
Similarity Measures for First-Order Logical Arguments
Victor David1, Jérôme Delobelle2 and Jean-Guy Mailly3,*

1University Côte d’Azur, Inria, CNRS, I3S, Sophia-Antipolis, France
2Université Paris Cité, LIPADE, Paris, France
3Université Toulouse Capitole, IRIT, Toulouse, France

Abstract
Similarity in formal argumentation has recently gained attention due to its significance in problems such as
argument aggregation in semantics and enthymeme decoding. While prior work has focused on propositional
logic arguments, we extend these approaches to First-Order Logic (FOL) arguments, enabling reasoning based on
the similarity of arguments in more complex and realistic contexts. We present a comprehensive framework for
FOL argument similarity, including: 1. An extended axiomatic foundation for similarity measures, 2. A parametric
model decomposed into four levels to efficiently evaluate structured knowledge, 3. A Tversky-based family of
measures to instantiate these concepts, 4. A set of constraints ensuring well-behaved models that satisfy axioms,
and 5. We introduce and analyze non-symmetric similarity measures in formal argumentation for the first time.

Keywords
Similarity Measure, First-Order Logic, Argumentation

1. Introduction

An argumentation system typically consists of two main components: a representation component, which
structures information as a graph with arguments as nodes and binary relations between them (either
positive, called support, or negative, called attack), and a reasoning component, which determines the
acceptability of arguments according to argumentation semantics.

Formal argumentation has become an important area within knowledge representation and reasoning,
with applications in domains such as decision-making [1], explainable artificial intelligence (XAI) [2, 3],
judgmental forecasting [4, 5], and enthymeme-based reasoning [6, 7, 8].

Across these diverse applications, a common concern has emerged: the need to reason not only about
the presence of arguments and relations, but also about the degree of similarity between arguments.
This notion, initially introduced in [9] for propositional arguments, has been formalized within an
axiomatic framework to ensure that similarity measures satisfy desirable rational properties. Subsequent
work [10, 11] has shown the practical benefits of these measures, in particular for avoiding redundancy
and improving argument aggregation in gradual semantics, where each argument receives a numerical
degree of acceptability. An argument is defined as a pair ⟨Premises,Claim⟩, where the premises aim to
justify the claim. For instance, consider two arguments 𝐴1 = ⟨{𝑝1, 𝑝1 → 𝑞}, 𝑞⟩ and 𝐴2 = ⟨{𝑝2, 𝑝2 →
𝑞}, 𝑞⟩, which support the same claim 𝑞 through different reasoning. These arguments can be considered
having some similarity, as they both justify the same claim. Now suppose they both attack a third
argument 𝐵 = ⟨{¬𝑞 ∧¬𝑟},¬𝑞 ∧¬𝑟⟩. In gradual semantics, the degree of acceptability of an argument
is often influenced by the number and the degree of acceptability of its attackers. Assuming that 𝐴1,
𝐴2, and 𝐴3 = ⟨{𝑝3, 𝑝3 → 𝑟}, 𝑟⟩ all have equal degree of acceptability, the combined impact of the
“similar” arguments 𝐴1 and 𝐴2 on 𝐵 should be lower than the combined impact of two “dissimilar”
arguments, such as 𝐴1 and 𝐴3. The similarity between 𝐴1 and 𝐴2 reflects a form of redundancy,
which should reduce their aggregated influence when computing the acceptability of 𝐵. In this setting,
similarity scores between arguments provide a principled way to adjust aggregation in order to avoid
overestimating the effect of repeated or equivalent information.

NMR’25: 23rd International Workshop on Nonmonotonic Reasoning, November 11-13, 2025, Melbourne, Australia
*Corresponding author.
$ victor.david@inria.fr (V. David); jerome.delobelle@u-paris.fr (J. Delobelle); jean-guy.mailly@irit.fr (J. Mailly)
� 0000-0002-4216-0876 (V. David); 0000-0003-1691-4731 (J. Delobelle); 0000-0001-9102-7329 (J. Mailly)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:victor.david@inria.fr
mailto:jerome.delobelle@u-paris.fr
mailto:jean-guy.mailly@irit.fr
https://orcid.org/0000-0002-4216-0876
https://orcid.org/0000-0003-1691-4731
https://orcid.org/0000-0001-9102-7329
https://creativecommons.org/licenses/by/4.0/deed.en

Furthermore, the role of similarity has recently been extended beyond argument aggregation. In the
context of enthymeme decoding, similarity serves as one of the evaluation criteria to assess the quality
of a decoding (i.e. a reconstructed argument). More specifically, it quantifies how faithful a decoding is
to the original enthymeme (i.e. an incomplete argument) [7]. In this setting, similarity helps ensure
that the decoding preserves the informational content of the original.

Overall, similarity between arguments should be seen as a core structural feature of argumentation
systems, just like attack and support relations. However, existing studies on logical argument similarity
remain largely confined to the propositional level, which limits their applicability. Many real-world
arguments involve quantifiers, relational structures, and variables that propositional logic cannot
adequately express. In this work, we address this gap by introducing a general framework for evaluating
similarity between arguments expressed in first-order logic (FOL). We extend existing principles analysis
to the FOL setting, and propose a four-level parametric model that captures the internal structure of
FOL arguments, from atomic literals to sets of formulae. The framework is instantiated using Tversky-
based similarity functions, guided by formal constraints that ensure compliance with the principles.
Additionally, we provide an analysis of non-symmetric similarity in formal argumentation, highlighting
its potential role in capturing directional similarities between arguments.

This framework is illustrated through examples but remains application-independent, making it
suitable for integration into various reasoning settings, including but not limited to gradual semantics
and enthymeme reconstruction. By moving beyond propositional logic, we aim to provide a more
expressive and realistic foundation for reasoning about argument similarity in complex domains.

This paper simplifies our previous approach based on Order-Sorted (OS) FOL [12] by adopting
standard, unsorted FOL. OS-FOL is more expressive in theory, but it requires explicit sort declarations
and type-consistent instantiations, which are impractical in real-world settings, especially for natural
language arguments, where such type information is often implicit or unavailable. By removing these
constraints, the new framework becomes easier to apply and enables a reformulation of the principles
based directly on similarities between predicates and constants, resulting in more precise definitions.
Moreover, we revise the definition of instantiated arguments to ensure valid arguments (e.g. when
instantiating existential claims, only those instances actually supported by the premises are retained).
We also provide a deeper analysis of both symmetric and non-symmetric similarity models, including a
characterization of the conditions under which total similarity (i.e., value 1) is achieved (Theorem 3).
Finally, we include a brief related work section on logical similarity measures to situate our contribution.

2. Logic and Arguments

First Order Logic is a rich framework that develops information about the objects and can also express
the relationships between them (using predicates). For instance, let the constants 𝑡 = 𝑇𝑟𝑜𝑝𝑖𝑐𝑎𝑙_𝐹𝑜𝑟𝑒𝑠𝑡,
𝑢 = 𝑈𝑔𝑎𝑛𝑑𝑎_𝐹𝑜𝑟𝑒𝑠𝑡, and the predicates 𝐹 (𝑥) = 𝐹𝑜𝑟𝑒𝑠𝑡(𝑥), 𝐷(𝑥) = 𝑚𝑎𝑠𝑠𝑖𝑣𝑒_𝐷𝑒𝑓𝑜𝑟𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛(𝑥),
and 𝐿(𝑥) = 𝐿𝑜𝑠𝑒_𝑏𝑖𝑜𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝑥). Using these, we can form statements like, 𝐹 (𝑡): “The tropical
forest is a forest” or ∀𝑥𝐹 (𝑥) ∧𝐷(𝑥) → 𝐿(𝑥): “Any forest that undergoes massive deforestation will
lose biodiversity”.

Definition 1. A First Order Language FOL, is a set of formulae built up by induction from: a set
C of constants (C = {𝑎1, . . . , 𝑎𝑙}), a set V of variables (V = {𝑥, 𝑦, 𝑧, . . .}), a set P of predicates
(P = {𝑃1, . . . , 𝑃𝑚}), a function ar : P → N which gives the arity of predicates, the usual connectives
(¬, ∨, ∧, →, ↔), Boolean constants ⊤ (true) and ⊥ (false) and quantifier symbols (∀, ∃). A grounded
formula is a formula without any variable.

