difference: in SETAFs, attacks are primitive, whereas in ABA, they are derived from the
underlying deductive system (£, R). As a result, naively mimicking SETAF-style splitting in ABA
would require (i) arbitrarily partitioning the assumption set into .A; and A3, and (ii) computing attacks
as derivations from assumptions in .4; to those in A3. However, splitting should be possible solely by
inspecting the knowledge base at hand. Moreover, while instantiating ABAFs into SETAFs has been
shown useful in specific contexts [5, 17], this approach comes with a critical drawback: it can yield an
exponential growth in the number of collective attacks generated, thus increasing in input size. This
inefficiency motivates many ABA solvers to operate directly on ABAFs rather than relying on their
abstract representations. Therefore, to enable an efficient form of splitting, we propose a dedicated
splitting algorithm tailored to the syntactic structure of ABAFs.

4. Splitting in Assumption-Based Argumentation

In this section we present splitting results for ABAFs. The rule-set of an ABAF is split into a bottom and
a top part whenever no assumption occurs in the bottom part whose contrary is derived by some rule
in the top. This ensures that the assumptions in the bottom can be evaluated independently of what
can be deduced by inspecting the top part. We capture this intuition via the notion of splitting set:

Definition 11. Given an ABAFD = (L, R, A,7), aset S C L is a splitting set (or simply a splitting) of
D if S = atom(S) and for allr € R, head(r) € S implies body(r) C S.

A splitting set partitions the deductive system into two sub-systems (£1,R1) and (L2,R2), called
the ‘bottom’ and ‘top’. In particular, we have (i) £; = Sand Ry = {r € R | head(r) € S} and
(ii)) Lo = L\ Sand Ry = {r € R | head(r) ¢ S}. These induce respectively two sub-frameworks
Dy = (L1,R1, A1, ) and Dy = (L2, R2, A2, ?) with A; = £; N A and the contrary function ~
defined over A,.

Example 3. Consider the ABAF D = (L, R, A,™) corresponding to the SETAF of Example 2, where
A={a,b,c,d,v,w,z,y,2}, L =AU AU{p, q}, and the rule-set R consists of the following:
w4 q g T4 cy y<z,p Z+d V< p,w
p<b b+ b b+ a,d d <+ c G+ c t+—a
Take the set S = {a,b,c,d, @, b,¢,d,p}. It can be easily checked that S is a splitting set of D, through

which we obtain two sub-systems (L1, R1) and (L2,R2) with Ry (bottom) and Ry (top) are exactly the
second line and the first line of rules in R. Moreover, Ly = S and Lo = L\ S.



Notice that some atoms contained in £ (but not in £5) may occur in the body of some rule in R
(c and p in Example 3). This intermediate mismatch will be resolved later by the notion of reduct.
Moreover, their occurrence in the top rules does not affect the acceptance status of such atoms. In fact,
a first sanity check, we observe that our notion of splitting prevents building attacks from assumptions
of D9 towards assumptions of D; using top-rules in Ro. This is ensured by the fact that contraries of
assumptions occurring in the bottom part are not derived via rules in the top part (via construction of
R2). As a result, assumptions in A; are attacked only via rules in R; by assumptions in .A;. Thus, no
attack generated from Ay (by means of rules in Ry) is directed towards A;.

Proposition 2. Let D be an ABAF and S a set of literals that splits D into Dy and Ds. For every derivation
T G witha € Ay, it holds that R C Ry and T C A;.

The attacks of the bottom part can be extended in a conservative way: whatever happens in the
second sub-framework does not affect the acceptability status of assumptions in D;. Thus, to compute
incrementally an extension of an ABAF D, we can first select an extension F of D; and later modify Ds
according to the information contained in E. Consequently, we can evaluate the modified framework
D3 and augment its extensions with F. Again, we follow the approach of Baumann and appeal to the
notions of reduct and modification to realise the modification of Dy in a two-step process. First, we
propagate all the information we get from a g-extension E of D to ensure that rules which are in
contrast with E are removed. The outcome is called the E-reduct of Ds.

Definition 12. Let D = (L, R, A, ™) be an ABAF, S a set that splits D into two sub-frameworks D1 and
Dy and E a o-extension of D1. We call DY = (L2, RY, Aa, 2) the E-reduct (or simply reduct) of Ds,
where RY is obtained by deleting:

« each ruler € Ro withbody(r)NS  Thp,(E);
« all literals in Thp, (E) from the remaining rules.

