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Abstract

Minimal inconsistent sets have played an important role in the analysis and general handling of inconsistency
in logical knowledge bases. We introduce a semantical counterpart of this notion we call minimal inconsistent
signature, which is a minimal set of propositions such that projecting the knowledge base onto it still preserves
the inconsistency. We analyse minimal inconsistent signatures and the corresponding dual notion of maximal
consistent signatures in depth and show, among others, that the hitting set duality applies for them as well.
We apply our new notions to the field of inconsistency measurement and derive a series of new inconsistency
measures, which we analyse in terms of postulate satisfaction and general behaviour. Finally, we analyse the
computational complexity of various problems within this new context.

1. Introduction

Reasoning with inconsistent information is a central issue for approaches to knowledge representation
and reasoning [1, 2, 3, 4, 5, 6, 7, 8]. A standard approach to deal with inconsistency is to consider the
minimal inconsistent subsets of the knowledge base. Given a (possibly inconsistent) knowledge base
K consisting of (propositional) formulas, a minimal inconsistent subset K’ is a set K’ C K that is
inconsistent and every set K" with K” C K’ C K is consistent (we will give formal definitions in
Section 2). Minimal inconsistent subsets can directly be used for diagnosis and debugging [9], but also
for inconsistency-tolerant reasoning by removing one formula from each minimal inconsistent subset
(1, 7].

In this work, we define and analyse a new approach to analyse inconsistency, but defined in terms of
signatures rather than subsets of the knowledge base. More precisely, we define a minimal inconsistent
subsignature as a minimal set of propositions, such that forgetting' [10, 11] the remaining propositions
from the knowledge base still retains its inconsistency. By considering both the notion of minimal
inconsistent subsignatures and their counterpart, the maximal consistent subsignatures, we obtain
a technical framework that is quite similar to the framework of minimal inconsistent subsets and
maximal consistent subsets, but also features some additional interesting properties. We show that the
classical hitting set duality [9] carries over to minimal inconsistent subsignatures as well, i. e., one can
obtain maximal consistent subsignatures by removing a minimal hitting set of all minimal inconsistent
subsignatures, and vice versa. We furthermore analyse one particular application area in detail, namely
the area of inconsistency measurement [2, 12]. This area is concerned with developing measures that
assess the degree of inconsistency in knowledge bases. Many of the existing measures are defined in
terms of minimal inconsistent subsets and we analyse variants of these measures by using minimal
inconsistent signatures instead of minimal inconsistent subsets. In order to complement our analysis,
we also investigate the computational complexity of various problems pertaining to our approach.

To summarise, the contributions of this paper are as follows:

1. We revisit the notion of forgetting parts of the signature of a knowledge base for the purpose of
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Note that we use a slightly non-standard interpretation of the term forgetting. In particular, we use forgetting to restore
consistency. See Section 3 for details.
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defining a semantical counterpart to minimal inconsistent subsets and make some new observa-
tions (Section 3).

2. We define minimal inconsistent and maximal consistent subsignatures and analyse their properties;
in particular, we show that these structures also obey the hitting set duality (Section 4).

3. We define and analyse new inconsistency measures based on minimal inconsistent subsignatures
and maximal consistent subsignatures (Section 5).

4. We analyse the computational complexity of various decision problems related to minimal
inconsistent subsignatures (Section 6).

We will discuss necessary preliminaries in Section 2, discuss related work in Section 7, and conclude
with a discussion in Section 8.
Proofs of technical results can be found in an extended version of this paper [13].

2. Preliminaries

Let At be some fixed propositional signature, i.e., a (possibly infinite) set of propositions, and let £(At)
be the corresponding propositional language constructed using the standard connectives A (conjunction),
V (disjunction), — (implication), and — (negation). Let furthermore T, L€ At be special propositions
denoting tautology and contradiction, respectively.

Definition 1. A knowledge base K is a finite set of formulas K C L(At). Let K be the set of all
knowledge bases.

If ® is a formula or a set of formulas we write At(®) to denote the set of propositions appearing in
O . Foraset® = {¢1,...,0n} let AP =1 A... AN ¢ppand ~® = {—¢ | ¢ € P}.