We use lowercase greek letters (e.g. 𝜑, 𝜓) to denote formulae, and uppercase ones (e.g. Φ,Ψ)
to denote sets of formulae. The set of all FOL formulae is denoted by FOL. We assume formulae
to be prenex, i.e. written as 𝒬1𝑥1, . . . ,𝒬𝑘𝑥𝑘𝜑 where 𝒬𝑗 is a quantifier (for each 𝑗 ∈ {1, . . . , 𝑘})
and 𝜑 is a non-quantified formula. A formula 𝜑 is in negation normal form (NNF) iff it does not
contain implication or equivalence symbols, and every negation symbol occurs directly in front of

an atom (i.e., a predicate with its parameters). Following [13], we slightly abuse words and denote
by NNF(𝜑) the formula in NNF obtained from 𝜑 by “pushing down” every occurrence of ¬ (using De
Morgan’s law) and eliminating double negations. For instance, NNF(¬((𝑃 (𝑎) → 𝑄(𝑎)) ∨ ¬𝑄(𝑏))) =
𝑃 (𝑎) ∧ ¬𝑄(𝑎) ∧𝑄(𝑏). In that case, we call literal either an atom or the negation of an atom. The set of
grounded atoms is denoted by A. We denote by Lit(𝜑) the set of literals occurring in NNF(𝜑), hence
Lit(¬((𝑃 (𝑎) → 𝑄(𝑎)) ∨ ¬𝑄(𝑏))) = {𝑃 (𝑎),¬𝑄(𝑎), 𝑄(𝑏)}. For a given set of predicates P, we define
L = {𝑃 (𝑥1, . . . , 𝑥𝑘),¬𝑃 (𝑥1, . . . , 𝑥𝑘) | 𝑃 ∈ P, ar(𝑃) = 𝑘, 𝑘 ≥ 0} the set of literals. We say that a
literal 𝐿 is negative when it starts with a negation, denoted by Pol(𝐿) = −. Otherwise it is positive
and is denoted by Pol(𝐿) = +. Two literals 𝐿 and 𝐿′ have the same polarity if Pol(𝐿) = Pol(𝐿′).
Finally, given a grounded literal 𝐿 = ±𝑃 (𝑎1, . . . , 𝑎𝑘) where ± ∈ {+,−} indicates the polarity of
𝐿, Pred(𝐿) = 𝑃 is the name of the predicate underlying 𝐿, and Para(𝐿) = ⟨𝑎1, . . . , 𝑎𝑘⟩. Consider
𝜑 ∈ FOL, 𝜑 is in conjunctive normal form (CNF) if it is a conjunction of clauses

⋀︀
𝑖 𝛿𝑖 where each clause 𝛿𝑖

is a disjunction of literals
⋁︀

𝑗 𝑙𝑗 . For instance 𝑃 (𝑎)∧(𝑄(𝑎)∨𝑄(𝑏)) is in CNF while (𝑃 (𝑎)∧𝑄(𝑎))∨𝑄(𝑏)
is not. Clauses can be represented as sets of literals, and CNF formulae as sets of clauses.
FOL formulae are evaluated via a notion of structure, i.e. a triplet St = (𝐷,𝑅𝑒𝑙, 𝐶𝑜𝑛𝑠) where 𝐷 is

the (non-empty) domain,𝑅𝑒𝑙 = {𝑅1, . . . , 𝑅𝑚} are relations over the domain, and𝐶𝑜𝑛𝑠 = {𝑐1, . . . , 𝑐𝑙}
are constants in the domain.

Definition 2. An interpretation ISt over a structure St assigns to elements of the FOL vocabulary
some values in the structure St. Formally,
∙ ISt(𝑃𝑗) = 𝑅𝑗 , for 𝑗 ∈ {1, . . . ,𝑚} (each predicate symbol is assigned to a relation),
∙ ISt(𝑎𝑗) = 𝑐𝑗 , for 𝑗 ∈ {1, . . . , 𝑙} (each constant symbol is assigned to a constant value).

Then satisfaction of formulae is recursively defined by:
∙ ISt |= 𝑃𝑗(𝑥1, . . . , 𝑥𝑘) iff (𝑥1, . . . , 𝑥𝑘) ∈ 𝑅𝑗 ,
∙ ISt |= ∃𝑥𝜑 iff ISt,𝑥←𝑣 |= 𝜑 for some 𝑣 ∈ 𝐷,
∙ ISt |= ∀𝑥𝜑 iff ISt,𝑥←𝑣 |= 𝜑 for each 𝑣 ∈ 𝐷,
∙ conjunctions, disjunctions and negations are interpreted as usually in classical logic,
where ISt,𝑥←𝑣 is a modified version of ISt s.t. the variable 𝑥 is replaced by a value 𝑣 in the domain 𝐷.
Finally, if Φ is a set of formulae, then ISt |= Φ iff ISt |= 𝜑 for each 𝜑 ∈ Φ.

We say that Φ is consistent if there is at least one interpretation ISt s.t. ISt |= Φ.
We now define instantiations as grounded formulae compatible with a given FOL formula.

Definition 3. Given Φ a set of FOL formulae and ISt an interpretation over a structure St, the set of
instantiations of Φ is defined recursively by:
∙ InstISt

(Φ) = {Φ} if Φ = {𝜑}, where 𝜑 is a grounded formula s.t. ISt |= 𝜑,
∙ InstISt

(Φ) = {InstISt
({𝜑𝑥←𝑣 | ISt |= 𝜑𝑥←𝑣, 𝑣 ∈ 𝐷})} if Φ = {∀𝑥𝜑},

∙ InstISt
(Φ) = {InstISt

({𝜑𝑥←𝑣 | ISt |= 𝜑𝑥←𝑣, 𝑣 ∈ 𝑉 }) | ∅ ⊂ 𝑉 ⊆ 𝐷} if Φ = {∃𝑥𝜑},
∙ InstISt

(Φ) = {𝐼1 ∪ 𝐼2 | 𝐼1 ∈ InstISt
({𝜑1}), 𝐼2 ∈ InstISt

(Φ2), ISt |= 𝐼1 ∪ 𝐼2} if Φ = {𝜑1} ∪ Φ2

with 𝜑1 ̸∈ Φ2,
where 𝜑𝑥←𝑣 is the formula 𝜑 s.t. all the occurrences of the variable 𝑥 are replaced by the value 𝑣.

The idea is that formulae with quantified variables may be instanciated in various ways. Assuming
that for a predicate𝑃 and an interpretation ISt, we have ISt |= {𝑃 (𝑎), 𝑃 (𝑏)}; then InstISt

(∃𝑥𝑃 (𝑥)) =
{{𝑃 (𝑎)}, {𝑃 (𝑏)}, {𝑃 (𝑎), 𝑃 (𝑏)}} and InstISt

(∀𝑥𝑃 (𝑥)) = {{𝑃 (𝑎), 𝑃 (𝑏)}}.
Moreover, an instantiation is consistent because of the constraint ISt |= 𝐼1 ∪ 𝐼2 in the last part of

the definition. This constraint means that, if e.g., we consider the set of formulae {∃𝑥𝑃 (𝑥), ∃𝑥¬𝑃 (𝑥)},
then we keep only the instantiations where 𝑃 (𝐴) is true and 𝑃 (𝐵) is false, or the opposite.

Example 1. Let Φ = {∃𝑥𝐹 (𝑥) ∧ 𝐷(𝑥), ∀𝑥𝐹 (𝑥) ∧ 𝐷(𝑥) → 𝐿(𝑥)} be a set of formulae with the
interpretation ISt |= {𝐹 (𝑡) ∧𝐷(𝑡), 𝐹 (𝑢) ∧𝐷(𝑢)}. We have InstISt

(Φ) = {
{𝐹 (𝑡) ∧𝐷(𝑡), 𝐹 (𝑡) ∧𝐷(𝑡) → 𝐿(𝑡), 𝐹 (𝑢) ∧𝐷(𝑢) → 𝐿(𝑢)},
{𝐹 (𝑢) ∧𝐷(𝑢), 𝐹 (𝑡) ∧𝐷(𝑡) → 𝐿(𝑡), 𝐹 (𝑢) ∧𝐷(𝑢) → 𝐿(𝑢)},
{𝐹 (𝑡) ∧𝐷(𝑡), 𝐹 (𝑢) ∧𝐷(𝑢), 𝐹 (𝑡) ∧𝐷(𝑡) → 𝐿(𝑡), 𝐹 (𝑢) ∧𝐷(𝑢) → 𝐿(𝑢)}}.

From structure and interpretation, we define the consequence relation over FOL formulae.

Definition 4. Let 𝜑 and 𝜓 be two FOL formulae. We say that 𝜓 is a consequence of 𝜑, denoted by
𝜑 ⊢ 𝜓, if for any structure St, and any interpretation ISt over St, ISt |= 𝜑 implies ISt |= 𝜓. Two
formulae 𝜑, 𝜓 are equivalent (denoted 𝜑 ≡ 𝜓) iff 𝜑 ⊢ 𝜓 and 𝜓 ⊢ 𝜑.

A logic is a pair (𝐿, |∼) where 𝐿 is a set of formulae (i.e. a language) and |∼ ⊆ 𝐿×𝐿 is a consequence
relation. An example of logic is (ℒ,⊢) with ℒ an FOL language following Def. 1 and ⊢ the consequence
relation from Def. 4. Logical arguments [14] are defined as follows:

Definition 5. An argument built under a logic (𝐿, |∼) is a pair ⟨Φ, 𝜑⟩, where1 Φ ⊆𝑓 𝐿 and 𝜑 ∈ 𝐿, s.t.
Φ is consistent, Φ|∼𝜑, and ∄Φ′ ⊂ Φ s.t. Φ′|∼𝜑. An argument 𝐴 = ⟨Φ, 𝜑⟩ is trivial iff Φ = ∅ and 𝜑 ≡ ⊤.
Φ is called the support (S(𝐴) = Φ) and 𝜑 its claim (C(𝐴) = 𝜑). The set of all arguments built under
(𝐿, |∼) is denoted Arg(𝐿).