As we anticipated, all and only the atoms occurring in the rule-set of the reduct are contained in
L. Therefore, the reduct can be evaluated in complete isolation from D;. In the second step, we
modify the reduct to propagate the information about assumptions (or their contraries) which are not
contained in Thp, (F). We call these assumptions undecided, as they are not in E nor their contrary
is derivable from it (i.e. are not attacked by E). Then, the set of undecided assumptions of D; w.r.t.
EisUAp,(F) ={a € A1 | a ¢ Fanda ¢ Thp,(E)}. Since their status can be transmitted to
other assumptions via rules, we need to introduce the concept of undecided theory of D1, capturing all
statements derivable from a set of undecided (and not defeated) assumptions.

Definition 13. Let D = (£, R, A,”) be an ABAF and E € o(D). The undecided theory of D w.r.t. E is
UTp(E)={peL|IT CAst Ttrp, TNUAp(E)#0D, TNThp(E) = 0}.

Rules in Dy whose body contain elements of UT p, (E) might carry over undecidedness from D;.
However, this scenario could be overwritten by the presence of incompatible sentences w.r.t E, captured
by ISp,(E) = Thp, (E;{l) U E, where E;gl ={a € A | EF?a R C Ri}. Hence, a set of
sentences from D; will carry undecidedness to sentences in Ds if and only if (i) none of its elements is
incompatible and (ii) at least one of its elements is in the undecided theory w.r.t. the previously selected
extension. This concept mirrors the notion of undecided links for SETAFs.

We are now in the position to formally define the modification of D& First, we expand the set of
sentences with a fresh assumption x,, and corresponding contrary. Further, we introduce (i) a loop-rule
for z,, and (ii) a modified version of every rule with some undecided (but no incompatible) sentence in
the body. In particular, we expand their body with z,,, after projecting to Ls.

Definition 14. Let D be an ABAF, S a set that splits D into two sub-frameworks D1 and D and E an
extension of Dy. Let D, be the E-reduct of Dy. We use mody, (Dy) = D3 = (L3, R3, A3, ™) to denote
the E-modification (or simply modification) of D} such that D5 = D), if UAp, (E) = 0, and otherwise:



RE =R, U {Ty + x4} U {head(r) < (body(r) N L) U {x,} |
r € Ra, body(r) NISp, (E) = 0, body(r) NUTp, (E) # 0}.

Example 4. Consider again the ABAF D = (L,R,A,”) from Example 3 and splitting set S =
{a,b,c,d,a,b,c,d,p}. We know that {c} € pref(D1). Therefore, the {c}-reduct of Dy is Déc} =
(Lo, R;C}, As,™2), where the rule-set R;C} is:

w<—q g Ty Z

Moreover, the set of undecided assumptions is UAp, ({c}) = {b} and UT p, ({c}) = {b,b, p}. We then
compute the modification by expanding the set of sentences with {z,, T, } and Réc} such that:

w<—q g Ty Y4 2,Ty Z V4 W, Ty Ty < Ty
It is easy to see that {y, w} € pref(moalg1 (DY))), and retrieve {c,y,w}, as for Example 2.

We can now prove that our procedure preserves conflict-free sets under incremental computation as
well as projection to sub-frameworks, similarly to Section 3.

Proposition 3. Let S be a splitting set for an ABAF D into Dy and D>.

1. if By € cfiD1) and B € cflmody (D3")), then Ey U Ey € cfiD).
2. ifE € cfiD), then By = EN Ay € ¢fiDy) and Ex = EN Ay € ¢l D).

Proof. For notational convenience, let ' = F7 U F» and let D’2 = (La, ’2, Ao, *2) be the reduct of Do
w.rt. By = E N Aj. (1.) To prove the statement we need to show that there is no a € E; U E5 and and
R € R such that E; U Es F G. Towards contradiction, assume there is indeed such an a. Thus either
(i) a € E; or (ii) @ € Ey. Assume (i) is true, that is Ja € F; such that £y U B, F% @and R € R. From
Proposition 2, we know that Fs = () and R C Ry. Thus, F; F @, in contradiction with E; € c¢f{lD;).
Assume now that (ii) is true, i.e. 3o € F3 and R € R such that E; U E; H @ Hence, there is a
tree-derivation 7 from Fy U Ey U {T } rooted in @ and a non-empty set of rules Ry = RN Rs. For each
rule r € Ry, there are three possible outcomes when computing modgl1 (DQE ') = D3: (a) r does not get
removed when computing the reduct; (b) r gets removed and later added in the modification; (c) r gets
removed for good. Assume (a) is the case. If a rule r is not removed when computing the reduct, it is
modified into a rule 7’ € R, such that body(r’) = body(r) \ Thp, (E1) and head(r") = head(r). Thus,