Semantics to a propositional language are given by interpretations where an interpretation w on
At is a function w : At — {true, false}. Let Q2(At) denote the set of all interpretations for At (with
the convention that w(T) = true and w(L) = false). An interpretation w satisfies (or is a model of)
a proposition a € At, denoted by w |= a, if and only if w(a) = true. The satisfaction relation |= is
extended to formulas in the usual way. For ® C L(At) we also define w |= ® if and only if w = ¢ for
every ¢ € ®.

In the following, let &, &1, P be formulas or sets of formulas. Define the set of models Mod(®) =
{w e Q(At) | w = }. We write &1 |= ®g if Mod(®1) C Mod(®3). @y, Po are equivalent, denoted by
®; = Py, if and only if Mod(®1) = Mod(P2). If Mod(®) = () we also write ® =L and say that ¥ is
inconsistent (or unsatisfiable).

Definition 2. Let K be a knowledge base.

1. K' C K is called a minimal inconsistent subset of K if
a) K’ =1 and
b) forall K" with K" C K', K" |~ 1.

2. K' C K is called a maximal consistent subset of K if
a) K' £1 and
b) forall K" with K’ C K" C K, K" =1.

Let MIS(K') and MCS(K) denote the set of all minimal inconsistent subsets of K and the set of all
maximal consistent subsets of K, respectively.

Let furthermore FREE(K) = K \ [ MIS(K) denote the set of free formulas of K, i. e., those formulas
of K that are not members of any minimal inconsistent subset of K. Moreover, a formula « is safe
for a knowledge base K iff o £ L and At(a) NAt(K \ {a}) = . Let SAFE(K) denote the set of safe
formulas of K and note that SAFE(K) C FREE(K) [14].



3. Forgetting and Projecting

A forgetting operator is an operator that removes a given set of propositions from a signature of the
knowledge base. Its initial motivation [10] was to be able to remove irrelevant parts of a knowledge
base, while retaining previous inferences as much as possible. There exists certain properties that such
an operator should satisfy [10, 11] and it makes sense (in the case of consistency) to identify forgetting
with the variable elimination operation. Let ¢[1) — 1)'] denote the propositional formula that is obtained
from ¢ by simultaneously replacing each occurrence of 1 in ¢ by ¢/'.

Definition 3. For a formula ¢ and some a € At(¢) define the elimination of a from ¢, denoted as ¢ + a,
to be the formula ¢ +a = ¢[a — T]V ¢la — L].

In other words, eliminating a from ¢ is equivalent to replacing a with T or L. A nice property of
variable elimination is that inferences on the remaining part of the signature are retained [10]. We do
not formalise this property here, but only show an example.

Example 1. Let ¢ = (a A b) V (¢ A —d). Forgetting a from ¢ gives us
p+a=(TAD)V(cA-d)V(LAb)V(cA-d)=bV (cA—d)
Note that,e.g., ¢ =bVcandgp +-a=bVe

Observe that variable elimination preserves inconsistency, i. e., if a formula is inconsistent then
forgetting any proposition cannot restore consistency. For this to see, first observe that the order
in which propositions are eliminated does not matter, so let ¢ + S for a set S C At(¢) denote the
application of variable elimination in any order.

Proposition 1. ¢ [~ ifand only if ¢ + At(¢) = T.

Our aim in the rest of this section is to devise a forgetting operation based on variable elimination
that is able to restore consistency, i. e., by removing “conflicting” parts of the signature of the formula or
knowledge base, we wish to end up with a consistent outcome. Note that restoring consistency will
retract a lot of inferences, which is then not aligned with the initial motivation for forgetting from
above. We illustrate our aim with a simple example.

Example 2. Consider the formula ¢ given by ¢ = a A—aAb. Clearly ¢ |=_L. Intuitively, the proposition
a (and the modelled information about it) is responsible for the inconsistency. We therefore expect that
forgetting a leaves us with a formula ¢ = b, from which we can still derive meaningful information
about b. Note, however, that ¢ ~a = L.

In order to define a forgetting operation with the above behaviour, we have to operate on the
level of proposition occurrences rather than proposition. Since we do not wish to retain inferences
by forgetting but only to remove propositions (and the information modelled for them), we allow
proposition occurrences to be replaced by T or L individually. For that, let

S — 1 /dy/ - JU)]

denote the propositional formula that is obtained from ¢ by replacing the first occurrence of ¢ in ¢
by /], the second occurrence of ¢ in ¢ by 1%, and so on (the operation is undefined if the number of
occurrences of ¢ in ¢ is not equal to n).