Example 2. Let 𝐴,𝐵 ∈ Arg(ℒ) such that: 𝐴 = ⟨{∃𝑦 𝐹 (𝑦) ∧ 𝐷(𝑦), ∀𝑥𝐹 (𝑥) ∧ 𝐷(𝑥) →
𝐿(𝑥)}, ∃𝑦 𝐹 (𝑦) ∧ 𝐿(𝑦)⟩, 𝐵 = ⟨{𝐹 (𝑡), 𝐷(𝑡), ∀𝑥𝐹 (𝑥) ∧𝐷(𝑥) → 𝐿(𝑥)}, 𝐹 (𝑡) ∧ 𝐿(𝑡)⟩.

In this paper, we assume an FOL language ℒ and focus on the arguments Arg(ℒ) built under the
logic (ℒ,⊢). Since logical arguments are mathematical objects satisfying some specific properties,
instantiating them must be done with care, so we need to adapt the notion of instantiation of a set of
formulae to take into account the particularities of arguments (for instance, the relation between the
support and the claim or the minimality requirement).

Definition 6. Let 𝐴 = ⟨Φ, 𝜑⟩ be a logical argument and ISt an interpretation over a structure St, the
set of instantiated arguments of 𝐴 is defined by:

InstISt
(𝐴) = {𝐴i = ⟨Γ,

⋀︁
Ψ⟩ | Γ ⊆ Δ ∈ InstISt

(Φ),Ψ ∈ InstISt
({𝜑}), 𝐴i ∈ Arg(ℒ)}

We add the power “i” to an argument to indicate that we are considering its instantiated version.

Example 3. From Example 1 the instantiations of the support of 𝐴 are: InstISt
(S(𝐴)) = {

{𝐹 (𝑡) ∧𝐷(𝑡), 𝐹 (𝑡) ∧𝐷(𝑡) → 𝐿(𝑡), 𝐹 (𝑢) ∧𝐷(𝑢) → 𝐿(𝑢)},
{𝐹 (𝑢) ∧𝐷(𝑢), 𝐹 (𝑡) ∧𝐷(𝑡) → 𝐿(𝑡), 𝐹 (𝑢) ∧𝐷(𝑢) → 𝐿(𝑢)},
{𝐹 (𝑡) ∧𝐷(𝑡), 𝐹 (𝑢) ∧𝐷(𝑢), 𝐹 (𝑡) ∧𝐷(𝑡) → 𝐿(𝑡), 𝐹 (𝑢) ∧𝐷(𝑢) → 𝐿(𝑢)}}.
Then for the claim: InstISt

(C(𝐴)) = {{𝐹 (𝑡) ∧ 𝐿(𝑡)}, {𝐹 (𝑢) ∧ 𝐿(𝑢)}, {𝐹 (𝑡) ∧ 𝐿(𝑡), 𝐹 (𝑢) ∧ 𝐿(𝑢)}}.
Hence InstISt

(𝐴) = {𝐴i
1 = ⟨{𝐹 (𝑡) ∧𝐷(𝑡), 𝐹 (𝑡) ∧𝐷(𝑡) → 𝐿(𝑡)}, 𝐹 (𝑡) ∧ 𝐿(𝑡)⟩,

𝐴i
2 = ⟨{𝐹 (𝑢) ∧𝐷(𝑢), 𝐹 (𝑢) ∧𝐷(𝑢) → 𝐿(𝑢)}, 𝐹 (𝑢) ∧ 𝐿(𝑢)⟩, 𝐴i

3 =
⟨{𝐹 (𝑡)∧𝐷(𝑡), 𝐹 (𝑡)∧𝐷(𝑡) → 𝐿(𝑡), 𝐹 (𝑢)∧𝐷(𝑢), 𝐹 (𝑢)∧𝐷(𝑢) → 𝐿(𝑢)}, 𝐹 (𝑡)∧𝐿(𝑡)∧𝐹 (𝑢)∧𝐿(𝑢)⟩}.
Similarly, InstISt

(𝐵) = {𝐵i
1 = ⟨{𝐹 (𝑡), 𝐷(𝑡), 𝐹 (𝑡) ∧𝐷(𝑡) → 𝐿(𝑡)}, 𝐹 (𝑡) ∧ 𝐿(𝑡)⟩}.

Two sets of formulae Φ,Ψ ⊆𝑓 ℒ are equivalent, i.e., Φ ∼= Ψ, iff there is a bijection 𝑓 : Φ → Ψ s.t.
∀𝜑 ∈ Φ, 𝜑 ≡ 𝑓(𝜑). We use this restricted equivalence notion to avoid equivalences that could be false
due to incorrect information. For example the sets {𝑆𝑞𝑢𝑎𝑟𝑒(𝑎), 𝑆𝑞𝑢𝑎𝑟𝑒(𝑎) → 𝑅𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒(𝑎)} and
{𝑅𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒(𝑎), 𝑅𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒(𝑎) → 𝑆𝑞𝑢𝑎𝑟𝑒(𝑎)} should not be equivalent. However, we may want to
consider that a set of formulae is equivalent with the conjunction of its elements (e.g. {𝑃 (𝑎), 𝑄(𝑎)}
and {𝑃 (𝑎) ∧𝑄(𝑎)} are equivalent). To make them equivalent, we borrow the method used in [15]. We
transform every formula into a CNF, then we split it into a set containing its clauses. In our approach,
we consider one CNF per formula. For that purpose, we use a finite sub-language ℱ of ℒ containing
one formula per equivalent class and the formula should be in CNF. To ensure that ℱ is finite, we
assume that the logical signature is also finite, meaning that the number of predicate symbols, constants,
and function symbols is bounded. This assumption is not too restrictive in practice. In real-world
applications, such as natural language processing (where textual input could be translated into FOL
representations), the vocabulary used to express knowledge is typically finite.
1𝑋 ⊆𝑓 𝑌 means 𝑋 is a finite subset of 𝑌

Definition 7. Let ℱ ⊂𝑓 ℒ s.t. ∀𝜑 ∈ ℒ, there is a unique 𝜓 ∈ ℱ s.t. 𝜑 ≡ 𝜓, Lit(𝜑) = Lit(𝜓) and 𝜓 is
a CNF formula. The transformation of formulae into the finite CNF language is written CNF(𝜑) = 𝜓.

Concrete formulae in the examples are assumed to belong to ℱ .
Let ⊔(Φ) represent the compilation of Φ as a set of clauses. Intuitively, each formula can be viewed

as a set of clauses with an associated sequence of quantifiers. A set of formulae is thus a set of clauses and
a sequence of quantifiers, with variables renamed to prevent ambiguities. As an example, assume 𝜑1 =
∃𝑥𝑃 (𝑥)∧𝑄(𝑥) and 𝜑2 = ∃𝑥𝑄(𝑥)∨𝑅(𝑥). We have ⊔({𝜑1, 𝜑2}) = ∃𝑥, 𝑥′{𝑃 (𝑥), 𝑄(𝑥), 𝑄(𝑥′)∨𝑅(𝑥′)}.
Formally, for Φ = {𝒬𝜑𝑗

𝜑𝑗 | 𝑗 ∈ N} ⊆𝑓 ℱ , where 𝜑𝑗 is a non-quantified CNF formula (i.e., a set of
clauses CNF(𝜓) for some 𝜓 ∈ ℱ), and 𝒬𝜑𝑗

is the sequence of quantifiers associated with 𝜑𝑗 , we define
⊔(Φ) = (𝒬*𝜑1

. . .𝒬*𝜑𝑛
,
⋃︀
𝜑∈Φ

⋃︀
𝛿∈𝜑

𝛿*), where a renaming is applied to each clause (𝛿*) and each sequence

of quantifiers (𝒬*𝜑𝑗
) in order to guarantee that no variable is shared between quantifiers 𝒬*𝜑𝑗

and 𝒬*𝜑𝑘

(with 𝑗 ̸= 𝑘) or between clauses coming from different formulae 𝜑𝑗 and 𝜑𝑘 (with 𝑗 ̸= 𝑘). We write ⊔(𝜑)
instead of ⊔({𝜑}), for 𝜑 ∈ ℱ .

Throughout the paper, we consider ⊔(Φ) as a set with a single formula, where the sequence of quanti-
fiers is the concatenation of 𝒬*𝜑1

. . .𝒬*𝜑𝑛
and the non-quantified part is the CNF formula corresponding

to the set of clauses
⋃︀
𝜑∈Φ

⋃︀
𝛿∈𝜑

𝛿*.

For instance, ⊔({∀𝑥∃𝑦 𝑃 (𝑥, 𝑦),∀𝑥 𝑄1(𝑥) ∨ 𝑄2(𝑥)}) = ⊔({∀𝑥1∃𝑥2 𝑃 (𝑥1, 𝑥2) ∧ ∀𝑥3 𝑄1(𝑥3) ∨
𝑄2(𝑥3)}) = {∀𝑥1∃𝑥2∀𝑥3 {𝑃 (𝑥1, 𝑥2), 𝑄1(𝑥3) ∨𝑄2(𝑥3)}} .