body(r") consists of elements of E; or atoms derivable from it. Therefore, E FR:" G and consequently
Fy % @ (more rules). Finally, we get E ¢ cf(D3), contradicting our hypothesis. Assume now (b) is
the case. By definition of derivation, this means that Ey derives @ in D} only if z,, € E2. However,
this contradicts conflict-freeness of E» in the modification. Finally, consider case (c). Since r gets
removed, but not added in the modification, we infer that body(r) N ISp, (E1) # 0. Hence, either
E1Nbody(r) # O or Thp, ((E1)7+21) Nbody(r) # 0. However, since £ € ¢f( D7), this means that either
7 is a dummy rule or that 3b € body(r) N A; € Fy. Thus, in both cases E; U Fy /2 @, contradicting
our assumption.

(2.) Suppose now that E' € ¢f{D). From this we derive that £ N A; € c¢f{D;) (subset of a conflict-
free set). We now show that £ N Ay € ¢fiD)). Towards contradiction, assume E N Ay ¢ c¢fiD)).
There is an @ € E N Ay such that £ N Ay FR2 g, By definition of reduct, we know that each
r’ € R, is obtained from a corresponding rule r € R4 such that body(r) C body(r') U Thp, (E N Ay).
Therefore, (E N A1) U (ENAg) F*1YR2 G By definition of splitting, we know that R = R1 U R and
E = (ENA;)U(ENAs),deriving E F* @, and finally F ¢ cf(D). Contradiction. O

We prove our algorithm is adequate with respect to most common semantics. Due to space constraints
we present proof details only for stable and admissible semantics, which are prototypical for the others.

Theorem 3. Let S be a splitting set for an ABAF D into Dy and D2 and o = {stb, adm, com, pref, grd}.



1. if By € 0(D1) and E5 € cr(moalgl1 (DEY)), then Ey U By € o(D).
2. ifE€o(D),thenEy =ENA €0(Dy)and E; =ENA; € 0(77106#;3)11 (DFY)).

Proof. (stable). First notice that from F; € stb(D1), we get Up, (E1) = (), and consequently A, = A3

(1.) From Proposition 3 together with the hypotheses that Fy € stb(D;) and Ey € stb(D3), we
know that Ey U Ey € ¢f{D). Thus, for any a € A\ E, we show that a € Ef,ie. E F @ for some
R C R. We proceed by cases. Let a € A;. From hypothesis we know that F; 1 @ for some Ry C Ry
which immediately implies a € EEI. Let a € As. From hypothesis, we know that E5 -2 @ for some
Ry C RY,. Thus, for each rule 7’ € R, there is a rule € Ro such that body(r) C body(r) UThp, (E1).
Hence, it follows directly that £y U Ey = E HR G forsome RC Ry URs = R.

(2.) Assume E € stb(D). From this we know that E U Ej;, = Ef = A = A; U Ay. We first
prove that 1 = E N Ay € stb(D1). From Proposition 3 we know E N Ay € ¢f{D1). Moreover, from
Proposition 2, we know that any set of assumptions which is not entirely contained in .4; attacks
a € Ay via rules in Ry, therefore we get £ N Ay F @ foralla € A; \ E for some Ry C Ry. Hence,
E; € stb(Dy). We know turn to prove Ey = E N Ay € stb(D)). We know conflict-freeness holds
from Proposition 3. Hence, we only need to show that for every a € A}, \ Es, Es FR2 @ for some
R, C R). Since E F @in D, we have two possibilities: (a) £1 = () or (b) E; # (). If (a) holds,
we get R C Ro and E = Fy F¥ @ where By C A, and a € A). Thus, By F? @ holds for some
R C RY. If (b) holds, E1 U E» F® @ in D. Therefore, each rule € RN R has a corresponding
rule ' € R/, such that body(r’) = body(r) \ Thp,(E1). Since E1 U Ey € c¢f{D) by hypothesis, we
know that Thp, (E1) N Ey = (. Hence, (E \ E;) B2 @ where R, C RY. In both cases we have
EyU (Eg);gé = A, concluding Ey € stb(DY).

(admissible). (1.) Since admissibility implies confict-freeness from Proposition 3, we know that
E = Ey U E3 € ¢f(D). Thus we only need to show that £ defends itself in D, i.e. for all a € E, if
T+ a,thenT' +tforsomet € TandT’' C E.Ifa € E1, we know that a is defended by F; in A; from
hypothesis. Thus, from Proposition 2, we can deduce that F; € adm(D). Consider now an assumption
a € Eyand some T C Asuchthat T F® @and R C R. If T N Thp, (E;1) # 0, then E; defends a
against T'in D. If T N Thp, (E;) = (), this means that T' C Ay and T' F @ in D), (a is attacked in the
reduct) or T'U z,, 7 @ in D3 (a is attacked in the modification). In both cases, since E is conflict-free
and defends a in D3, there isa 7" C Ej such that 7" |- ¢ with ¢t € T. We distinguish two cases: either
(i) T - t already in Do, in which case a is defended by F in D, or (ii) there is some 7" D T” such that
T"+tin Dand T N A; C Ey. Thus, since T' C Ey U E», a is defended by E1 U E5 in D. In any case
a is defended in D by E, i.e. E € adm(D).