Example 3. For the formula ¢ = a A (bVa) A—awehave pla — T/ L / L] =TA(bV L)A—- L=b.

The above operation allows us to define a new variant of variable elimination as follows. Let #%a
denote the number of occurrences of a € At(¢) in ¢.



Definition 4. For a formula ¢ and some a € At(¢) define
pBa= \/ Pla — w1/ ... [T y06,]
Tl oy, €{T, L}
The operator H allows the replacement of each occurrence of a with T or _L such that contradictions

within a formula can be resolved. Let us consider again Example 2.
Example 4. Consider again

p=aAN-aNb
Here we have

dBa=(TATA)V(TALADV(LATAD)V(LALAL)=TATAL=D

as desired.

Before we continue with an analysis of H let us first give some intuitions and a simple syntactic
characterisation of what H does to a formula. It may not be apparent from the definition above, but
what ¢ H a basically does is the following: it replaces every disjunction within ¢ that contains a or —a
by T and removes all occurrences of a and —a from conjunctions. Recall that a formula ¢ is in negation
normal form (NNF) if negations only appear right in front of propositions. For formulas in NNF we can
characterise H as follows.

Proposition 2. For a formula ¢ in NNF and some a € At(¢) define ¢ Ha inductively on the structure of
¢ via
T ifp=aor¢=a
pBa={ vBaVvy Ba ifp=1vVy
v Bany' Ba ifgp=y9Ay
Ifa ¢ At(¢) we define B a = ¢. Then
¢ Ba= oBa
SinceprV..VopoVT =Tandpr A.. . AP AT =1 A... ANy forall ¢1,..., ¢y, it should be
clear that forgetting a from a formula ¢ in NNF means that we replace every disjunction within ¢ that
contains a or ~a by T and remove all occurrences of @ and —a from conjunctions, as stated above.
Note that every formula can be translated into NNF with only a linear increase in size and that this
translation yields an equivalent formula. Most of our examples are using formulas in NNF, so the above
characterisation can be applied.

If multiple propositions are forgotten with H, it should be obvious that the order does not matter. So
foraset S = {ai,...,an} C At(¢) let

pBS=(..(¢pBa1)Bag)...)Ba,

with an arbitrary order among the propositions in S. Furthermore, for a knowledge base K and
S C At(K) we write

KBS={¢pBSNAt(¢) | ¢ K}
Example 5. Consider K1 = {a, —a A c}, we get
Ki=KiHa={TV L (=TAc)V (=LA} ={c}
Consider a syntactic variant of K1, namely K3 = {a A —a, c}, we get
Ky=K,Ba={(TA-T)V(LA-L)V(TA=L)V(LA-T),c} ={c}

So this example shows that H is (to some extent) not syntax-sensitive, even in the presence of inconsis-
tency. We come back to this aspect later (in particular, see Proposition 10).



From the examples so far it should be clear that inferences are not necessarily retained (even on the
remaining signature). In particular, in Example 4 we have ¢ = —b (in fact ¢ entails everything), but
¢ B a £ —b. In fact, we obtain the following observation.

Proposition 3. Let ¢ be a formula such that ¢ |=_L1. Then there is S C At(¢) such that p B S j=L.

The above observation shows that, from the perspective of inconsistency-tolerant reasoning, H is
a sensible choice for a forgetting operation, since it allows the restoration of consistency in any case.
Moreover, H does also not introduce inconsistencies.

Proposition 4. Let K be a knowledge base and S C At(K). If K is consistent then K B S is consistent
and K = K8S.

Our forgetting operator H allows us to project the signature of a knowledge base to a subset of its
signature. We define this concept in a general manner as follows.

Definition 5. For a knowledge base K and S C At(K), the projection of K onto S, denoted K
defined as K|¢ = K B (At(K) \ S).

S, 1is

Example 6. We consider again K1 = {a,~a A c} and K3 = {a A —a, c}. We get K1} = {c} and
Kol = {c}.

4. Minimal inconsistent and maximal consistent subsignatures

The notion of projection allows us to define analogues to the concepts of minimally inconsistent subsets
and maximally consistent subsets of a knowledge base K (see again Definition 2), based on a more
semantical perspective. In general, we say that a set S C At(K) is a consistent subsignature of K iff
K |g is consistent, otherwise it is called an inconsistent subsignature.