Let us now introduce the notion of compiled argument.

Definition 8. The compiled argument of 𝐴 ∈ Arg(ℒ) is 𝐴c = ⟨⊔(S(𝐴)), C(𝐴)⟩. The power “c”
denotes the compiled version of an argument. The set of compiled instantiated arguments of 𝐴 is
CI(𝐴) = {𝐴ci = ⟨⊔(S(𝐴i)), C(𝐴i)⟩ : 𝐴i ∈ InstISt

(𝐴)}, where their compiled instantiated supports
(resp. claims) are 𝐼S(𝐴) = {S(𝐴ci) : 𝐴ci ∈ CI(𝐴)} (resp. 𝐼C(𝐴) = {⊔(C(𝐴ci)) : 𝐴ci ∈ CI(𝐴)}).

Example 4. From Example 3, the compilation of𝐴i
3 and𝐵i

1 are: 𝐴ci
3 = ⟨{𝐹 (𝑡), 𝐷(𝑡),¬𝐹 (𝑡)∨¬𝐷(𝑡)∨

𝐿(𝑡), 𝐹 (𝑢), 𝐷(𝑢),¬𝐹 (𝑢) ∨ ¬𝐷(𝑢) ∨ 𝐿(𝑢)}, 𝐹 (𝑡) ∧ 𝐿(𝑡) ∧ 𝐹 (𝑢) ∧ 𝐿(𝑢)⟩;
𝐵ci

1 = ⟨{𝐹 (𝑡), 𝐷(𝑡),¬𝐹 (𝑡)∨¬𝐷(𝑡)∨𝐿(𝑡)}, 𝐹 (𝑡)∧𝐿(𝑡)⟩. Moreover, consider 𝐶 ∈ Arg(ℒ) such that
𝐶 = ⟨{𝑃 (𝑎)∧𝑄(𝑎)∧𝑄(𝑏)}, 𝑃 (𝑎)∧𝑄(𝑎)⟩, its compilation is: 𝐶c = ⟨{𝑃 (𝑎), 𝑄(𝑎), 𝑄(𝑏)}, 𝑃 (𝑎)∧𝑄(𝑎)⟩.

The compilation allows us to capture the similarity between 𝐹 (𝑡) ∧𝐷(𝑡) and 𝐹 (𝑡), 𝐷(𝑡). Moreover,
we can see that the compilation 𝐶c is not concise, as it includes irrelevant information (𝑄(𝑏)) for its
claim. As shown in [15], clausal arguments ensure conciseness.

Definition 9. Two arguments 𝐴,𝐵 ∈ Arg(ℒ) are equivalent, denoted by 𝐴 ≈ 𝐵, iff there is a
bijection 𝑓 : 𝐼S(𝐴) → 𝐼S(𝐵) s.t. ∀Φ ∈ 𝐼S(𝐴), Φ ∼= 𝑓(Φ), and 𝑓 ′ : 𝐼C(𝐴) → 𝐼C(𝐵) s.t. ∀Ψ ∈ 𝐼C(𝐴),
Ψ ∼= 𝑓 ′(Ψ). Otherwise, 𝐴 ̸≈ 𝐵 (not equivalent).

Definition 10. Let 𝐴,𝐵 ∈ Arg(ℒ), 𝐴 is a sub-argument of 𝐵, denoted 𝐴 ⊑ 𝐵, if there is a bijection
𝑓 : 𝐼S(𝐴) → 𝐼S(𝐵) s.t. ∀Φ ∈ 𝐼S(𝐴), Φ ⊆ 𝑓(Φ).

3. Principles for Similarity Measures on FOL Arguments

A similarity measure indicates whether two objects (e.g., predicates, or arguments) share some features.

Definition 11. For X a set of objects, a similarity measure on X is a function simX : X×X → [0, 1].

In this section, we focus on similarity measures over arguments, i.e., X = Arg(ℒ), assuming the
existence of simP (resp. simC), a similarity measures on predicates (resp. on constants). Intuitively,
simArg(𝐴,𝐵) is close to 0 if the difference between 𝐴 and 𝐵 is significant, and close to 1 if they are

similar. Several principles that similarity measures should satisfy have been discussed in the literature
[9, 16]. Some of the principles (Maximality, Symmetry, Substitution, and Syntax Independence) can
be stated exactly as in [15], since they do not concern the internal structure of the arguments. Notice
that some authors have argued against the fact that a similarity measures should absolutely satisfy
symmetry [17, 18]. The others must be adapted to our FOL-based arguments.

Principle 1 states that arguments sharing no content should have a similarity of 0. While in proposi-
tional logic, identifying common atoms is enough, here we must consider predicates and constants. In
the context of quantified predicates, we instantiate the variables to analyse the constants. The next
three principles consider only compiled instantiated arguments with no irrelevant information (first
condition), ensuring safe handling of their similarity. In Principle 1, the second condition excludes the
case where both arguments have an empty support and so no intersection to compare. The third (resp.
fourth) condition ensures that the arguments have no similarity between the predicates and constants
appearing in their support (resp. claim).

Principle 1. Let ISt an interpretation over a structure St, a similarity measure simArg satisfies
Minimality iff ∀𝐴,𝐵 ∈ Arg(ℒ), if ∀𝐴ci ∈ CI(𝐴), ∀𝐵ci ∈ CI(𝐵):

1. 𝐴ci, 𝐵ci ∈ Arg(ℒ),
2. 𝐴 and 𝐵 are not trivial,
3. ∀𝜑 ∈ S(𝐴ci), ∀𝑙𝐴 ∈ Lit(𝜑), ∀𝜓 ∈ S(𝐵ci), ∀𝑙𝐵 ∈ Lit(𝜓), simP(𝑙𝐴, 𝑙𝐵) = 0, ∀𝑐𝐴 ∈ Para(𝜑),

∀𝑐𝐵 ∈ Para(𝜓),
simC(𝑐𝐴, 𝑐𝐵) = 0,

4. ∀𝜑 ∈ ⊔(C(𝐴ci)), ∀𝑙𝐴 ∈ Lit(𝜑), ∀𝜓 ∈ ⊔(C(𝐵ci)),
∀𝑙𝐵 ∈ Lit(𝜓), simP(𝑙𝐴, 𝑙𝐵) = 0, ∀𝑐𝐴 ∈ Para(𝜑),
∀𝑐𝐵 ∈ Para(𝜓), simC(𝑐𝐴, 𝑐𝐵) = 0,

then simArg(𝐴,𝐵) = 0.

The second (resp. third) principle states that the more an argument shares formulae in its support
(resp. claim) with an another one, the higher is their similarity.

The compound nature of arguments (support and claim) prevents guarantees when both are consid-
ered. Thus, the second condition neutralizes one part to focus on the other. For Principle 2 focusing
on supports we ensure that we have identical or completely different claims. As for Principle 3, we
ensure that the support are the same, otherwise with completely different support we will have also
completely different claim. The third condition guarantees that supports (resp. claims) of𝐴 and𝐵 share
more elements than those of 𝐴 and 𝐶 . The fourth condition indicates that the more distinct elements
you have, the less similar you are. The fifth condition ensures the reliability of conditions 3 and 4 by
guaranteeing that distinct elements of 𝐴 have no similarity with 𝐵 and 𝐶 .

Principle 2. Let ISt an interpretation over a structure St, a similarity measure simArg satisfies
Monotony iff ∀𝐴,𝐵,𝐶 ∈ Arg(ℒ), if ∀𝐴ci ∈ CI(𝐴), ∀𝐵ci ∈ CI(𝐵), ∀𝐶ci ∈ CI(𝐶):

1. 𝐴ci, 𝐵ci, 𝐶ci ∈ Arg(ℒ),
2. ⊔(C(𝐴ci)) = ⊔(C(𝐵ci)) or

∀𝜑 ∈ ⊔(C(𝐴ci)), ∀𝑙𝐴 ∈ Lit(𝜑), ∀𝜓 ∈ ⊔(C(𝐶ci)),
∀𝑙𝐶 ∈ Lit(𝜓), simP(𝑙𝐴, 𝑙𝐶) = 0, ∀𝑐𝐴 ∈ Para(𝜑),
∀𝑐𝐶 ∈ Para(𝜓), simC(𝑐𝐴, 𝑐𝐶) = 0,

3. S(𝐴ci) ∩ S(𝐶ci) ⊆ S(𝐴ci) ∩ S(𝐵ci),
4. S(𝐵ci) ∖ S(𝐴ci) ⊆ S(𝐶ci) ∖ S(𝐴ci), and
5. for 𝐴 = S(𝐴ci) ∖ S(𝐵ci), ∀𝜑 ∈ 𝐴, ∀𝑙𝐴 ∈ Lit(𝜑), ∀𝜓 ∈ S(𝐵ci) ∪ S(𝐶ci), ∀𝑙𝐵𝐶 ∈ Lit(𝜓),

simP(𝑙𝐴, 𝑙𝐵𝐶) = 0, ∀𝑐𝐴 ∈ Para(𝜑), ∀𝑐𝐵𝐶 ∈ Para(𝜓), simC(𝑐𝐴, 𝑐𝐵𝐶) = 0,

then simArg(𝐴,𝐵) ≥ simArg(𝐴,𝐶).
∙ (Strict Monotony) If the inclusion in condition 3. is strict or, S(𝐴ci)∩ S(𝐶ci) ̸= ∅ and the inclusion
in condition 4. is strict, then simArg(𝐴,𝐵) > simArg(𝐴,𝐶).