(2.) By Proposition 3, we get E1 € ¢f(D1) and Ey € ¢f(D5). First, we know that E; € adm(D;)
because E defends itself in D and E; is not attacked by a subset of A5 (Proposition 2). It remains to
prove that Ey € adm(D3). Take an assumption a € Ey such that 7' @ in D3. Each such derivation
corresponds to exactly one derivation 7" F? @ with R C R. There are two cases: either (i) 7" = T C A,
and R C Roor (ii) 7 D T\ {z,} where 7"\ T' C FE; (assumptions deleted from simplified rules in
the reduct). From both (i) and (ii) we deduce that 7" N Thp, (E1) = (): for (i) because it would entail
T  As; for (ii) because otherwise 7' I/ @ in D3. Nonetheless, since E defends @ in D, in case (i) there
is a counter-attack 7" "2 f such that 7" C E and ¢t € (T \ {a}). In case (ii), the same holds but
te (T"\{a,z,}). UT"NA; = (), we know that {t} C A} and together with the fact that 7”7 C E, we
derive 7" C EN A, = F5. Hence, T” defends a from T in D5. If 7" N A; # (), then T" N A; C Ej.
Therefore, from 7" C E we get T" N A} +R2 ¥, which defends a against 7" in D}. Thus a is always
defended in D3, as desired. O

5. Parametrised Splitting

We now introduce a more general version of splitting for ABAFs and SETAFs, called parametrised
splitting [12]. This relaxes the structural constraint for the application of splitting, allowing assumptions
(resp. arguments) in the bottom part to be attacked from assumptions (resp. arguments) in the top.



The number of these assumptions/arguments represents a measure of how far we are from obtaining a
splitting.

5.1. Assumption-Based Argumentation

We first introduce a parametrised version of splitting for ABA. In contrast with the previous notion, we
allow some contraries of assumptions occurring in bodies of R to appear as the heads of rules in R.
The concept of a splitting set is then generalised accordingly in the following way:

Definition 15. For any ABAF D = (L,R,A,”), aset S C L is a called quasi-splitting of D if
S = atom(S) and for allr € R, head(r) € S implies body(r) \ A C S. Let Vg~ = {b € A\ S |
Jr,r’ € R : b€ body(r) N A, head(r) € S, head(r') = b,r # r'}. Wecall S:

« k-splitting of D, if [V§™| = k;
« (proper) splitting of D, if [V§™| = 0.

As before, the rule-set is split into a bottom and top part, depending on the rule-head respectively
being or not in S. As a result, V™ is the set of assumptions in the bottom whose contrary is derived in
the top. We call V™ the set of vulnerabilities with respect to S, since it contains assumptions that are
attacked by S. Whenever |V~ | # 0, there are some heads in Ry whose corresponding assumption may
appear in bodies of R;. Therefore, the notion of splitting of Definition 11 corresponds to a 0-splitting.

To account for elements of Vg™, the ABAFs D; and D, induced by the chosen splitting set are
constructed in a slightly different way than before. In particular, we fix D and Dy as before, but let
Ly =SUVi U W Moreover, since contraries in W may be derived by top rules, the status of their
corresponding assumptions in the bottom depends on rules in the top. Consequently D cannot be
evaluated in complete isolation from the rest, in contrast with proper splitting.

For computing extension of the sub-framework D;, we first need to modify the ABAF. First, we
modify the rules by removing body-atoms not in £;. Indeed, these atoms occur in £ and are unattacked
in D, therefore they can be disregarded when evaluating D;. Further, we proceed by adding: (i) a fresh
assumption b’ (and its contrary ¥') for each b € V45 (ii) rules which encode the choice for or against
the presence of each assumption b € V§~ in the extension. In this way, we store at the object level the
meta-information regarding our choices on each b € V™.

