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Abstract

Strong equivalence between knowledge bases ensures the possibility of replacing one with the other without
affecting reasoning outcomes, in any given context. This makes it a crucial property in nonmonotonic formalisms.
In particular, the fields of logic programming and abstract argumentation provide primary examples in which
this property has been subject to vast investigations. However, while (classes of) logic programs and abstract
argumentation frameworks are known to be semantically equivalent in static settings, this alignment breaks in
dynamic contexts due to differing notions of update. As a result, strong equivalence does not always carry over
from one formalism to the other. In this paper, we carefully investigate this discrepancy and introduce a new
notion of strong equivalence for logic programs. Our approach preserves strong equivalence under translation
between certain classes of logic programs and both Dung-style and claim-augmented argumentation frameworks,
thus restoring compatibility across these formalisms.
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1. Introduction

In the field of Knowledge Representation and Reasoning, the concept of equivalence between knowledge
bases has been the subject of extensive studies. A primary motivation behind this research is the potential
to exploit the equivalence between two knowledge bases to achieve a compact representation of the
same information. Furthermore, the possibility to substitute a specific component of a given knowledge
base IC with an equivalent yet simplified alternative has been shown to ease the computational cost of
reasoning over K. While this advantageous behavior can be taken for granted in monotonic formalisms
(e.g. classical logic), it is usually not the case in non-monotonic ones. For this, the notion of strong
equivalence has been introduced for non-monotonic formalisms, to capture the idea of equivalence in a
dynamic environment, under any possible update [1, 2, 3, 4, 5, 6].

In this paper, we consider two families of non-monotonic formalisms, namely logic programming and
abstract argumentation. Logic programming is a declarative programming paradigm where a reasoning
problem is specified by means of a so-called logic program (LP). This consists of a set of inference rules
made of atoms, possibly preceded by a negation-as-failure operator. Negative literals are assumed to be
true as long as their corresponding positive atom cannot be proven to hold. Abstract argumentation
is a sub-field of symbolic Artificial Intelligence [7, 8] that offers formal approaches to represent and
reason over situations where conflicting information is present. An argumentative scenario is specified
by means of an abstract argumentation framework, which is a directed graph where nodes represent
arguments and edges their relation. The starting point in the field is the seminal work of Dung [9],
where abstract argumentation frameworks contain only a relation of attack among arguments. We will
refer to these as Dung-style AFs.
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Several semantics have been proposed for both of these formalisms, with the common purpose of
extracting solutions for the given program or argumentation framework. These are respectively sets of
atoms that satisfy each rule in the program (called answer-sets), and sets of arguments that are able
to defend themselves against possible counter-arguments (called extensions). For the purpose of this
work, we restrict our attention to the stable model semantics for LPs [10] and the stable semantics for
argumentation frameworks [9].

Previous work has shown a one-to-one mapping between Dung-style AFs and (a resticted class of)
LPs under the stable model semantics [9, 11]. In particular, any problem can be either specified via
an program P or an abstract argumentation framework F' in such a way that the answer sets of P
are identical to the stable extensions of F'. Moreover, by taking into account a wider class of LPs it
is possible to capture more expressive types of abstract argumentation frameworks than Dung-style
AFs, such as claim-augmented argumentation frameworks [12]. Thus, equivalent LPs correspond to
equivalent AFs.

However, such a semantic correspondence does not necessarily carry over to dynamic contexts,
where strong equivalence is required. It is possible for two logic programs that are strongly equivalent
to induce argumentation frameworks that do not share this property, due to the incongruous notions
of update (or expansion) in the two realms. To acknowledge such mismatch, consider the following
example:

Example 1. Two people X and Y are suspects of a murder for which they do not have an alibi. However, by
means of forensic analysis it has been established that the crime has been committed by one person alone.
While questioning possible witnesses, the detective learns from witness Z that X and Y were in a bar far
away from the crime scene at the time of the murder. Thus, he establishes that the case cannot be solved.
We model the detective’s knowledge via an LP and an AF as follows:

F @-@ @ P ={z + noty,nota., y < notz,nota., a< .}

where a means “has an alibi" and x (resp. y) means “X (resp. Y) is the murder". After some time, however,
a second witness shows up and testifies that Z was drunk the entire evening on the same night, thereby
falsifying the alibi of the two suspects. This information update is captured via:

F (o) —d) P'={a+ notd., d+ .}

where d means “Z was drunk".

In accordance with equivalence results between logic programs and argumentation frameworks, the two
ways of modeling our knowledge base are consistent with each other when taken individually. However,
this does not happen when they are combined. Incorporating the second pair of knowledge bases (F' and
P’) into the first one (resp. F' and P) yields different result: in the case of F' and F", their union returns
the expected result in the form of two possible extensions {d, z} and {d,y}. Indeed, as far as the detective
knows, the witness Z was drunk and this is compatible with either X or Y being the murder. On the other
hand, the union of the two logic programs P and P’ yields an unexpected prediction: the alibi ‘a < is not
overwritten by Z being drunk ‘d <, leaving {a, d} as the only possible solution.

The discrepancy illustrated above reveals that updating an existing logic program by simply adding
rules may produce unexpected outcomes. Facts (e.g. ‘a < in P) cannot be overwritten by incoming
information, while their corresponding arguments (e.g. a € F') can. This behavior of logic programs is
fundamentally in contrast with the way in which non-monotonicity is encoded in abstract argumentation:
an argument can always be attacked by new ones.