Principle 3. Let ISt an interpretation over a structure St, a similarity measure simArg satisfies
Dominance iff ∀𝐴,𝐵,𝐶 ∈ Arg(ℒ), if ∀𝐴ci ∈ CI(𝐴), ∀𝐵ci ∈ CI(𝐵), ∀𝐶ci ∈ CI(𝐶):

1. 𝐴ci, 𝐵ci, 𝐶ci ∈ Arg(ℒ),
2. S(𝐵ci) = S(𝐶ci),
3. ⊔(C(𝐴ci)) ∩ ⊔(C(𝐶ci)) ⊆ ⊔(C(𝐴ci)) ∩ ⊔(C(𝐵ci)),
4. ⊔(C(𝐵ci)) ∖ ⊔(C(𝐴ci)) ⊆ ⊔(C(𝐶ci)) ∖ ⊔(C(𝐴ci)), and
5. for𝐴 = ⊔(C(𝐴ci))∖⊔(C(𝐵ci)), ∀𝜑 ∈ 𝐴, ∀𝑙𝐴 ∈ Lit(𝜑), ∀𝜓 ∈ ⊔(C(𝐵ci)) ∪ ⊔(C(𝐶ci)), ∀𝑙𝐵𝐶 ∈ Lit(𝜓),

simP(𝑙𝐴, 𝑙𝐵𝐶) = 0, ∀𝑐𝐴 ∈ Para(𝜑), ∀𝑐𝐵𝐶 ∈ Para(𝜓),
simC(𝑐𝐴, 𝑐𝐵𝐶) = 0,

then simArg(𝐴,𝐵) ≥ simArg(𝐴,𝐶).
∙ (Strict Dominance) If the inclusion in condition 3. is strict or, ⊔(C(𝐴i)) ∩ ⊔(C(𝐶i)) ̸= ∅ and the
inclusion in condition 4. is strict, then simArg(𝐴,𝐵) > simArg(𝐴,𝐶).

4. Similarity Models

Defining similarity between arguments involves analyzing multiple levels of their CNF structure. At
each level, we provide an abstract definition of similarity measure using the previous level, followed by
a possible instantiation.
Level 1: Compare pairs of literals (Section 4.1).
Level 2: Aggregate the similarity of pairs of literals to compare grounded clauses (Section 4.2).
Level 3: Combine the similarity of pairs of grounded clauses to compare instantiated supports or claims
(Section 4.3).
Level 4: Compute the similarity between sets of instantiations, for each instantiated argument (Sec-
tion 4.4).
The overall similarity between two arguments is obtained by combining the similarities of their supports
and claims obtained from Level 4.

4.1. Similarity between literals

Definition 12. A similarity measure between two literals is a function simL : L× L → [0, 1].

We now instantiate this abstract definition by computing similarity between literals via atom com-
parison (ignoring polarity), then adjusting scores based on polarity. In this instance, atom similarity
depends on two factors: constant vectors and predicate values, with the functions “c” applying simC
on each pair of constants and “p” which is a direct application of simP on the pair of predicates. Both
are then combined using an aggregation function “g”.

Definition 13. Let c :
⋃︀+∞

𝑗,𝑘=1C𝑗 × C𝑘 → [0, 1] be a similarity measure between a pair of vectors of
constants, p : P×P → [0, 1] be a similarity measure between a pair of predicates and g : [0, 1]×[0, 1] →
[0, 1] be an aggregation function. Given two atoms 𝛼1 = 𝑃1(𝑎1, . . . , 𝑎𝑗) and 𝛼2 = 𝑃2(𝑏1, . . . , 𝑏𝑘), to
compute the similarity score between atoms 𝛼1 and 𝛼2 we define simA⟨g,p,c⟩ : A× A → [0, 1] s.t.
simA⟨g,p,c⟩(𝛼1, 𝛼2) = g

(︁
p(Pred(𝛼1), Pred(𝛼2)), c

(︀
Para(𝛼1), Para(𝛼2)

)︀)︁
.

A possible p is the function returning 1 if the predicates are the same, 0 otherwise. Let 𝑥, 𝑦 be two
arbitrary objects. The equality function eq : X× X → {0, 1} is defined by eq(𝑥, 𝑦) = 1 if 𝑥 = 𝑦; or
eq(𝑥, 𝑦) = 0 otherwise. We propose an instance of c suited to vectors of constants.

Definition 14. Let 𝑋 = ⟨𝑥1, . . . , 𝑥𝑗⟩, 𝑌 = ⟨𝑦1, . . . , 𝑦𝑘⟩ be vectors of constants, and simC a similarity
measure between constants. The pointwise similarity between 𝑋 and 𝑌 is:

pwssimC(𝑋,𝑌) =

{︃
1 𝑋 = 𝑌 = ⟨⟩∑︀min(𝑗,𝑘)

𝑖=1 simC(𝑥𝑖,𝑦𝑖)
max(𝑗,𝑘) otherwise

In this paper, we only use pwseq, which we simplify as pws.
We use polarities as binary criteria to determine whether two atoms can be considered similar.

Definition 15. Consider two literals 𝑙1, 𝑙2 ∈ L, such that the respective atoms are 𝛼1 and 𝛼2. We
define simL⟨g,p,c⟩ : L × L → [0, 1], the similarity measure between two literals according to a
similarity measure between atoms simA⟨g,p,c⟩ such that: simL⟨g,p,c⟩(𝑙1, 𝑙2) ={︂

simA⟨g,p,c⟩(𝛼1, 𝛼2) if Pol(𝑙1) = Pol(𝑙2)
0 otherwise

Let avg the average function, we denote simL⟨avg,eq,pws⟩ (resp. simA⟨avg,eq,pws⟩) by sL (resp. sA).

Example 5. sL(𝑃 (𝑎),¬𝑃 (𝑎)) = 0 as they have opposite polarities, while sL(𝑃 (𝑎, 𝑏), 𝑃 (𝑎, 𝑐)) = 3
4 :

sA(𝑃 (𝑎, 𝑏), 𝑃 (𝑎, 𝑐)) = avg(eq(𝑃, 𝑃), pws(⟨𝑎, 𝑏⟩, ⟨𝑎, 𝑐⟩)) = avg(1, eq(𝑎,𝑎)+eq(𝑏,𝑐)
2) = avg(1, 12) =

3
4 .

We could use more sophisticated measures between literals, e.g. assigning a similarity score of 1
to semantically opposite predicates with opposite polarity, e.g., ¬𝑒𝑣𝑒𝑛(𝑘) and 𝑜𝑑𝑑(𝑘). For this, simC
and simP should consider semantics rather than just syntax. Concretely, the function eq (in this work
simP = simC = eq), could be replaced by a semantic similarity, e.g., using NLP techniques, such as
cosine similarity between word embeddings (like Word2Vec [19], GloVe [20], or BERT-based models
[21]).

4.2. Similarity between grounded clauses

From levels 2 to 4, we use membership functions to assess an object’s similarity to a set.

Definition 16. Given X a set of objects, 𝑥 ∈ X an object, 𝑋 ⊆ X, ⊕ an aggregation function and
simX a similarity measure on X, the membership function of 𝑥 in 𝑋 , 𝜀⊕simX : X × 2X → [0, 1] is
defined by: 𝜀⊕simX(𝑥,𝑋) = ⊕𝑥′∈𝑋(simX(𝑥, 𝑥′)).

The classical set-membership can be captured by 𝜀maxeq . Now we can evaluate how much a literal is
similar to a clause, i.e. a set of literals. We define the function sL = simL⟨g,p,c⟩.

Definition 17. Let 𝑙 ∈ L be a literal, 𝐿 ⊆ L be a set of literals. We define the membership of a
literal in a set of literals by the function 𝜀avgsL : L× 2L → [0, 1] such that:

𝜀
avg
sL (𝑙, 𝐿) = avg𝑙′∈𝐿(simL

⟨g,p,c⟩(𝑙, 𝑙′)).

To compare a literal with a set of literals in a clause, we choose to use average aggregation instead of
max, as unlike conjunction, disjunction does not guarantee that the max similarity is meaningful. Then,
the similarity between two grounded clauses is computed by simG𝜀

avg
sL .

Definition 18. A similarity measure between two grounded clauses is a function simG𝜀
avg
sL :

2L × 2L → [0, 1].

In Def. 18, we define the similarity between two grounded clauses using a similarity measure (as in
Def. 11), based on the membership function 𝜀avgsL to compare literals with sets of literals (i.e., grounded
clauses). Def. 18 outlines the general concept of grounded clause similarity. In this paper, we use
Tversky’s ratio model [17] as a concrete approach, though other methods meeting the requirements of
Def. 18 and 11 could also be used. Tversky’s ratio model [17] is a general family of similarity measures
that includes well-known measures like [22], [23], [24], [25], and [26]. We extend it by using our
parametrizable membership function 𝜀 (see Def. 16) instead of standard set membership operators.