Definition 6. Let K be a knowledge base.

1. S C At(K) is called a minimal inconsistent subsignature of K if
a) K|s =L and
b) forall S’ with S’ C S, K|g ~L.

2. S C At(K) is called a maximal consistent subsignature of K if
a) K|g F~L and
b) forall S’ with S C S’ C At(K), K|g L.

Let MISig(K') and MCSig(K) denote the set of all minimal inconsistent subsignatures and the set of
all maximal consistent subsignatures, respectively.

We furthermore say that a proposition a € At(K) is a free proposition in K iff a ¢ S for all
S € MISig(K).

Example 7. We consider again the knowledge base K1 = {a, —a A c¢}. Here we have

Misig(Ky) = {{a}} MCSig(K1) = {{c}}
For Ky = {a A —a, c} we get likewise
MISig(K32) = {{a}} MCSig(K2) = {{c}}

For both cases, c is also a free proposition.



Example 8. Consider
Ks={aAbAd,—aV —bbA—c,(cV-b)Ad}
Here we get

MISIg(K?)) = {{av b}7 {b7 C}} MCSIg(K3) = {{a7 ) d}7 {b7 d}}
and d is a free proposition.
Some straightforward observations are as follows.

Proposition 5. Let K be a knowledge base.

1. K is consistent iff MISig(K) = 0 iff MCSig(K) = {At(K)}.
2. MCSig(K) % 0.

Observe that item 2 above includes the case where the only consistent signature is empty, so we may
have MCSig(K) = {0}.

A particular property of the set of all minimal inconsistent subsets MIS(K) is its monotony wrt.
expansions of K. More precisely, if K C K’ then MIS(K) C MIS(K’). For the corresponding
semantical counterpart MISig(K), this is not generally true.

Example 9. Consider K4y = {a VV b, —a A —b}. Here we have MISig(K4) = {{a,b}}. However, adding
the formula a gives us MISig(K4 U {a}) = {{a}} and therefore MISig(K4) Z MISig(K4 U {a}).

But MISig(K) behaves monotonically when it comes to expansions of the signature.
Proposition 6. Let K be a knowledge base and S C At(K). Then MISig(K B S) C MISig(K).

Another particularly interesting property of the sets of minimal inconsistent subsets and the set of
maximal consistent subsets of a knowledge base K is the hitting set duality [9]. For that let us recall the
definition of a hitting set.

Definition 7. A hitting set of a set of sets M = {M;,..., M, }isaset H C M U...U M, such that
HNM; # (0foralli =1,...,n. A hitting set H is minimal if there is no other hitting set H’ with
H CH.

The hitting set duality for MIS(K') and MCS(K) says that H is a minimal hitting set of MIS(K) iff
K\ H € MCS(K) [9]. Interestingly, we obtain the same duality for MISig(K) and MCSig(K).

Theorem 1. Let K be a knowledge base. H is a minimal hitting set of MISig(K) iff At(K) \ H €
MCSig(K).

A corollary of the above result is that free propositions can also be characterised as those propositions
that appear in all maximal consistent subsignatures (as it is the case with free formulas and maximal
consistent subsets).

Corollary 1. Let K a knowledge base. A proposition a € At(K) is a free proposition in K iffa € S for
all S € MCSig(K).

We continue with a more detailed analysis and comparison of the behaviours of minimal inconsistent
subsets and signatures. As for the former, removing free propositions from a signature does not influence
the structure of the minimal inconsistent subsignatures, as the following proposition shows.

Proposition 7. Let K be a knowledge base and a € At(K) a free proposition of K. Then MISig(K) =
MISig(K Ba).



Minimal inconsistent subsignatures are not only robust against the removal of free propositions from
the signature (as the above proposition showed) but also against the removal of free formulas from the
knowledge base (as the next proposition shows).

Proposition 8. Let K be a knowledge base and « a free formula of K. Then MISig(K) = MISig(K\{a}).

The previous two propositions show that our notion of a minimal inconsistent subsignature is quite
suitable for capturing the essence of the reasons why a knowledge base is inconsistent, since removal of
“independent” syntactic (i. e., formulas) or semantic (i. e., propositions) information does not influence it.
On the other hand, the next proposition shows that removing semantic information that is involved in
inconsistency indeed has an influence.

Proposition 9. Let K be a knowledge base and a € At(K) not a free proposition of K. Then MISig(K B
a) C MiSig(K).