In this work, we carefully analyze the relationship between logic programming and abstract argumen-
tation, with a particular interest in dynamic contexts. As a first step, we recall and extend equivalence
results for classes of logic programs and abstract argumentation frameworks. Subsequently, motivated
by the mismatch above, we introduce a novel notion of update for a restricted class of LPs, called Rule
Refinement, that resolves the issue by mimicking precisely the existing notion for Dung-style AFs.
We further extend Rule Refinement to the wider class of atomic logic programs (where no positive



literal occurs in the body). Within this class, Rule Refinement in LPs captures strong equivalence in
claim-augmented AFs.

2. Preliminaries

Logic Programming We consider normal logic programs with negation-as-failure not. Such pro-
grams consist of rules r of the form ‘n : ¢ < ay,...,ag,notby,...,notb,,. read as ‘cifaj and . ..
and aj and not b; and ... and not b,,’. Here, n € N is the identifier of the rule r in the program;
we refer to with i¢d(r) = n. Further, a;, b; and c are ordinary atoms; £(P) is the set of all atoms
occurring in P. The atoms a; are called positive atoms and the atoms b; are called negated atoms,
respectively denoted by pos(r) = {a1,...,ar} and neg(r) = {b1,...,bn}. We use head(r) = c and
body(r) = {ai,...,ar,not by,...,not by, } for the head and body of r. With a slight abuse of notation,
we extend previous predicates pos, neg, head, body to sets of rules, e.g. head(R) = {head(r) | r € R}.
Given a set of atoms S, we write not S = {not b | b € S}. The indices k, m can be equal to zero (that
is, rules can have an empty body or only positive or negative literals in the body). A rule r is called:
constraint if head(r) = 0; fact if k = m = 0; atomic if k = 0. A logic program P is atomic if all the
rules in P are atomic.

The semantics of normal logic programs is defined in terms of answer sets, also called stable models.
Whenever a program consists of positive atoms only, its (unique) stable model consists of the minimal
set of atoms closed under the rules. If not, the procedure to extract answer sets from a program is
performed in two steps: first a set of atoms is guessed as a candidate answer set; then, the program
is modified accordingly, by propagating information relative to the candidate set. The result of this
modification is a program with no negated atoms called reduct. Formally:

Definition 1. Let P be a normal logic program and S C L(P) a set of atoms. The reduct of P w.r.t. S is
the negation-free program P° obtained from P by: (i) deleting all rules € P with not b; in the body for
some b; € S, (ii) deleting all negated atoms from the remaining rules. S is an answer set of P iff S is the
minimal model of P°. The collection of answer sets of a program P is AS(P).

Throughout the entire paper, we will focus on the class of atomic LPs. Whenever we write program
we mean an atomic one. Moreover, we will restrict our attention to a sub-classes of atomic programs.
In particular, we call strict (resp. h-unique) a logic program P where each atom p € L(P) occurs at
least (resp. at most) once in the head of a rule.

Abstract Argumentation We fix a infinite background set of arguments /. A strict argumentation
framework (strict AF') is a directed graph F' = (A, R) where A C U is a finite set of arguments
and R C A x A an attack relation between them. The union of any two strict AFs F' = (A, R) and
G = (A',R) is definedas FUG = (AU A’ RU R'). For two arguments a,b € A we say that a
attacks b if (a,b) € R. Moreover, a set of arguments F C A attacks b if (a,b) € R for some a € F.
Analogously, a attacks E if (a,b) € R for some b € E and for a set E/ C A we say that E’ attacks F
if £/ attacks some b € E. We use E}, = {a € A | E attacks a} and E, = {a € A | a attacks E} to
denote the set of arguments respectively attacked by and attacking F. Further, the range of F (with
respect to R), denoted Eg, is the set £ U EE. For a singleton {a} we use aE, ap and a%.

E is conflict-free in F' (E € ¢f{F)) iff forno a,b € E, (a,b) € R. E defends an argument a if £
attacks every argument attacking a. Based on these two notions, [9] introduced different argumentation
semantics. Formally, these are functions ¢ : F' + o(F) C 24. This means that, for any given
F = (A, R), a semantics returns a set of subsets of A. These subsets are called o-extensions. Here we
consider only stable semantics (stb for short):

Definition 2. Let F = (A, R) be an AF and E € c¢f(F') a conflict-free set in F'. We say that E is a stable
extension of I (E € stb(F)) iff EY = A.

"We use this terminology to refer to the standard definition of Dung AFs, to emphasize the fact that the attack relation is
restricted to arguments in A. In Section 3, we will relax this requirement.



In recent years, more expressive abstract formalisms have been proposed that extend Dung-style
AFs. Among these, claim-augmented argumentation frameworks (or CAFs) add claims to the abstract
representation [12, 13].

Definition 3. Let C be a set (or universe) of claims. A claim-augmented argumentation framework (CAF)
is a triple F = (A, R,~) such that F' = (A, R) is a strict AF and vy : A — C is a function that assigns
claims to arguments.

For a set of arguments E, we use 7(E) = {y(a) | a € E} to denote the associated set of claims.
The main advantage of CAFs lies in the fact that they allow to represent situations where different
arguments have the same claim. In this paper we focus on a particular type of CAFs, called well-formed
CAFs, for which arguments with same claim attack the same arguments. A given CAF F = (A, R, )
is well formed iff for any two arguments a, b, y(a) = (b) implies aj; = b};,. Stable semantics for a
well-formed CAF F = (F, ) can be defined as taking the claim-sets (F) inherited from every stable
extension .