Definition 16. Let D = (L, R, A,”) be an ABAF, S C L be a quasi-splitting of D inducing the
sub-frameworks Dy and Do. Moreover, let VS~ be the set of vulnerabilities of D1 with respect to S and
(R1)yc, = {head(r) < body(r) N Ly | r € R1}. We construct LD = (LL11, LR, A10,7) as the
ABAF obtained from D1 by letting:

e LLiu=L U{b,,y ‘ be VSF};
. LR1J:(R1)¢£1U{B<—bl,y<—b|bGVS(v_}.

Intuitively, the additional rules allow us to choose whether we want to accept an extension E of
D1 containing b or one that does not. After this choice, we can safely compute the E-reduct of Dy, as
for proper splitting. In this way, we propagate the meta-information to which we committed by means
of our choice. A further modification of D5 is now needed to make sure that our hypothesis regarding
b is ensured: we add a fact-rule b < or a loop-rule b <— b, depending on whether the previously chosen
extension E contains b or b'. These represent a form of (positive and negative) constraints in ABA.

Definition 17. Let D = (L, R, A, ™) be an ABAF, S a quasi-splitting of D into D1 and Dy. Moreover,
let V&~ be the set of vulnerabilities with respect to S and DY the E-reduct of Do for some E € o(LD1.).
We denote with™ DY = (Lo, "RE™, Ay, 72) the ABAF obtained augmenting RY with:

{b+|be ENVSIU{b+b|V € E}.

Notice that such modification might make the ABAF " DZ ™ non-flat, as cl(§) = {b | b€ ENV{ ]
For stable semantics, however, this does not result in a higher complexity for the same reasoning tasks.



Example 5. Consider the ABAFD = (L, R, A,~) where A = {a,b,c,d}, L = AUAU{p}, and rule-set
R as follows:

b+a d<+b a<+ p,c p+b

First notice that E = {b, c} and E' = {a, c,d} are stable extensions in D. Now let S = {a,@,d,d,p} bea
quasi-splitting of D and V§~ = {b} the set of vulnerabilities w.rt. S. We get L1 = SU{b}U{b}U{', b/}
and LR 11 such that:

d«b a<+p,c pb Vb b« b

We derive two stable extensions Ey = {b} and EY} = {b', a, d}. Now consider Dy with Lo = L\ S =
{b, ¢, b,C}. For the former we get " DYV with "RE" " = () U {b <} from which we derive E5 = {b, ¢} as
a stable extension. For the latter we get '—D2El—I with "RE1T = {b <} U {b < b} from which we derive
E} = {c} as a stable extension. We then obtain E = (E1 NS)U Ey and E' = (K] N.S) U EY,.

Theorem 4. For an ABAF D = (L, R, A,”) and a quasi-splitting S C L of D:

1. if By € stb(LD1 1) and By € stb("DE17), then (E1 N S) U Ey € stb(D).
2. if E € stb(D), then thereisa set X C {a’ | a € V™ } such that By = (ENS)U X € stb(LD1 )
and By = E N Ay € stb(" D).

Proof. In what follows, for notational convenience, let F = F; U E5 and let D}, = (L2, RS, ./42,72) be
the reduct of Dy w.rt. E; = (ENS)UX.

(1.) To prove the statement we need to show (E; N S) U E» € ¢f{D) and ((E; N S) U E»)3 = A.
We start with conflict-freeness. Since E) € cf(LD11), then E1 NS € ¢fluD14) (less assumptions)
and £1 NS € ¢f(Dy) (less attacks). Since £1 = LN S, Ry = {r € R | head(r) € S}, we
can derive 1 NS € ¢fID). Consider now Ey € stb("D5™). Since being stable implies conflict-
freeness we immediately get By € c¢f{" D)7). Again, since Ry, C "R)7, we obtain Ey € cfiD)}).
Furthermore, Proposition 3 for proper splittings, together with £y NS € ¢fiD;) and Ey € ¢f(D)),
entail (£, N S) U Ey /7 @ for any a € E5 and R C R. It only remains to consider possible attacks
from E5 to E4 NS in D. Suppose that there are T' C F5 and a € E71 N .S such that T H2 G for some
R C R. First, notice that since T' C FEs, we get body(R) NS = 0 C Thp,(E1), and thus R C R,
Moreover, a € V§~ so that "R, = RS U {a < }. Therefore, T’ F g and T H G for some R C "R4T,
i.e. By is either not conflict-free or not closed in "D} ™.