Note that the syntactic counterpart of the previous observation, i. e., that the removal of non-free
syntactic information changes the structure of minimal inconsistent subsignatures, does not hold in
general.

Example 10. Consider K5 = {a, —a, a A —a} with MISig(K5) = {{a}}. Note that a A —a is obviously
not a free formula of K5, but MISig(K5 \ {a A —a}) = {{a}} = MISig(K5).

However, the notion of minimal inconsistent subsignature still behaves as expected in the previous
example. The formula a A —a actually describes redundant semantical information and its removal
does not impact which parts of the signature are responsible for producing the inconsistency. As a
matter of fact, the set of minimal inconsistent subsignatures is, to some extent, robust against syntactic
variations, even in the presence of inconsistency.

Proposition 10. Let K be a knowledge base and o, 8 formulas. Then MISig(K U {«, 5}) = MISig(K U
{a A B}).

The observation made in the previous proposition is quite remarkable. It says that in terms of
analysing inconsistency through the signature, it does not matter whether a knowledge base is defined
as a set of formulas or a single conjunction of these formulas. While this is obvious when reasoning
with consistent knowledge bases, the case of inconsistency usually requires a distinction between
using the logical conjunction and the “comma” operator, see [15] for an excellent discussion on this
topic. In particular, note that, in general, MIS(K U {a, 8}) # MIS(K U {a A 8}) (e.g. obviously
MIS({a,—a}) # MIS({a A —a})). However, our framework allows for an equal treatment of these
syntactic variations.

5. Application to inconsistency measurement

We now consider the application of our framework of minimal inconsistent subsignatures and maximal
consistent subsignatures for inconsistency measurement. In general, an inconsistency measure [2, 12] is
a quantitative means to assess the severity of inconsistencies in knowledge bases. Let R=? denote the
set of non-negative real numbers.

Definition 8. An inconsistency measure I is any function I : 25(A) — RZ0 with I[(K) = 0 iff K is
consistent.

Many existing inconsistency measures are based on minimal inconsistent and maximal consistent
subsets of K, see [16] for a survey. We here consider the measures Iy and Iyy.c, defined via

Iwi(K) = |MIS(K)|
Ive(K) = Z 1/|M|

MEMIS(K)



for any knowledge base K, both introduced by Hunter and Konieczny [17], as well as the measures
Iyic and Ip, defined via

Ine(K) = [MCS(K)| + [SC(K)| — 1
I(K) = | U M|

MEeMIS(K)

both by Grant and Hunter [18], where SC(K) = {¢ € K | ¢ =L} is the set of self-contradicting
formulas of K.

We can use minimal inconsistent and maximal consistent subsignatures in a similar manner as
minimal inconsistent and maximal consistent subsets are being used in the above measures.

Definition 9. Let K be a knowledge base. Define functions Iysig, Inmisig-c> Imcsig and Ipsig via
IMISig(K) = |M|SIg(K)|
1
IMISig—C(K) = Z M
MeMISig(K)
Incsig(K) = [MCSig(K)| + [SCSig(K)| — 1

Lsg(K)=| |J M
MeMISig(K)

with
SCSig(K) = {a € At(K) | K [{q3F= L}
is the set of self-contradicting propositions.

In other words, Insig returns the number of minimal inconsistent subsignatures as a measure of
inconsistency. Iyisig-c is a refinement of this idea and weighs each minimal inconsistent subsignature by
its inverse size (with the intuition that larger minimal inconsistent subsignatures constitute a less obvious
reason for inconsistency than smaller subsignatures). Iycsi uses maximal consistent subsignatures
instead of minimal inconsistent subsignatures. The intuition is that the more maximal consistent
subsignatures there are, the more possible ways to resolve the inconsistency exist, and, therefore, the
larger the inconsistency. We include the set of self-contradicting propositions here in order to ensure that
the value 0 is only attained for consistent knowledge bases (if, e. g., we have MISig(K) = {{a}} then
there is also just one maximal consistent subsignature and without adding |SCSig(K)| the inconsistency
value would be 0). Finally, the measure Ips;, takes the number of propositions appearing in at least one
minimal inconsistent subsignature as a measure of inconsistency.