Definition 4. Let F = (F,~) be a well-formed CAF. We call a set S a stable (claim-)extension of F
(S € stbi(F)) iff there is an E € stb(F) such that S = v(E).

Strong Equivalence Strong equivalence notions for logic programs and argumentation frameworks
have been presented to capture equivalence under any possible updates. In the case of LPs, updates
consist of expanding the original program with a set of rules. Two LPs P and () are said to be equivalent,
denoted P = () whenever AS(P) = AS(Q). Further, P and () are strongly equivalent, denoted
P =, Q, iff, for any LP R, the programs P U R and Q U R are equivalent, i.e. PUR = QU R [1]. Here,
we consider specific classes of LPs and adjust the relative notion of strong equivalence accordingly.

Definition 5. Given a class 1l of LPs, P and Q) in 11, we say that P and Q) are strongly equivalent in 11,
written P =1 Q, iff for every program R: either (1) PUR ¢ Il and QUR ¢ T or (2) PUR = QU R.

More recently, the notion of strong equivalence has been studied for other non-monotonic formalisms,
in the field of abstract argumentation [6]. Similarly to logic programs, two strict AFs F' and G are
equivalent under stable semantics, if stb(F') = stb(G). Strong equivalence, denoted by F' = G, is
satisfied whenever stb(F' U H) = stb(G U H) for any strict AF H. In this setting, strong equivalence
admits a syntactic characterization in terms of so-called (semantics-dependent) kernels, obtained by
syntactical modifications of the given frameworks. For stable semantics, such modification consists in
the removal of out-going attacks from self-attacking arguments.

Definition 6. Let ' = (A, R) be an strict AF. The stable kernel of F is FSX = (A, R9K) with
RSK = R\ {(a,b) | a # b, (a,a) € R}.

The definition of kernels is a key step in obtaining a characterization of strong equivalence.
Proposition 1 (Oikarinen and Woltran [6]). For any two strict AFs F and G, F =, G iff F5K = GSK,

The idea of strong equivalence has been investigated for CAFs as well. In the literature only expansions
among compatible CAFs are considered. Informally, two CAFs are compatible if and only if the arguments
they share have the same claim. Moreover, AF kernels characterize strong equivalence for CAFs as well.

Proposition 2 (Baumann et al. [14]). Let F = (F,~) and G = (G,~') be two compatible well-formed
CAFs. Then F =% G iff [ =% G.

This kernel characterization applies when F and G are well-formed, for any common update H
(possibly not well-formed). In Section 5.2 we will follow a different approach, since CAFs translated
from logic programs are always guaranteed to be well-formed and the requirement of compatibility for
expansions is not natural for logic programs.



3. From Abstract Argumentation to Logic Programming and Back

In this section we introduce translations between increasingly larger classes of logic programs and
increasingly more expressive abstract argumentation frameworks. In particular, we recall the fact that
strict h-unique atomic programs correspond to strict AFs [11]. Further, we show that by relaxing the
strictness requirement for LPs we end up in the broader class of (possibly non-strict) AFs. Finally, we
consider the full class of atomic LPs and their correspondence to well-formed CAFs.

3.1. Logic Programs and Dung-style AFs

We begin with strict h-unique atomic programs and strict AFs. Any strict AF can be transformed into
an logic program by generating a rule r for every argument such that the head of r is the argument’s
name and the (negative) body contains the names of each attacker.

Definition 7 (Caminada et al. [11]). Let F' = (A, R) be an argumentation framework with A =
{ai,...,an}. The corresponding logic program of F is:

Pr ={i:a; < notby,...,notby. |a; € Aand{by,...,br} =a; }
Notice that by definition Pr is atomic, strict and h-unique. Consider the following example:

Example 2. Consider the following strict AF F' = (A, R) depicted below with A = {a,b,c} and
R ={(a,a), (a,b), (b,a), (b,c)} and its corresponding LP Pr:

F@ Pr={l:a <+ nota,noth., 2:b<« nota., 3:c<+ notb.}

For the other direction, the transformation only takes strict h-unique programs as input. For each
rule, the head atom is associated to an argument with the same name and each negated atom (called
vulnerability) in the body is associated with an attacker of the argument corresponding to the rule-head.

Definition 8 (Caminada et al. [11]). Let P be a strict h-unique program. The corresponding strict
argumentation framework Fp = (Ap, Rp) is defined by:

e Ap ={a|a € head(r), r € P},
« Rp ={(a,b) | b € head(r), a € neg(r), r € P}.

It is easy to see that under translation, the program in Example 2 generates exactly the strict AF F'.
Indeed, the presented translation is a bijection.

Proposition 3 (Caminada et al. [11]). For a strict AF F' and its corresponding LP Pr, F' = Fp,.

Moreover, the transformation preserves equivalence in both directions: the answer sets for a (strict
h-unique) program correspond exactly to the stable extensions of its transformed strict AF.

Proposition 4 (Caminada et al. [11]). For any strict AF F' and h-unique atomic program P, stb(F) =
AS(Pr) and AS(P) = stb(Fp).

Given a certain program P, the attacks that are generated in Fp depends on two factors: the
vulnerabilities and head-atoms. Caminada et al. [11] considered equivalence under transformation in
a static setting, where strictness becomes a crucial aspect to enforce in order to define a one-to-one
mapping. In a dynamic setting, on the other hand, the presence of vulnerabilities in P which do not
occur as head-atoms has an impact on the semantic level: it opens for the possibility of new incoming
attacks in F'p.