We now show that ((E4 N S) U E»)% = A. Towards contradiction, consider an assumption a ¢
((E1 N S)U Ey)%. Assume a € S. By hypothesis, Ey € stb(_D; ), i.e. eithera € Ej or By F' @
for some R C Ry_. From our assumption, we get a ¢ (E; N S)%, thatis (i) a ¢ E1 N S and (ii)
E1NS 2 @ forany R C R. If (i) holds, we immediately derive Fy - @ for some R C LR ;. Consider
now our assumption (ii). Because a € S we know that every rule of R is contained in R;. For the same
reason such rules are in LR (b ¢ V7). Therefore, £y N S b‘R a for any R C LR1.in contradiction
with our hypothesis. Assume now a € A\ S. By hypothesis we know either a € Fy or Fy F @ for
some R C "R),™. From the assumption, we get a ¢ (E»)3, thatis (i) a ¢ E» and (i) E» /7 @ for any
R C R. As before, from (i) and our hypothesis we derive Fy % @ must hold for some R C "R, ™. If
a € V§~, there are two possibilities: a € E1\Sora ¢ E;\S. Inthe first scenario, "R5 " = RoU{a «}.
Again, Fy F® ¢ and Ey H @ for some R C R4, in contradiction with the fact that s is a stable
extension of "D, 7. If a ¢ E4 \ S, then o’ € Ey, which means "R,™ = R, U {@ « a}. Since a ¢ E»,
the loop-rule @ < a is not in R, therefore R C RY,. Thus, for each rule ' € R/, there is a rule 7 € Ry
such that body(r) C body(r) U Thp, (E;). Hence, it follows directly that (E; N S) U Ey % @ for
some R C RiURy = R. Ifa ¢ Vi, thena ¢ A;. If Fy & @ for some R C "R,7, it is not
because {@ < a} C "R,™. Thus R C R). As before, for each rule 7’ € R, there is exactly one rule
r € Ry such that body(r) C body(r') U Thp, (E1 N S). As a result, in the entire rule-set R we obtain
(E1 N S)U Es b ais a derivation in D. This contradicts our assumption.



(2.) First we get E € ¢f{D) and thus EN S € c¢f(D1) (less attacks). Now let B = A; \ (ENS)%.
Since E € stb(D), it attacks every other assumption. Hence, we can infer that assumptions in B are
contained in A; and attacked by ENA in D, thatis B C E}, \ (ENS)3 = (EN.A). Therefore there
is a rule r € Ry with head(r) = b for each b € B, meaning that B = V. Now let X = {V | b € B}.
Thus "R/, contains a pair of rule {b <— V', < b} for each b € B. Consequently, conflict-freeness
of (ENS)UX isensured since b ¢ EN S forall b € B. Moreover, X attacks every b € Bin D,
making (E£'N.S) U X stable.

It now remains to show Fy = ENAy € stb(" D, ™7). As before, we know that ENAy € c¢flDs) since E
is conflict-free in D (less assumptions), and £N.A; € ¢f{D5) because Thp, (EN.Az) C Thp,(ENAs)
(less rules and attacks). Consider now the modified framework " D wrt (E'N.S) U X. By construction,
ENAy ¢ ¢ffTD,7) only if b € BN (E N Ay). Recall that B C (E N Az)%. Thus, EN Ay ¢ ¢fiD).
By contradiction, we derive that £ N Aj is conflict free in "D} ”. We now show that Fy - @ for
alla € Ay \ Es and some R C "R,™. Towards contradiction, we assume there is an a € Ay \ F»
such that By R @, ie. @ ¢ Thrpy+(E2). Therefore, since a ¢ E, we geta ¢ Thp, (E2). Hence,
before the reduct is applied, it holds that (F N .S) U Es #E @ with R C Rs. Since no rule r € Ry
is such that head(r) = @, we derive (E N S) U Ey /% @in D, in contradiction with out hypothesis.
Finally, we ensure that cl(E2) = Es in '—D’Q—'. Assume the contrary holds. Since D’2 is flat, that means
{a <} C "RL7Vand a ¢ FEs. These facts respectively entail a € F; and Ey - @ (from previous
paragraph). This contradicts the conflict-freeness of E. Thus, Es is conflict-free, closed and attacks
every other assumption. O

5.2. Argumentation Frameworks with Collective Attacks

In this section we investigate a notion of parametrised splitting for SETAFs, which generalises the one
for AFs [12]. First, we introduce the notion of quasi-splitting for SETAFs.

Definition 18. Let SF' = (A, R) be a SETAF, SF1 = (A1, R1) and SFy, = (A, Ra) two sub-
frameworks of SF' such that Ay N Ay = () and A = A; U As. We call a quasi-splitting of SF' the
tuple (SFy, SFy, R, Ry’) with Ry C (240 \ {0}) U 242) x Ay, Ry C ((242\ {0}) u241) x 4y
and R = Ry U Ry U Rs3. Moreover, we say that RS and R3” are the set of incoming and outgoing links
w.r.t. the splitting. The splitting (SF1, SFa, RS, R3") is called:

« the k-splitting of SF, if |RS | = k;
« (proper) splitting of SF, if |R5"| = 0.