Example 11. We consider again K3 from Example 8 with
Ks={aANbAd,—aV —b,bA—c,(cV-b)Ad}
and
MISig(K3) = {{a, b}, {b,c}} MCSig(K3) = {{a,c,d},{b,d}} SCSig(K3) =0
Here we get

Dvisig(K3) = 2 Iyisigc(K3) =1
Ivicsig(K3) =1 Ipsig(K3) = 3

We can first observe that all new measures are indeed inconsistency measures (Definition 8), i. e.,
they return the value 0 in the case of consistency (and only in this case).



MO | IN | DO | SI | PY | Al | SM | Pl | PP
Imisig X | v ]| x |v|Xx | Vv |V |/]|V
Iwisge | X |V | X |V ]| X |V | V| V]|V
Imcsig X |V | X |\ V| X |V | V|V |V
sy | X | v | x| v x|v|v]|v]|v

Table 1
Compliance of our new measures wrt. rationality postulates.

Proposition 11. The functions Ingsig, Inmisig-c; Imcsig and Ipsig are inconsistency measures.

Inconsistency measures are usually evaluated wrt. rationality postulates [16]. Due to space limitations,
we do not consider all postulates from [16], but focus on the most prominent ones. Let I be any function
I 9L R0,

Monotony (MO) If K C K' then I(K) < I(K').

Free-formula Independence (IN) If o € FREE(K) then I(K) = I(K \ {a}).
Safe-formula Independence (SI) If « is safe for K then I(K) = I(K \ {«a}).
Dominance (DO) Ifa ¢ K, «a [~ 1 and o = § then I[(K U{a}) > I(K U{B}).
Penalty (PY) If o ¢ FREE(K) then I(K) > I(K \ {a}).

MO states that adding formulas cannot decrease the degree of inconsistency. IN and SI state that
removing free (resp. safe) formulas does not change the degree of inconsistency. DO requires that
replacing formulas with semantically stronger information cannot decrease the degree of inconsistency.
PY is the complement of IN and states that removing non-free formulas decreases the degree of
inconsistency. We will consider one further postulate from [19] that is concerned with syntax irrelevance
and is rarely satisfied by existing inconsistency measures [16].

Adjunction Invariance (Al) I(K U{a,}) = I(K U{a A B}).

As we will see below, our measures (naturally) do not comply with the postulates MO, DO, and PY,
since these are particularly concerned with the role of formulas in inconsistency. Due to Proposition 10
(which also directly leads all our measures to satisfy Al) all our measures are insensitive to the exact
structure of the formulas. However, the introduction of minimal inconsistent subsignatures brings us
into the position to introduce semantical counterparts of these postulates, which are particularly well
suited to describe our new measures:

Signature-monotony (SM) For S C At(K) itis [(K B S) < I(K).
Free-proposition independence (PI) If a is a free proposition in K, then I(K) = I(K B a).
Proposition-penalty (PP) If a € At(K) is not a free proposition in K, then I(K) > I(K B a).

In other words, SM states that forgetting parts of the signature of a knowledge base cannot increase
the degree of inconsistency. Pl states that removing free propositions cannot change the degree of
inconsistency. Conversely, PP states that removing non-free propositions decreases the degree of
inconsistency.

Naturally, our new measures satisfy the newly introduced postulates. In summary, we can make the
following statement on the compliance of our new measures with all the considered postulates.

Theorem 2. The compliance of the measures Inysig, Insig-c» Imcsig and Ipsig to the rationality postulates
is as shown in Table 1.

As it can be seen from Table 1, all our new measures behave similarly with respect to the considered
postulates. However, in the next section we will see that they behave differently in terms of complexity.



6. Computational complexity

We assume familiarity with the standard complexity classes P, NP and coNP, see [20] for an introduction.
We also require knowledge of the complexity class DP, which is defined as DP = {L1 N Ly | L1 €
NP, Ly € coNP}. In other words, DP is the class of problems that are the intersection of a problem in
NP and a problem in coNP. We also use complexity classes of the polynomial hierarchy that can be
defined (using oracle machines) via E!f = NP, Hi’ = coNP, and