Example 3. The two h-unique programs P = {a + notb.} and P’ = {a < .} have the same unique

answer set {a}. However, when they are simultaneously updated with P" = {b < .}, their answer sets are
different: AS(P U P") = {{b}} and AS(P' U P") = {{a,b}}.



Motivated by these considerations, we relax the notion of strictness for logic program. That is,
we consider programs with negative literals that never occur as head-atoms. Indeed, the previously
shown translation would relate non-strict programs to strict AFs only at the cost of losing the one-to-
one mapping: several non-strict LPs correspond to the same strict AF. In order to maintain an exact
mapping, we also relax the definition of attack relation, allowing incoming attacks from elements in the
universe U outside of A. We use ungrounded attacks to refer to these relations. Further, we simply call
argumentation framework (AF) any framework with possibly ungrounded attacks.

Definition 9 (AF). An AF F = (A, R) is a directed graph where A C U is a (non-empty) set of arguments
and R C U x A is an conflict relation. We say that R| 4 = RN (A x A) is the set of (proper) attacks,
whereas R \ R 4 is the set of ungrounded attacks.

It is easy to see that the strictness notion of logic programs and argumentation frameworks are
connected: every non-strict AF can be mapped to exactly one non-strict LP. Indeed, the isomorphism
of Proposition 3 between strict h-unique atomic LPs and strict AFs can be lifted to possibly non-strict
programs and AFs.

Remark 1. For any AF F' and corresponding logic program P, I' = Fp,. Conversely, for any h-unique
atomic LP P and corresponding AF F', P = Pp,,.

Example 4. Let ' = (A, R) be the AF below and P its corresponding LP. The ungrounded attack
(c,b) € R\ R4 is represented by the vulnerability ¢ € neg(Pr).

F @ e -———(:c:) Pr={1:a+ nota,notb., 2:b+ nota,notc.}

The notions of defense, conflict-freeness as well as stable semantics for AFs are defined over the
attack relation 12| 4 and are therefore identical to those introduced for strict AFs.

Definition 10. Let ' = (A, R) be an AF. A set E C A is conflict-free in F' iff for no a,b € A,
(a,b) € Ry . Further, E is a stable extension of F’ iﬁ”E%A = A

Notice that the notion of stable-kernel trivially characterizes strong equivalence between AFs. This
follows straightforwardly from the fact that we fixed R C U x A. Therefore, no ungrounded attack
generates from a self-attacking argument. Moreover, ungrounded attacks have no influence on the
evaluation of an AF.

Proposition 5. For an AF F' = (A, R) and its strict correspondent F| 4 = (A, R 4), stb(F') = stb(F| ).

For h-unique programs we observe a similar behavior. We can identify a set S C neg(P) of
ungrounded vulnerabilities that make a program P non-strict. Formally, the set of ungrounded vulner-
abilities for P is UV (P) = {notb | b € neg(P) \ head(P)}. By removing such vulnerabilities, we
obtain the strict program Pjj,cqq, defined as Pypeqq = {id(7) : head(r) < body(r) \ UV (P). | r € P}.
Notice that transforming a non-strict atomic program into the corresponding strict one yields equiv-
alent answer-sets, and vice-versa. Ungrounded vulnerabilities have no semantic impact, similarly to
ungrounded attacks. Thus, answer-sets are preserved when restricting to strict programs.

Proposition 6. For an atomic program P and its strict correspondent Pypeqq, AS(P) = AS(Phead)-

To show that semantic equivalence can be lifted to AFs and h-unique programs, we introduce the
following lemma.

Lemma 1. For any h-unique atomic logic program P, Fip, ., = (Fp) ap. For any AF F, Pp , =
(PF) head-

Proposition 7. For any h-unique atomic program P and the corresponding AF F'p, it holds that AS(P) =
stb(Fp). Conversely, for any AF F and its corresponding program Pr, we have that stb(F') = AS(Pr).

Proof. From propositions and lemmas above, it can be easily constructed the following chain of equiva-
lences: AS(P) = AS(P|head) = stb(Fp,.,q) = stb((Fp)ya,) = stb(Fp). In a similar way, it is easily
proven that stb(F') = stb(F|a) = AS(Pr,,) = AS((Pr) head) = AS(Pr). O



3.2. Logic Programs and well-formed CAFs

We can now move one step forward and focus on the wider class of atomic LPs and their relation to
well-formed CAFs. Within this class of frameworks, attacks are not arbitrary pairs of arguments, but
depends on the attacker’s claim. A translation has been introduced for strict atomic LPs from and
to well-formed CAFs. In our setting, we are able to provide a slightly more general translation that
considers possibly non-strict programs. To do so, we present a definition of well-formed CAFs more
suitable for a dynamic setting.

Definition 11. A well-formed CAF is a triple F = (A, RC,~) where A is a finite set of arguments,
RC C C x A is a set of claim-attacks with C the universe of claims and y : A — C the claim function.

One can easily retrieve the original definition of CAF by fixing R = {(z;, ;) | i,z € A, vy(x;) =
cand (c,z;) € RC}. As a result, we can utilize the definition of stable semantics for well-formed CAFs
by means of this translation. By appealing to the universe of claims C, we have a formulation that
encompasses claim attacks from claims which do not label any argument, i.e. ungrounded attacks. Any
atomic LP exactly corresponds to some well-formed CAF by taking an argument for each rule, a set of
claims for each atom occurring as the head of some rule and attacks defined from claims to arguments.

Definition 12. Given an atomic program P, we obtain the well-formed CAF Fp = (Ap, ng, Yp) via:

e Ap = {l‘z ‘ ld(T‘) =1,r € P},
e RS = {(c,x;) | c € neg(r),id(r) =i},
e yp(z;) = head(r) with id(r) = i.