Symmetric Measures Non-Symmetric Measures
Tve1,1,𝜀

⊕
simX(𝑋, 𝑌) = jac𝜀

⊕
simX(𝑋, 𝑌) Tve1,0,𝜀

⊕
simX(𝑋, 𝑌) = ns-jac𝜀⊕simX(𝑋, 𝑌)

Tve0.5,0.5,𝜀
⊕
simX(𝑋, 𝑌) = dic𝜀

⊕
simX(𝑋, 𝑌) Tve0.5,0,𝜀

⊕
simX(𝑋, 𝑌) = ns-dic𝜀⊕simX(𝑋, 𝑌)

Tve0.25,0.25,𝜀
⊕
simX(𝑋, 𝑌) = sor𝜀

⊕
simX(𝑋, 𝑌) Tve0.25,0,𝜀

⊕
simX(𝑋, 𝑌) = ns-sor𝜀⊕simX(𝑋, 𝑌)

Tve0.125,0.125,𝜀
⊕
simX(𝑋, 𝑌) = adb𝜀

⊕
simX(𝑋, 𝑌) Tve0.125,0,𝜀

⊕
simX(𝑋, 𝑌) = ns-adb𝜀⊕simX(𝑋, 𝑌)

Tve2,2,𝜀
⊕
simX(𝑋, 𝑌) = ss𝜀

⊕
simX(𝑋, 𝑌) Tve2,0,𝜀

⊕
simX(𝑋, 𝑌) = ns-ss𝜀⊕simX(𝑋, 𝑌)

Table 1
Parametric (non-)symmetric similarity measures.

Definition 19. Let 𝑋,𝑌 ⊆ X be arbitrary sets of objects, 𝜀⊕simX be a membership function with ⊕ an
aggregation function and simX a similarity measure on X. Let 𝑎 be the average of the total similarity
between the elements of 𝑋 with respect to 𝑌 , and the elements of 𝑌 with respect to 𝑋 ; and 𝑏 (resp. 𝑐)
be the total dissimilarities of the elements of 𝑋 (resp. 𝑌) with respect to 𝑌 (resp. 𝑋), defined as follows:

• 𝑎 = avg
(︁∑︀

𝑥∈𝑋 𝜀⊕simX(𝑥, 𝑌),
∑︀

𝑦∈𝑌 𝜀
⊕
simX(𝑦,𝑋)

)︁
,

• 𝑏 =
∑︀

𝑥∈𝑋(1− 𝜀⊕simX(𝑥, 𝑌)),
• 𝑐 =

∑︀
𝑦∈𝑌 (1− 𝜀⊕simX(𝑦,𝑋)).

Let two coefficients 𝛼, 𝛽 ∈ [0,+∞), the extended Tversky measure between 𝑋 and 𝑌 is:

Tve𝛼,𝛽,𝜀
⊕
simX(𝑋,𝑌) =

{︂
1 if 𝑋 = 𝑌

𝑎
𝑎+(𝛼×𝑏)+(𝛽×𝑐) otherwise

Classical similarity measures (see Table 1 in [9] for definitions) can be derived with 𝛼 = 𝛽 = 2−𝑛,
using classical set-membership. Specifically, the Jaccard measure (jac) corresponds to 𝑛 = 0, Dice
(dic) to 𝑛 = 1, Sorensen (sor) to 𝑛 = 2, Anderberg (adb) to 𝑛 = 3, and Sneath and Sokal (ss) to
𝑛 = −1. Moreover, when 𝛼 = 𝛽 the Tversky measure is symmetric.

Proposition 1. For any sets of objects 𝑋,𝑌 ⊆ X, any 𝛼 ∈ [0,+∞), and any membership function
𝜀⊕simX, we have Tve𝛼,𝛼,𝜀

⊕
simX(𝑋,𝑌) = Tve𝛼,𝛼,𝜀

⊕
simX(𝑌,𝑋).

Table 1 presents the parametric (non-)symmetric extensions of well-known similarity measures,
including Jaccard, Dice, Sorensen, Anderberg, and Sokal and Sneath.

These measures satisfy intuitive properties: in the symmetric case, sets are maximally similar if they
are identical; in the non-symmetric case, if one is included in the other.

Proposition 2. Let 𝛼 ∈ [0,+∞), 𝑋,𝑌 ⊆ X, and simX respects the maximality property: ∀𝑥 ∈
X, simX(𝑥, 𝑥) = 1.
∙ If 𝑌 = 𝑋 , then Tve𝛼,𝛼,𝜀

max
simX(𝑋,𝑌) = 1 (symmetric case).

∙ If 𝑋 ⊆ 𝑌 , then Tve𝛼,0,𝜀
max
simX(𝑋,𝑌) = 1 (non-symmetric).

Example 6. Let 𝑃1 = 𝑃 (𝑑, 𝑒), 𝑃2 = 𝑃 (𝑑, 𝑓), 𝑄 = 𝑄(𝑒, 𝑑).
Let sG = jac𝜀

avg
sL , then sG(Lit(𝑃1), Lit(𝑃2 ∨𝑄)) = 𝑎

𝑎+𝑏+𝑐 ≈ 0.23 where:
𝑎 = avg(𝜀

avg
sL (𝑃1, {𝑃2, 𝑄}), 𝜀avgsL (𝑃2, {𝑃1}) + 𝜀

avg
sL (𝑄, {𝑃1}))

= avg(avg(34 , 0),
3
4 + 0) = 0.5625;

𝑏 = 1− 𝜀
avg
sL (𝑃1, {𝑃2, 𝑄}) = 1− avg(34 , 0) = 0.625;

𝑐 = (1− 𝜀
avg
sL (𝑃2, {𝑃1})) + (1− 𝜀

avg
sL (𝑄, {𝑃1})) = 1.25.

4.3. Similarity between sets of grounded clauses

Let G be the set of all grounded clauses in FOL. We define the function sG = simG𝜀
avg
sL .

Definition 20. Let 𝛿 ∈ G and Δ ⊆ G. We define the membership of a grounded clause in a set of
grounded clauses by the function 𝜀maxsG : G× 2G → [0, 1] such that:

𝜀maxsG (𝛿,Δ) = max𝛿′∈Δ(sG(𝛿, 𝛿′)).

Definition 21. A similarity measure between two sets of grounded clauses, i.e., two instantiations,
is a function simI𝜀maxsG : 2G × 2G → [0, 1].

We revisit Example 6, but we consider a conjunction instead of the disjunction of 𝑃2 and 𝑄.

Example 7. Let sG = jac𝜀
avg
sL and sI = jac𝜀

max
sG , then sI({𝑃1}, {𝑃2, 𝑄}) = 𝑎

𝑎+𝑏+𝑐 = 1
3 where:

𝑎 = avg(𝜀maxsG (𝑃1, {𝑃2, 𝑄}), 𝜀maxsG (𝑃2, {𝑃1}) + 𝜀maxsG (𝑄, {𝑃1}))
= avg(max(34 , 0),

3
4 + 0) = 0.75;

𝑏 = 1− 𝜀maxsG (𝑃1, {𝑃2, 𝑄}) = 1− max(34 , 0) = 0.25;
𝑐 = (1− 𝜀maxsG (𝑃2, {𝑃1})) + (1− 𝜀maxsG (𝑄, {𝑃1})) = 1.25.

4.4. Similarity between instantiations

Let I be the set of all instantiations in FOL which are sets of sets of grounded clauses, i.e., I = 22
G , and

sI = simI𝜀maxsG .

Definition 22. Let Φ ∈ I and 𝐼 ⊆ I. We define the membership of an instantiation in a set of
instantiations by the function 𝜀maxsI : I× 2I → [0, 1] such that:

𝜀maxsI (Φ, 𝐼) = maxΦ′∈𝐼(sI(Φ,Φ′)).

Definition 23. A similarity measure between two sets of instantiations is a function sS =
simS𝜀maxsI : 2I × 2I → [0, 1].

We call a similarity model (SM) any tuple M = ⟨sL, sG, sI, sS⟩ defining the 4 levels of similarity.
Reexamine arguments 𝐴 and 𝐵, focusing on their compiled claim instantiations from Example 3.