Ef = NP¥I—1 Hf = coNPZi-1

for all i > 1, where C? denotes the class of decision problems solvable in class C with access to
an oracle that can solve problems that are complete for D. In analogy to DP, we define DP; via
DPy ={LiNLy|L; € Zg , Lo € Hg }. We also consider classes of the counting polynomial hierarchy
[21]. In particular, the class CNP is the class of counting decision problems where the corresponding
decision problem is in NP. More precisely, let H(z, y) be a predicate, where it can be decided in non-
deterministic polynomial time if H (z,y) is true. Given x and a natural number k£ € N, the decision
problem of deciding whether there are at least k instances of y, such that H(z, y) is true, is then in
CNP (the class C_NP is defined analogously by replacing “at least” with “exactly”). Similarly, the class
# - coNP is a counting complexity class [22] that contains problems that upon input x return the number
k of instances y such that H (z, y) is true, which itself is a problem in coNP. Finally, FP is the class of
functional problems that can be computed in deterministic polynomial time.
Complexity results regarding some basic decision problems are as follows.

Theorem 3. Let K be a knowledge base and S C At(K).

1. Deciding whether S is a consistent subsignature of K is NP-complete.
2. Deciding whether S is a minimal inconsistent subsignature of K is DP-complete.
3. Deciding whether S is a maximal consistent subsignature of K is DP-complete.

We consider now problems related to our new inconsistency measures from Section 5. As in [23], we
consider the following problems (for a given inconsistency measure I):

ExacTy Input: K,zeR
Output: TrRUEIff [(K) ==z

UPPER] Input: K,z eR
Output: TrRUEIff I(K) <=z

LowERy Input: K,zeR
Output: Trueiff I(K) >z

VALUE[ Input: K
Output: The value of I(K)

Due to Theorem 3, decision problems related to (in-)consistency of signatures have the same complexity
as the corresponding problems on formulas (e. g., deciding whether a set of formulas is consistent is
NP-complete as is the problem of deciding whether a set of propositions is a consistent subsignature).
The observations made in [23] about the above problems for the corresponding measures defined on the
formula level then also extend to our new measures quite easily. More precisely, we get the following
characterisations regarding computational complexity.

Theorem 4. The computational complexity of the problems Exacty, UPPER;, LOWERy, VALUET wrt. the
measures Ingsig, Inmisig-c» Imcsig, and Ipsig is as shown in Table 2.

7. Related work

Our approach has some connections to previous works, in particular inconsistency-tolerant reasoning
with paraconsistent logics, which we will discuss in Section 7.1. Further related work will be discussed
in Section 7.2.



ExAcT; UpPER; | LOWER] VALUE
Inisig C_NP-h | CNP-c | CNP-c | # - coNP-c
Iwsigc | CZNP-h | CNP-h | CNP-h | Fp#col?
Imcsig | C=NP-h | CNP-c | CNP-c | # - coNP-c
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Table 2

Computational complexity of problems related to our new measures; all statements are membership statements,
except statements with an additional “-c” (which are completeness statements) or “-h” (which are hardness
statements)
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Table 3
Truth tables for propositional three-valued logic.

7.1. Relationships with paraconsistent reasoning

We briefly recall Priest’s 3-valued logic for paraconsistent reasoning [24]. A three-valued interpretation
v on At is a function v : At — {T, F\, B} where the values T and F’ correspond to the classical true and
false, respectively. The additional truth value B stands for both and is meant to represent a conflicting
truth value for a proposition. The function v is extended to arbitrary formulas as shown in Table 3.
An interpretation v satisfies a formula o (or is a 3-valued model of that formula), denoted by v =2 «
if either v(a) = T or v(a) = B. Define v =3 K for a knowledge base K accordingly. Let Mod3(K)
denote the set of all 3-valued models of K. Note that the interpretation vy defined via vg(a) = B for
all @ € At is a model of every formula, so it makes sense to consider minimal models wrt. the usage of
the paraconsistent truth value B. A model v of a knowledge base K is a minimal model of K ifitis a
model and there is no other model v/ of K with (v')~*(B) C (v)~!(B). Let MinMod?(K) denote the
set of minimal models of K.

We can define an inference relation on MinMod®(K) by considering all minimal models. More
formally, define ) via Ko iff v |=3 o for all v € MinMod3(K) For an in-depth discussion of the
properties of this inference relation and a refined version of it see [25].

For a three-valued interpretation v define its two-valued projection w,, : v~ L({T, F'}) — {true, false}
via wy(a) = trueiff v(a) = T and wy,(a) = false iff v(a) = F, foralla € v~ ({T, F'}). In other words,
Wy is a two-valued interpretation that is only defined on those propositions, where v gives a classical
truth value, and the truth value assigned by w,, agrees with v. We can capture the relationship between
three-valued models and inconsistent signatures as follows.