Example 5. Consider the following atomic LP P below and its corresponding well-formed CAF. Notice
that the claim-attack (c, x2) is realized by an ungrounded attack.
a

a b c
P={l:a+ notb., 2:a+<+ notec., 3:b+ nota.} Fp ____(’*\,

From a well-formed CAF, each argument x; corresponds to a rule r with ¢d(r) = ¢ and head v(z;).
Further, for each claim c € C attacking the argument z;, not ¢ appears in the body of the rule.

Definition 13. Let F = (A, RC, ) be a well-formed CAF with A = {x1,...,x,}. The corresponding
LPis Pr = {i:7v(x;) <~ notby,...notby. | x; € A, {b1,...,br} =v(x; )}

Indeed, the possibility of having different arguments with the same claim in F could make Pr a non
h-unique program. As for AFs, also CAFs are isomorphic to atomic LPs.

Proposition 8 (Konig et al. [15]). Let F be a CAF and Pr its corresponding LP. Then, F = Fp,.
For well-formed CAFs and LPs, equivalence is preserved under translation in a static setting.

Proposition 9 (Kénig et al. [15]). For any well-formed CAF F and atomic program P, stb(F) = AS(Pr)
and AS(P) = stb(Fp).

In their original formulation, the propositions above consider only strict well-formed CAFs and
atomic programs. However, they can be carefully adapted to our context based on the our relaxed
notion of well-formed CAF.

3.3. Equivalence from Static to Dynamic Setting

Until now, we have considered semantic equivalence within a static setting and provided translations that
preserve it. We point out that such a semantic correspondence does not carry over to dynamic scenarios,
already within the smaller class of strict AFs. Two strongly equivalent LPs may have corresponding
AFs that are not strongly equivalent.



Proposition 10. For two LPs P and () it holds that P =, () does not imply Fp =, Fg.

Example 6. Take two logic programs as follows:
P ={a <+ notb,notc., b+ nota,notc., c+ .} @Q={a<+ notc., b+ nota,notec., c+ .}
Since both P and () contain the fact ¢ <— and ¢ € neg(r) for every other rule in both programs, ¢ occurs

in any answer-set of P U R and QQ U R for any R. Hence, they are strongly equivalent. The associated
strict AFs are:

“ /\Q
Fp (@Z_—=0)—© Fo (a) &—(c

Both Fg and Fp have no self-attacking arguments. Hence, Fy and Fp coincide to their own kernels.
Thus, since they are different, they are not strongly equivalent.

4. Strong Equivalence under Rule Refinement

As previously shown, equivalence among LPs and AFs does not carry over to strong equivalence: due
to the incongruous definitions of update in the two realms, their evaluation changes when moving
from a static to a dynamic setting. To solve this mismatch we look at LPs through the lenses of abstract
argumentation. From the LP perspective, adding attackers on the corresponding AF means adding
vulnerabilities to the rule whose head identifies the attacked argument. We call this operation rule
refinement, defined as follows.

Definition 14 (rule refinement). Let r and 1’ be two arbitrary LP rules. We use
refine(r,r’) := {id(r) : head(r) + body(r) U body(r').}
to express that r is refined by means of 1.

In the remainder of the section, we introduce a novel notion of strong equivalence for the class of
(h-unique) atomic programs based on the rule refinement operator.

4.1. Rule Refinement for h-unique LPs

We first consider the class of h-unique atomic programs. Within this class, talking about rules or their
respective head-atoms is identical. Consequently, we can omit the explicit identifiers from rules and
use the head-atoms instead. We can now introduce a novel notion of LP update, that we call Rule
Refinement (RR, for brevity). Updating a program P with a rule 7’ via RR consists of two possible
operations: in the case where head(r') ¢ head(P), the update is a simple set-union; otherwise, the
rule-body of r € P for which head(r) = head(r') is merged with that of 7.

Definition 15 (W-update). Let P be an h-unique atomic program and r a rule in P. We define the
W-update (or simply update) of P by means of a new atomic rule r’ as:

Py PuU{r'} if head(r") ¢ head(P)
r =
P\ {r}Urefine(r,r") otherwise

Example 7. The W-update of P = {a <~ notb., b <— nota., ¢ < .} via the ruler = ¢ < notd. is:
PwWr={a+<+ notb., b+ nota., c<+ notd.}.

Towards the generalization of & between sets of rules, we notice that the consecutive applications of
& preserve the result independently of the order in which they are executed.

Lemma 2. For an atomic program P and two rules ry and ro it holds that (PWr1)Wry = (P Wre) Wry.

Updating an h-unique program P with another program ) = {ry,...,r,} resultsin P & Q) =
PwryW---Wr,. Moreover, P W () is guaranteed to be atomic and h-unique.



Proposition 11. Let P be an h-unique atomic program. For any atomic program (), updating P with ()
under Rule Refinement results in P W () being a h-unique and atomic.

We are now able to introduce RR strong equivalence in the class of h-unique atomic programs =.

Definition 16. Two h-unique atomic programs P and () are strongly equivalent under Rule Refinement
in Z, written P == Q, iff for any program R: either (1) P& R ¢ Zand QW R ¢ = or (2) AS(PWR) =
AS(QUY R).

By the definition of RR-update, whenever R € =, condition (1) is never satisfied. Moreover, strongly
equivalent programs under standard expansions are not guaranteed to be RR strong equivalent in =.