While the idea of quasi-splitting is carried out in a conceptually similar manner than for ABAFs, the
concrete modifications that we require are fairly different. In particular, we start by augmenting SF}
with fresh arguments that encode meta-information regarding incoming links. For each of these, we
introduce symmetric attacks to force a choice between the target of the incoming link and the new one.

Definition 19. Let SF = (A, R) be a SETAF, (SFy, SF», RS, R3") be a quasi-splitting of SF inducing
the sub-frameworks SFy and SF». We construct LSFy s = (A1, LRy .) as the SETAF obtained from
SFy by letting:

. |_A1_|:A1U{b/’bEAE§};

« LRy =R U{({b},V),{b'}U (T NAy),b) | (T,b) € R }.

We call E a conditional extension of SF} iff it is a stable extension of LS F} ..

As for proper splitting, E; is used to compute the reduct of SF». Further, in this setting the the
meta-information in E plays a role. In particular, if a ¢ E; and is not attacked by Ey N Ay, then it
must be attacked externally.



Definition 20. Let SF be a SETAF and (SFy, SF, RS, R3”) be a quasi-splitting of SF'. Moreover, let
E1 be a conditional extension of SF. We call

EAlEl = {a c A \ Eq | a Qf (El N Al)};}
the set of externally attacked arguments in SFy wr.t. Ey.

Next, we introduce a modification of S F2E ! that takes into account information regarding incoming
links. First, we add set-self-attacks to make coflicting those sets of arguments attacking £ via R5.
Further, for each of these externally attacked arguments, we introduce a self-attacking argument a;,
attacked by the remaining part of an incoming link.

Definition 21. Let SF be a SETAF and (SFy, SF», RS, R3”) be a quasi-splitting of SF'. Moreover, let
E be a conditional extension of SFy and EAT" = {a € A1\ F1 | a ¢ (E1 N A1)f}. We denote with
CSEFIT = (AP T REL) the SETAF where:

TAPT =AZ U {ain | a € EAP'),
TRV =REVU{(T,b) |be T C AS (T, Ey) € Ry }U
{ain, ain), (T, ain) | a € EAP T C AE* 317 D T s.t. (T',a) € R§ }.

Example 6. Consider the SETAF SF = (A,R) where A = {a,b,c,d} and R =
{(a,b), ({b,c},a),(b,d)} and its quasi-splitting as depicted below (a). We have two possible stable exten-
sions E = {b, c} and E' = {a, ¢, d}. After modification, the first sub-framework _S F s (b) has two stable
extensions: 1 = {a’,b} and E] = {a}. These yield two different modifications " SFL' 7 (c) and " SF, Fio

(d), with respect to EA®* = {a} and EA ) Consequently, their only stable extensions are Fo = {c}
and B, = {c,d} respectlvely

Q0 o o ®+@
5 Wie® “Wie

(@) SF (b) LSFy (¢) SEf1T (d)mSFA

Towards proving the splitting theorem, we adapt a useful lemma from [12] in the context of SETAFs.

Lemma 1. Let SF = (A, R) be a SETAF with B,Cy,...,C, C 24 sets of sets of arguments in SF.
Moreover, let D = {dy,...,d,} be fresh arguments such that D N A = (). The stable extensions of

SF' = (AUD,RU{(B,b) |be B e BYU{(d;,dy), (C,d;) | di € D,C € Ci,1 < i < n})

are exactly the stable extensions E of SF such that (i) B  E for any B € B and (ii) C C E for at least
one C € C; and every C; withi € {1,...,n}.

Proof. Suppose E € stb(SF) such that (i) and (ii) hold. Since E C A and (i) holds, we get E € ¢f{SF’).
Moreover, from (ii) we derive that Eg( SF) = Eg( SF) UD = AU D, deriving E € stb(SF"). Assume
E e stb(SF ). Since every d; is self-attacking, we know that E C A. Thus E € ¢f(SF) (less attacks).
Further, ER(SF’) = AU D from hypothesis, and ER(SF) SF’ \D=(AUD)\ D = A, proving
that £ € stb(SF'). We now show (i) and (ii). For (i) notice that for all B C B;, we have B ¢ F because
E is conflict-free in ST For (ii), each C; is the set of sets attacking the corresponding d; € D. Therefore,
at least one of such attacking sets C' € C; is guaranteed to be in E since £ R(SF') = AUD. O
Notice that the SETAFs SF and SF’ in the lemma above corresponds exactly to S FQE ! and '—SFQE oy
where B is the set of sets attacking E; and each C; the set of sets attacking each a;, € EAP'. The
lemma is thus utilised to show the following parametrised splitting theorem focusing on SF,"" only.