Proposition 12. Let v be a three-valued interpretation. Then v =2 « iffw, = (« Bv~1(B)) for every
formula a.

So a three-valued interpretation v is a model of «, if and only if the classical part of v is a model of
the formula obtained by forgetting those propositions assigned to B.

Proposition 13. Let K be a knowledge base.
1. Ifv € MinMod?(K) thenv='(B) € MISig(K).



2. If S € MISig(K) then there isv € MinMod3(K) withv™(B) = S.

In other words, S is a minimal inconsistent subsignature if and only if there is a minimal 3-valued
model that assigns B to exactly those propositions in S. Note that while works such as [25] analyse the
inferential capabilities of (refined versions of) |~3, the properties of minimal inconsistent subsignatures
have (in the form as we did in the preceding section) not been analysed in that line of research before.

7.2. Further related work

Lang and Marquis [4, 5] also considered forgetting as a means to restore consistency and to reason under
inconsistency. However, they also did not consider notions such as minimal inconsistent and maximal
consistent subsignatures nor the application to inconsistency measurement. In fact, our approach could
be used as a pre-processing step for that work to identify propositions that need to be forgotten in order
to restore consistency. A further particular related work is then [26], which proposes an inconsistency
measure [ that is based on forgetting. More precisely, /¢ (K) (for a knowledge base K) is defined as
the minimal number of proposition occurrences (across all propositions) that have to be replaced by
either T or | such that the resulting knowledge base is consistent. Note that neither of our measures
coincides with I, in particular because I allows that only some of the occurrences of a proposition
are forgotten. In our approach, although proposition occurrences may be replaced differently (by either
T or L), we always forget a proposition completely. Only this allowed to derive our notions of minimal
inconsistent and maximal consistent subsignatures. As such, other then the general used method, there
is no direct relationship between I and our framework. However, one can also note that /r is one of
the other few existing measures that also satisfies Al (invariance of {«, 8} and {a A 5}).

Brewka et. al [27] consider a generalisation of the concept of inconsistency called strong inconsistency.
A subset S C K of formulas of a knowledge base K, is strongly inconsistent if every S’ with S C S’ C
K is inconsistent. In classical propositional logic, a set .S is strongly inconsistent if and only if it is
inconsistent, but the two concepts differ when considering non-monotonic formalisms, such as answer
set programming (ASP) [28, 29]. Strong inconsistency and minimal inconsistent subsignatures are, in
general, two orthogonal concepts that address different aspects of inconsistency handling. However, it
is conceivable to combine both of them in non-monotonic formalisms such as ASP, and obtain minimal
strongly inconsistent subsignatures. For that, we basically have to substitute requirements pertaining to
inconsistency by strong inconsistency (such as in Definition 6). This would open up applications of our
inconsistency measures in those formalisms as well, see also [30, 31].

8. Discussion and conclusion

We considered an approach to analyse inconsistency in a knowledge base through forgetting parts
of the signature such that the remaining knowledge base is consistent. In particular, we considered
the notions of minimal inconsistent and maximal consistent subsignatures as counterparts to minimal
inconsistent and maximal consistent subsets. Structurally, minimal inconsistent and maximal consistent
subsignatures behave similarly as their subset-based counterparts, in particular, we showed that the
hitting set duality is also satisfied by those notions. We analysed the application of these notions to
the field of inconsistency measurement and devised several novel and interesting new inconsistency
measures. Finally, we studied several problems in this context wrt. their computational complexity.

A possible venue for future work is to develop signature-based variants of inconsistency-tolerant
reasoning methods based on maximal consistent subsets such as the one by Rescher and Manor [1]
or Konieczny et al. [7]. The latter work proposes inference relations that only consider some of the
maximal consistent subsets of a knowledge base, where the consideration of maximal consistent
subsets is determined by a scoring function. Adapting those scoring functions for maximal consistent
subsignatures will therefore give rise to further inference relations. Moreover, the reasoning approach of
Brewka [32], who considers stratified knowledge bases—i. e. knowledge bases where formulas are ranked
according to their preference—, could also be cast into our framework by considering stratified signatures.



Finally, one could generalise our approach from propositional logic to more practical formalisms such
as description logics [33] and databases [34, 35].
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