Proposition 12. For any two h-unique atomic programs P and Q):

e P =% Q does not imply P == Q;
» P =4 Q does not imply P == Q.

Example 8. Consider the programs P and () as follows:
P ={a <+ notb,notc., b+ nota,notec., c+ .} @ ={a<+ notbhmnotc., b+« notc., ¢+ .}
Let R be an (atomic) program. Since c < is contained in both P U R and (Q U R, the atom c occurs
in every answer-set of both programs. Thus, all the other rules in P and () do not fire, making P and )
strongly equivalent, i.e. P =, Q and P =5 Q. However, for the program R’ = {c +- notd.,d < .}, we
derive: (1) PU R € Eand Q U R’ € E as well as (2) AS(PW R') # AS(Q W R') since {a,d} is an
answer-set of the former, but not of the latter. Thus, P #= Q.

4.2. Rule Refinement for LPs

In this section we consider a notion of strong equivalence under rule refinement for the whole class A
of atomic LPs by dropping the requirement of h-uniqueness. We deal with (possibly non-strict) atomic
programs, in which several rules with the same head might occur. Here, the information provided by
rule identifiers becomes relevant when considering possible updates: identifiers allow to distinguish
among updates that involve rules already contained in P or new ones. Indeed, updating a program
with a new rule ' may result in the addition or refinement, irrespective of the head of 7. We then
introduce a different notion of update.

Definition 17 (W-update). Let P be an atomic program and r a rule in P. We define the \d-update (or
simply update) of P by means of a new rule 1’ as:

Puy {P u{r'} ifid(r') ¢ id(P)
P\ {r}Urefine(r,r") otherwise

Identifiers guide the update either towards the addition of the new rule or the refinement of an old
rule with the same identifier.

Example 9. The 4-update of P = {1 : a <~ notb., 2 : b < nota., 3:b <« .} by means of the rule
r=3:a+ notc.is: Plr={1:a<+ notb., 2:b<nota., 3:b+ notc.}.

As before, to generalize the definition of W-updates between sets of rules, we note that associativity
is preserved.

Lemma 3. For an atomic program P and two rules ry and ry it holds that (P ry) W re = (Pl ry) 7.
Moreover, P I () is atomic whenever P and () are.
Proposition 13. For any two atomic programs P and (), the updated program P 1 () is atomic.

We are now able to define strong equivalence between atomic programs under rule refinement.



Definition 18. Two (atomic) programs P and () are strongly equivalent under Rule Refinement in a
class 11, written P 5711 Q, iff for any program R: either (1) P R ¢ Il and Q W R ¢ II or (2)
AS(PH R)=AS(QWR).

In the following we will consider II = A. Then, in case P and () are atomic, condition (1) is false iff
R € A, ie, itis sufficient to check condition (2) for R € A. For atomic programs, we inherit results from
Proposition 12, i.e. P =2 @ does not imply P Ei\+ (see Example 8). Further this notion faithfully
generalizes RR strong equivalence for h-unique programs.

Proposition 14. For the class of h-unique atomic programs = and P, ) € Z, it holds that P Ei
implies P == Q.

5. Rule Refinement Captures Strong Equivalence in Abstract
Argumentation

In the present section, we show that the notion of strong equivalence under Rule Refinement introduced
for logic programs matches the one for abstract argumentation frameworks. We first consider h-unique
LPs and AF strong equivalence. In this setting, a syntactic characterization of RR-strong equivalence
can be reached via the notion of ASP kernel. Further, we see that our result generalizes to the full class
of atomic programs and well-formed CAFs.

5.1. AFs and h-unique Logic Programs

Inspired by the syntactic characterization of strong equivalence for strict AFs [6], we introduce the
notion of kernel for logic programs. Similarly to its AF counterpart, the ASP kernel of a program is
obtained by deleting dispensable vulnerabilities from its rules. Every atom that is in conflict with
itself, i.e. it occurs in the head as well as in the negative body of a rule, gets removed from every other
rule-body. We call such rules loops and define loop(P) = {r € P | head(r) € neg(r)} for an LP P.

Definition 19. LetloopH (Q)) = {not head(r) | r € loop(Q)}. The kernel of a h-unique program P is:
PE = {head(r) < body(r) \ loopH (P \ {r}). | r € P}.

Example 10. In what follows, we represent a program P and its kernel PX .

P = {a<+ nota,notb., b+ nota,notec., PX = {a < nota,notb., b+ .,
¢ < notc,notd., d <+ nota,notc.} ¢« notc,notd., d <+ .}

As a sanity check, we show that our notions of LP and AF kernel carry over under transformation:
the order in which we apply the translation and construct the kernel does not matter.

Proposition 15. For a h-unique atomic program P, it holds that (Fp)°X = Fpx. Analogously for an
AF F, it holds that (Pr)® = Ppsxk.

Combining two programs P and () through Rule Refinement and transforming the resulting program
into an AF yields the same framework as taking the AF union of the transformed programs.

Lemma 4. For two h-unique atomic programs P and () , it holds that Fpyg = Fp U Fy. Vice-versa, for
two AFs F' and G, it holds that Pryg = Pr W Pg.

As illustrated for AFs, we show that ASP kernels are semantically equivalent to the original instance.
Proposition 16. For any h-unique atomic program P it holds that AS(P) = AS(P¥).
Further, two programs P and () maintain the same kernel under any common update.

Proposition 17. Let P and Q) be two h-unique atomic programs with PX = Q. Then for any h-unique
atomic program R, it holds that (P & R)X = (Q w R)¥.



Finally, we can prove that RR strong equivalence for LPs characterizes strong equivalence for AFs.