Example 8. Let the set of compiled instantiations of claim of 𝐴 and 𝐵, 𝐼C(𝐴) = {Φ1 =
{𝐹 (𝑡), 𝐿(𝑡)},Φ2 = {𝐹 (𝑢), 𝐿(𝑢)},Φ3 = {𝐹 (𝑡), 𝐿(𝑡), 𝐹 (𝑢), 𝐿(𝑢)}} and 𝐼C(𝐵) = {Ψ = {𝐹 (𝑡), 𝐿(𝑡)}}.
Let the Jaccard similarity model Mjac = ⟨sL, sG, sI, sS = jac𝜀

max
sI ⟩.

sS(𝐼C(𝐴), 𝐼C(𝐵)) =
𝑎

𝑎+𝑏+𝑐 = 1.625
1.625+0.75+0 = 1.625

2.375 ≈ 0.684, where:
𝑎 = avg

(︀
sI(Φ1,Ψ) + sI(Φ2,Ψ) + sI(Φ3,Ψ), max(sI(Ψ,Φ1), sI(Ψ,Φ2), sI(Ψ,Φ3))

)︀
= avg(1 + 0.5 + 0.75, 1) = avg(2.25, 1) = 2.25+1

2 = 1.625
𝑏 = (1− sI(Φ1,Ψ)) + (1− sI(Φ2,Ψ)) + (1− sI(Φ3,Ψ))
= (1− 1) + (1− 0.5) + (1− 0.75) = 0 + 0.5 + 0.25 = 0.75

𝑐 = 1− max(sI(Ψ,Φ1), sI(Ψ,Φ2), sI(Ψ,Φ3)) = 1− 1 = 0

Using similarity models, we extend the work of [9] to assess the similarity between two FOL arguments.

Definition 24. Let a coefficient 0 < 𝜂 < 1, a similarity model M = ⟨sL, sG, sI, sS⟩ and ISt an
interpretation over a structure St. Let 𝐴,𝐵 ∈ Arg(ℒ), we define the similarity between FOL

arguments from Arg(ℒ)× Arg(ℒ) to [0, 1] by simArg
M,𝜂
ISt

(𝐴,𝐵) =

𝜂 × sS(𝐼S(𝐴), 𝐼S(𝐵)) + (1− 𝜂)× sS(𝐼C(𝐴), 𝐼C(𝐵)).

simArgM𝑥 simArgMns−𝑥

Maximality ∙ ∙
Symmetry ∙ ∘
Substitution ∙ ∘
Syntax Independence ∙ ∙
Minimality ∙ ∙
Monotony ∙ ∙
Strict Monotony ∙ ∘
Dominance ∙ ∙
Strict Dominance ∙ ∘

Table 2
Principles satisfaction, with 𝑥 ∈ {jac, dic, sor, adb, ss} (∙ for satisfaction, and ∘ for violation).

Example 9. We conclude the example of 𝐴 and 𝐵. Let Mjac = ⟨sL, sG, sI, sS⟩. CI(𝐴) =
{𝐴ci

1 = ⟨{𝐹 (𝑡), 𝐷(𝑡),¬𝐹 (𝑡) ∨ ¬𝐷(𝑡) ∨ 𝐿(𝑡)}, 𝐹 (𝑡) ∧ 𝐿(𝑡)⟩,
𝐴ci

2 = ⟨{𝐹 (𝑢), 𝐷(𝑢),¬𝐹 (𝑢) ∨ ¬𝐷(𝑢) ∨ 𝐿(𝑢)}, 𝐹 (𝑢) ∧ 𝐿(𝑢)⟩,
𝐴ci

3 = ⟨{𝐹 (𝑡), 𝐷(𝑡),¬𝐹 (𝑡)∨¬𝐷(𝑡)∨𝐿(𝑡), 𝐹 (𝑢), 𝐷(𝑢),¬𝐹 (𝑢)∨¬𝐷(𝑢)∨𝐿(𝑢)}, 𝐹 (𝑡)∧𝐿(𝑡)∧𝐹 (𝑢)∧𝐿(𝑢)⟩};
CI(𝐵) = {𝐵ci

1 = ⟨{𝐹 (𝑡), 𝐷(𝑡),¬𝐹 (𝑡) ∨ ¬𝐷(𝑡) ∨ 𝐿(𝑡)}, 𝐹 (𝑡) ∧ 𝐿(𝑡)⟩}.
As computed in Example 8, sS(𝐼S(𝐴), 𝐼S(𝐵)) =

1.6875
2.3125 ≈ 0.730, hence:

simArg
Mjac, 12
ISt

(𝐴,𝐵) =
1

2
× 1.6875

2.3125
+

1

2
× 1.625

2.375
=

1

2
× 0.730 +

1

2
× 0.684 ≈ 0.707

5. Axiomatic Evaluation

We present the notion of well-behaved similarity model where sL = simL⟨g,p,c⟩, linking the lower-level
properties of measures (e.g., Tversky measures) to the higher-level properties of argument similarity.

Definition 25. A similarity model M = ⟨sL = simL⟨g,p,c⟩, sG, sI, sS⟩ is well-behaved iff:
1. a) i. g(1, 1) = 1,

ii. g(0, 0) = 0,
b) p(𝑃, 𝑃) = 1,
c) i. c(⟨𝑎1, . . . , 𝑎𝑘⟩, ⟨𝑎1, . . . , 𝑎𝑘⟩) = 1,

ii. let 𝑎1, . . . , 𝑎𝑘, 𝑏1, . . . , 𝑏𝑛 ∈ C s.t. 𝑘 > 0, and𝑛 > 0, if ∀𝑖 ∈ {1, . . . , 𝑘}, ∀𝑗 ∈ {1, . . . , 𝑛},
simC(𝑎𝑖, 𝑏𝑗) = 0, then c(⟨𝑎1, . . . , 𝑎𝑘⟩, ⟨𝑏1, . . . , 𝑏𝑛⟩) = 0,

2. Given X a set of objects,
a) simX𝜀⊕s (𝑋,𝑋) = 1 for any set of objects 𝑋 ⊆ X,
b) if ∀𝑥 ∈ 𝑋 , ∀𝑥′ ∈ 𝑋 ′, s(𝑥, 𝑥′) = 0 then simX𝜀⊕s (𝑋,𝑋 ′) = 0,
c) let 𝑋0, 𝑋1, 𝑋2 ⊆ X s.t. 𝑋1 ⊂ 𝑋2 and 𝑋2 ∖ 𝑋1 = {𝑥2}. If ∃𝑥0 ∈ 𝑋0 s.t. s(𝑥0, 𝑥2) =

s(𝑥2, 𝑥0) = 1 then simX𝜀⊕s (𝑋0, 𝑋2) ≥ simX𝜀⊕s (𝑋0, 𝑋1),
d) let 𝑋0, 𝑋1, 𝑋2 ⊆ X s.t. 𝑋1 ⊂ 𝑋2 and 𝑋2 ∖ 𝑋1 = {𝑥2}. If ∀𝑥0 ∈ 𝑋0, s(𝑥0, 𝑥2) =

s(𝑥2, 𝑥0) = 0 then simX𝜀⊕s (𝑋0, 𝑋1) ≥ simX𝜀⊕s (𝑋0, 𝑋2).

Where simC is the similarity between constants in c from sL. In the item 2. X may denote literals
(L), grounded clauses (G), instantiations (I) or set of instantiations (S).

Theorem 1. For any similarity model M, if M is well-behaved then simArg
M,𝜂
ISt

satisfies the following
principles: Maximality, Minimality, Monotony and Dominance.

Theorem 2. Let a well-behaved similarity model M.
∙ simArgM,𝜂

ISt
satisfies Symmetry (resp. Syntax Independence) if sL, sG, sI, sS are symmetric (resp.

syntax independent).
∙ simArg

M,𝜂
ISt

satisfies Strict Monotony and Strict Dominance if it satisfies 2.(c’) and
2.(d’), where 2.(c’) (resp. 2.(d’)) extends 2.(c) (resp. 2.(d)) by adding the condition
simX𝜀⊕s (𝑋0, 𝑋1) < 1 (resp. simX𝜀⊕s (𝑋0, 𝑋1) > 0) to deduce their conclusion strictly (i.e., >
instead of ≥).

Interestingly, some results from the propositional framework in [9] change in FOL: 1. The charac-
terization linking the satisfaction of axioms to a similarity of 1 iff arguments are equivalent is lost. 2.
Argument compilation makes equivalent arguments identical, giving them a similarity of 1 solely via
Maximality. 3. Logically non-equivalent arguments (e.g., with ¬𝑒𝑣𝑒𝑛(𝑘) and 𝑜𝑑𝑑(𝑘)) can also have a
similarity of 1 if deemed similar by a similarity measure. 4. Substitution is no longer implied by other
axioms, as the characterization of similarity of 1 for equivalent arguments no longer holds.

The functions g,p and c of this paper are well-behaved.

Lemma 1. For g ∈ {min, avg}, p = eq and c = pwseq, ⟨g,p, c⟩ satisfies item 1. of Def. 25.

Similar results hold for the Tversky measures used to define simG𝜀
avg
sL , simI𝜀maxsG , and simS𝜀maxsI , as

detailed in Table 1.

Lemma 2. If in Tve𝛼,𝛽,𝜀
max
simX , simX is either simL⟨g,p,c⟩ s.t. ⟨g,p, c⟩ satisfies item 1. of Def. 25, or a

similarity measure satisfying item 2. of Def. 25, then Tve𝛼,𝛽,𝜀
max
simX satisfies item 2. of Def. 25.