Theorem 5. Let SF' be a SETAF and (SFy, SF», R, R3") be a quasi-splitting of SF. Moreover, let
LSF s and"SF) = ’_SFQE“I be as per Definitions 19 and 21.
1. IfEy € stb(LSF11) and Es € stb("SFJ™), then (E1 N A1) U Ey € stb(SF).
2. IfE € stb(SF), thenthereisaset X C {b' | b e AEé_} suchthat By = (ENA;)UX € stb(LSF 1)
and By = EN As € stb("SF}™).

Proof. (1.) We first prove conflict-freeness. From hypothesis, £y € ¢f{LSF).) implies ENA; € cf(SF})
since FNA; C Eyand Ry C LRy .. Thus, EN Ay € ¢f(SF) because R; = RN (24! x A;). From the
fact that By € stb("SF}7) together with Lemma 1, we know that Fy € stb(SFy), and thus Ey € cf{SF).
We now consider possible attacks from F1 N A; to E and viceversa. Clearly, (E1 N Ay, E3) ¢ R
since E4 N Ay C Ay and Fy C A (recall A, = Ay \ (El)Eg—) Assume towards contradiction that
(Ey, E1 N Ay) € R,ie. (T,a) € R forsome T C Ey C Ay and a € E; N Aj. If this is the case, then
by construction of "SF; " we have (T,b) € "R}, for some b € T, violating the coflict-freeness of F»
in "SF;7. Hence, (E1 N A1) U Ey € cflSF). We show that ((E; N A1) U Eg)% = A1 UAy = Aby
contradiction. Assume a ¢ ((E1 N A1) U E»)%. If a € Ay, we deduce that a € EAP". As before, given
that Ey € stb("SF57), it holds that Ey € stb(SF}) via Lemma 1, and (Es, a;,) € "R, ™. Therefore, E5
attacks a via RS in SF, contradicting our assumption. If a € A, together with our assumption, we
get a € A (elements in E; \ A; do not attack arguments in As). Again, since Fy € stb("SF57), it
holds that E5 € stb(SF}) via Lemma 1. Thus, a € (E»)%, contradicting our assumption. Therefore,
((El N Al) U EQ)% = A and (E1 N Al) UFEy € Stb(F)

(2.) We first show that (E N A1) UX € stb(LSFy1). Let B = {b1,...,b,} = Ay \ (EN A1)§ and
X = {b| b; € B}. Since E € stb(SF), it follows that B C (E>)},. Hence, by construction of L Ry 1, we
derive that (E N A;) U X € stb(LSF; ). Consider now Es. From E € stb(SF), we get Ey € stb(SF})
because each a € A} is attacked by Fs in SF. Moreover, since E is conflict-free in SF, there is no
T C Essuchthat (T, Ey) € R (E, satisfies (i)). Notice that B = EA{El, i.e. each b; € Bisin A and
externally attacked. Recall that B C (E>)},. Therefore, there is some 7" C E» such that (", b;) for
each b; € EAJIE L. By construction of "SFj 7, a fresh argument (b;);, = d; is introduced for each b; € B
along with (77, d;) (E» satisfies (ii)). Thus Lemma 1 applies, concluding Fy € stb("SF; 7). O

6. Conclusion and Future Work

In this paper, we have presented a modification-based approach to splitting assumption-based argumen-
tation frameworks. In particular, we have shown that 1. if one computes an extension F; in Dj, then
applies the reduct and modification, and obtains an extension F5 of the remaining sub-framework, their
set-union is an extension of the whole framework. This characterises the incremental computation of
the extension F by evaluating the two sub-frameworks. Conversely, we show that 2. if we project an
arbitrary extension E of the whole framework to its sub-frameworks, we obtain extensions F for Dy
and Fs for the (E£7)-modified version of Ds. Since this is bound to specific structure of the underlying
ABAF, we have considered a more general variant of splitting called parametrised splitting inspired by
Baumann et al. [12]. Results in this setting have been presented for both ABAFs and SETAFs. Moreover,
it is easy to see that each of the steps involved can be carried out efficiently and implemented on top of
common ABA (or SETAF) solvers. Therefore, an obvious next step is that of implementing our algorithm
and perform an experimental evaluation in the spirit of Baumann et al. [18]. In particular, we believe
that parametrised splitting could be helpful in the context of the recently proposed Argumentative
Causal Discovery, which faces a major challenge in terms of its scalability and exhibits suboptimal
performance on larger instances [5].
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