Theorem 1. Let P and () be two h-unique atomic programs, then the following conditions are equivalent:

. P and () have the same kernel, i.e. Px = Q.
The AFs corresponding to P and Q) have the same stable-kernel, i.e. (Fp) K = (Fg)SK.
The AFs corresponding to P and () are strongly equivalent for stable semantics, i.e. Fp =5 Fy).

oW N e

. P and Q are strongly equivalent under RR, i.e. P == Q.

Proof. We initially show the equivalence from 1. to 4. and then the other way around. From Px = Qg
we derive F'px = Fx via Definition 8. Further, via Proposition 15 we obtain (F’ p) = (Fg)°K.
This is equivalent to Fip =, Fy from the characterization of strong equivalence for AFs. From the
definition of strong equivalence, we derive that for any AF H, stb(Fp U H) = stb(Fg U H) and
AS(Prpun = AS(Pr,un) by Proposition 4. Now, given Lemma 4, we can rewrite the previous
equivalence as AS(Pp, W Py) = AS(Pg, ® Py). Since the transformation between AFs and h-unique
atomic programs is an isomorphism (Remark 1), it holds that AS(P & Py) = AS(Q W Py ). Therefore,
for any program H' = Pp associated to the AF H we get AS(PW H') = AS(Q W H'). Since H is
an AF, Py is guaranteed to be h-unique. Further, since P and () are also h-unique by hypothesis, we
derive PW H' € Zand QW H' € =, concluding P ==

We now prove the other direction. By definition, P =, @) entails AS(PWR) = AS(QW R) for any h-
unique atomic program R. Thus under translation we get F'pyr and Fur s.t. stb(Fpyr) = stb(Four).
Then, via Lemma 4, we rewrite the previous equivalence as stb(Fp U Fr) = stb(Fp U Fg) for any
program R. Let us call H the unique AF corresponding to each F, we write stb(FpUH ) = stb(FoUH)
forany H. Thus, F'p =, F(, by definition of strong equivalence. From Proposition 1 the two frameworks
have the same stable kernel: (Fp) % = (Fg)9K. We transform back to programs, obtaining Pippysx =

Pp,)ysx and (Ppp)" = (Pr,)* via Proposition 15. Finally, Remark 1 brings us to P¥ = Q. O
In light of Propositions 5 and 6, the result above immediately applies to the smaller class of strict AFs.

Remark 2. For two strict h-unique atomic programs P and Q, P == Q if and only if Fp =5 Fg where
Fp and Fgy are strict AFs.

5.2. Atomic Programs and Well-Formed CAFs

We first show that the ASP-kernel from Definition 19 is not helpful to characterize strong equivalence
under Rule Refinement for atomic programs.

Example 11. Take two programs P and Q with Q = PX.
P={l:a<+ notb., 2:b< ., 3:b< notb.} Q={l:a+ ., 2:b< ., 3:b« notb.}

It is easy to see that AS(P) # AS(PX). Hence, ASP-kernels do not characterize strong equivalence
for atomic programs. Thus, we provide a direct characterization of RR strong equivalence for atomic
programs. Later we will connect this characterization with strong equivalence for well-formed CAFs. We
show that two programs are RR strongly equivalent if their rules’ identifiers, heads and bodies pairwise
coincide, with the possible exception of loop-rules. In fact, two programs are strongly equivalent under
RR irrespective of whether the head-atoms of corresponding loop-rules coincide.

Lemma 5. Let P be a program and r € loop(P) a loop-rule in P. Then, r gets removed when computing
PS forany S € AS(P).

Theorem 2. Two atomic programs P and @) are strongly equivalent under Rule Refinement, denoted
P Ef}+ , iff it holds that:

1. id(r) = id(r") implies body(r) = body(r') for all rulesr € P andr’ € Q;
2. id(r) = id(r") implies head(r) = head(r") for all rules r ¢ loop(P) and r' ¢ loop(Q).



As before, we analyze how this new notion of update is understood in terms of CAFs. On the one
hand, simply adding a rule to a program P amounts to augmenting Fp with an argument and possibly
new attacks. On the other hand, refining a rule corresponds to adding claim-attacks to Fp.

Example 12. Consider the CAFs Fp, F, and Fp.y, corresponding to P, r and P W r from Example 9:
b a b a c b a b c
= G P GG
We next introduce our update operator for well-formed CAFs that will mimic k-update.

Definition 20. Given any two well-formed CAFs F1 = (A1, Rf, ~1) and Fy = (As, Rg, v2), we say that
FiUFe = (A1 U Ay, R‘f U Rg, y1 X 7y2) is the update of Fi via Fo where:

o . 71(@) l'fCL S A1
1 X Y2(a) = {72((1) ifa € A\ Ay

Updating an atomic program with an atomic rule might result in a violation of compatibility in the
corresponding CAFs. For instance, in Example 12 the argument x3 is labelled with two different claims
in Fp and F,. For such incompatible expansions, we operate a choice between the claim functions,
prioritizing ;. This ensures that whenever two CAFs are incompatible with respect to some arguments,
we choose the original claim as it is done with the rule-head of any rule r that is refined via an H-update.
We can now define strong equivalence between well-formed CAFs.

Definition 21. Given any two well-formed CAFs F and G, we say that F =4 G if and only ifo(FUH) =
(G UH) for any well-formed CAF H.

This notion differs from the original in two respects: (1) it does not restricts to compatible updates only
and (2) it requires updates to be well-formed. This notion of strong equivalence for CAFs corresponds to
strong equivalence under rule refinement for atomic LPs. To show this, we use of the following lemma.

Lemma 6. Given any two atomic programs P and (), it holds that Fpug = Fp U Fg. Conversely, given
two well-formed CAFs F and H, it holds that Pry = Pr 1 Py.

Theorem 3. Let P and () two atomic logic programs, then the following conditions are equivalent:

* The CAFs corresponding to P and () are strongly equivalent for stable semantics, i.e. Fp =5 Fq.
e P and Q) are strongly equivalent under Rule Refinement, i.e. P Ef}Jr Q.

Proof. We prove the two statements from top to bottom and viceversa. Assume Fp =4 F. By definition,
for any well-formed CAF H, stb(Fp U H) = stb(Fg U H). From Proposition 9, we can rewrite the
previous as AS(Pr,uz) = AS(Pryun). Thanks to Lemma 6, we derive AS(Pr, 1l Py) = AS(Pr,
Py). We transform this via the isomorphism in Proposition 8 into AS(PWPy) = AS(QW Py ). Thus, for
any H' = Py, we get Pl H' = Q1 H'. Since H is a well-formed CAF, Py is guaranteed to be an atomic
program. Further, since P and () are also atomic by hypothesis, we derive Pl H' € A and QI H' € A.
Finally, we conclude P E?Jr Q. Assume now P Ei\+ Q. Hence, either (i) AS(P ¥ R) = AS(Q & R) for
any program Ror (ii) PH R ¢ Aand Qi R ¢ A. If (ii) is the case, then R is not atomic. If (i) is the case,
then we can translate the corresponding programs, deriving stb(Fpur) = stb(Fqur) by Proposition 9.
Through Lemma 6, we then obtain stb(Fp U Fr) = stb(Fg U Fr) for any well-formed CAF Fp. We fix
the well-formed CAF H = Fpg and rewrite the previous equivalence as stb(Fp U H) = stb(Fo U H),
which by definition means Fp =, Fq. ]

From Theorems 2 & 3 we obtain a characterization of strong equivalence on well-formed CAFs.

Corollary 1. For two well-formed CAFs F=(Ar, R, v7) and G=(Ag, RS, vg), we have F =, G iff
1. Ay = Ag and RS = Rg, and
2. foreach x; € A, either yr(z;) = vg(x;) or (Vr(xi), ;) € Rcf A (vg (i), z;) € Rgr holds.
Finally, having a characterization for strong equivalence under rule refinement, we now prove that it

generalizes the standard notion of strong equivalence for atomic programs.

Proposition 18. For any two atomic programs P and ), P 57/}+ Q implies P =; Q.



6. Related Work

The notion of strong equivalence has been extensively investigated in both logic programming and
argumentation. For logic programs, strong equivalence has been characterized using SE-models [1],
which offer a semantic basis for comparing programs under arbitrary expansions. An SE-model of a
program P is a pair (X, Y") of sets of atoms such that X C Y, Y |= Pand X |= PY. Two logic programs
are strongly equivalent iff their SE-models coincide. Building on this, Delgrande et al. [16] defined
belief revision operators for LPs and established representation theorems for various program classes,
connecting strong equivalence with stability after revisions. Studying the relation between revision
and update operators in ASP [17] and our notion of rule refinement is subject of future investigations.

Besides aforementioned works for strong equivalence in Dung-style AFs and CAFs, more fine-grained
notions of strong equivalence have been introduced, see e.g. [18], and the concept of strong equivalence
has been extended to argumentation frameworks with collective attacks, abstract dialectical frameworks
as well as structured argumentation [19, 20, 21]. The work of Baumann and Strass [22] shares with our
research the motivation of bridging the gap between notions of strong equivalence across different
formalisms. Indeed, they provide a general semantic framework for strong equivalence that is formally
independent of specific formalism, and capable of subsuming both logic programs and Dung-style AFs.
In contrast, by remaining on the syntactic level, our work is closer to original characterizations of
strong equivalence and addresses the mismatch in a direct way.

7. Conclusion and Future Work

In this paper, we analyzed the correspondence between certain classes of logic programs and abstract
argumentation frameworks. In the static setting, we extended existing semantic equivalence results
from strict to non-strict programs and AFs, by appealing to the concept of ungrounded attack. Further,
we adapted the definition of well-formed CAFs to align precisely with (possibly non-strict) atomic
programs. We then examined equivalence in dynamic contexts, demonstrating how the correspondence
between strongly equivalent programs and argumentation frameworks gets lost in translation. We
identified the source of such misalignment in the diverging representations of expansions. To overcome
the issue, we proposed a new notion of update for (h-unique) atomic programs, called rule refinement.
Based on this, we then defined the novel notion of strong equivalence under Rule Refinement for
(h-unique) atomic programs and investigated its relations with the standard one. We have proven that
RR strong equivalence for (strict) h-unique programs characterizes strong equivalence for (strict) AFs.
Finally, we considered the class of atomic programs. In this setting, we provided a direct characterization
for RR strong equivalence and showed that it captures strong equivalence between well-formed CAFs.
In future research, we aim at providing a characterization of RR strong equivalence for the entire class of
normal logic programs, and connect this to possibly more expressive type of argumentation frameworks.
We anticipate that this could be achieved by encoding positive dependencies among atoms via some
notion of support in the corresponding framework, as for Bipolar AFs [23]. Further, we aim to study
the possibility to characterize RR strong equivalence via an equivalence notion in an intermediate logic,
analogously to the approach employed for the standard notion and the logic of Here-and-There [1].
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