Proposition 3. Let simArg
M𝑥,𝜂
ISt

with 𝜂 ∈ (0, 1), 𝑥 ∈ {jac, dic, sor, adb, ss, ns-jac,
ns-dic, ns-sor, ns-adb, ns-ss} and M𝑥 = ⟨sL, sG𝑥 = 𝑥𝜀

avg
sL , sI𝑥 = 𝑥𝜀

max
sG𝑥 , sS𝑥 = 𝑥𝜀

max
sI𝑥⟩. All princi-

ples are compatible according to Table 2.

The symmetric extended Tversky measures returns a similarity of 1 iff the arguments are equivalent.
While non-symmetric measures also show full similarity in another specific case of sub-arguments.

Theorem 3. Let 𝐴,𝐵 ∈ Arg(ℒ) and a similarity model M𝑥 (resp. Mns− 𝑥) from Table 2. For any
𝜂 ∈ (0, 1), we have: simArgM,𝜂

ISt
(𝐴,𝐵) = 1 iff 𝐴 ≈ 𝐵; and simArg

Mns−𝑥,𝜂
ISt

(𝐴,𝐵) = 1 iff 𝐴 ⊑ 𝐵 and
⊔(C(𝐴)) ⊆ ⊔(C(𝐵)).

Asymmetric measures violate Strict principles and Substitution by scoring 1 for sub-arguments,
preventing similarity increases for equivalent arguments and allowing differing argument structures to
share a similarity of 1.

6. Related Work

Several works have investigated similarity in logic-based or structured representation systems, but they
differ significantly from our work w.r.t. expressivity, the nature of similarity, and intended applications.

Ramon and Bruynooghe [27] define a distance between first-order logic objects, focusing on the
structural comparison of clauses and terms. Their approach operates within the syntax of FOL, without
addressing quantified formulas explicitly, and relies on clause-level comparisons in normalized form.
Similarly, Horváth et al. [28] define recursive similarity functions over first-order terms for instance-
based learning, focusing on term structure rather than complete formulae. Their approach does not
handle quantifiers or logical connectives. In contrast, our framework operates on FOL formulae with
quantifiers and connectives, and supports similarity computation over structured arguments.

In contrast to syntactic or clause-based distances, Williamson [29] introduces a formal logic of
comparative similarity using a ternary predicate 𝑆(𝑥, 𝑦, 𝑧), interpreted as “𝑥 is more similar to 𝑦 than
to 𝑧”. While formally elegant, this qualitative approach lacks numerical scores and aggregation.

Similarity in ontology-based or object-oriented systems was studied in [30, 31]. Bisson [30] studies
similarity based on hierarchies and attributes in object-oriented representations, but without a logical
foundation. Ehrig et al. [31] propose a flexible multi-dimensional framework for ontology matching,
but without schema-level comparisons, nor extension to FOL formulae or structured argumentation.

In the description logic (DL) community, several works attempt to define similarity between concepts.
Borgida et al. [32] and Janowicz [33] propose semantically grounded measures for DLs, typically based
on model-theoretic subsumption or concept overlap. However, DLs are restricted fragments of FOL: they

do not support general quantification, nested terms, or logical connectives. In contrast, our framework is
designed to operate on first-order logic, enabling a more expressive and flexible similarity computation.

González-Calero et al. [34] explore the use of description logics in case-based reasoning by repre-
senting cases as DL concepts and retrieving them via subsumption. While semantically grounded,
their approach is limited to concept-level similarity and does not support the composition of similarity
measures across multiple structural levels.

In summary, prior work relies either on syntactic distances over terms or clauses, qualitative reasoning
frameworks without quantitative evaluation, or semantic similarity restricted to limited fragments
such as description logics. In contrast, our contribution defines similarity directly over full first-order
logic, supporting quantification and nested connectives, and provides a parametric multi-level model
that evaluates similarity both at different structural levels within FOL formulae and within argument
structures.

7. Conclusion

This paper introduces parametric similarity models, defining families of similarity measures for FOL
arguments, including generalized versions of existing measures (i.e., Tversky) and, for the first time in
logical argumentation, non-symmetric measures. Three extended principles are proposed, with well-
behaved properties ensuring the satisfaction of some principles. Symmetric Tversky-based measures
satisfy all principles, while non-symmetric ones satisfy a subset.

This work opens new research avenues, as exploring additional measures (e.g., semantic similarity
with BERT-based models [21]) and principles (e.g., independent distribution [35]) to improve similarity
accuracy. Future work will focus on real-world applications, implementing similarity models, and
analyzing their complexity.

Acknowledgments

This work was supported by the Agence Nationale de la Recherche (ANR) under the projects AGGREEY
ANR-22-CE23-0005, AIDAL ANR-22-CPJ1-0061-01, and the Plan d’Investissement France 2030, as part
of the Initiative d’Excellence d’Université Côte d’Azur under the reference ANR-15-IDEX-01.

Declaration on Generative AI

The author(s) have not employed any Generative AI tools.

References

[1] Q. Zhong, X. Fan, X. Luo, F. Toni, An explainable multi-attribute decision model based on
argumentation, Expert Sys. and Appl. 117 (2019) 42–61.

[2] K. Cyras, A. Rago, E. Albini, P. Baroni, F. Toni, Argumentative XAI: A survey, in: Proc. of IJCAI
2021, 2021, pp. 4392–4399.

[3] Y. Guo, T. Yu, L. Bai, J. Tang, Y. Ruan, Y. Zhou, Argumentative explanation for deep learning: A
survey, in: International Conference on Unmanned Systems (ICUS), IEEE, 2023, pp. 1738–1743.

[4] B. Irwin, A. Rago, F. Toni, Forecasting argumentation frameworks, arXiv:2205.11590 (2022).
[5] D. Gorur, A. Rago, F. Toni, Argucast: A system for online multi-forecasting with gradual argumen-

tation, in: Arg. & App.@KR’23, CEUR-WS.org, 2023, pp. 40–51.
[6] J. Ben-Naim, V. David, A. Hunter, An axiomatic study of the evaluation of enthymeme decoding

in weighted structured argumentation, arXiv preprint arXiv:2411.04555 (2024).
[7] J. Ben-Naim, V. David, A. Hunter, An axiomatic study of a modular evaluation of enthymeme

decoding in weighted structured argumentation, in: KR’25, 2025.

[8] V. David, A. Hunter, A logic-based framework for decoding enthymemes in argument maps
involving implicitness in premises and claims, in: IJCAI’25, 2025.

[9] L. Amgoud, V. David, Measuring similarity between logical arguments, in: KR’18, 2018, pp. 98–107.
[10] L. Amgoud, V. David, An adjustment function for dealing with similarities, in: COMMA’20, 2020,

pp. 79–90.
[11] L. Amgoud, V. David, A General Setting for Gradual Semantics Dealing with Similarity, in:

AAAI’21, 2021.
[12] V. David, J. Delobelle, J.-G. Mailly, Similarity measures between order-sorted logical arguments,

in: Journées d’Intelligence Artificielle Fondamentale, 2023.
[13] J. Lang, P. Liberatore, P. Marquis, Propositional independence-formula-variable independence and

forgetting, J. Artif. Intell. Res. 18 (2003) 391–443.
[14] P. Besnard, A. Hunter, A logic-based theory of deductive arguments, Artificial Intelligence 128

(2001) 203–235.
[15] L. Amgoud, V. David, Similarity measures based on compiled arguments, in: ECSQARU’21, 2021,

pp. 32–44.
[16] L. Amgoud, V. David, D. Doder, Similarity measures between arguments revisited, in: ECSQARU’19,

2019, pp. 3–13.
[17] A. Tversky, Features of similarity, Psychological Review 84 (1977) 327–352.
[18] K. P. Jantke, Nonstandard concepts of similarity in case-based reasoning, in: Information Systems

in Data Analysis: Prospects – Foundations – Applications, 1994, pp. 28–43.
[19] K. W. Church, Word2vec, Natural Language Engineering 23 (2017) 155–162.
[20] J. Pennington, R. Socher, C. D. Manning, Glove: Global vectors for word representation, in:

EMNLP’14, 2014, pp. 1532–1543.
[21] N. Reimers, Sentence-bert: Sentence embeddings using siamese bert-networks, arXiv preprint

arXiv:1908.10084 (2019).
[22] P. Jaccard, Nouvelles recherches sur la distributions florale, Bulletin de la societe Vaudoise des

sciences naturelles 37 (1901) 223–270.
[23] L. Dice, Measures of the amount of ecologic association between species, Ecology 26 (1945)

297–302.
[24] T. Sørensen, A method of establishing groups of equal amplitude in plant sociology based on

similarity of species and its application to analyses of the vegetation on danish commons, Biol.
Skr. 5 (1948) 1–34.

[25] M. Anderberg, Cluster analysis for applications. monographs and textbooks on probability and
mathematical statistics, 1973.

[26] P. Sneath, R. Sokal, Numerical taxonomy. The principles and practice of numerical classification.,
1973.

[27] J. Ramon, M. Bruynooghe, A framework for defining distances between first-order logic objects,
in: ILP’98, 1998, pp. 271–280.

[28] T. Horváth, S. Wrobel, U. Bohnebeck, Relational instance-based learning with lists and terms,
Machine Learning 43 (2001) 53–80.

[29] T. Williamson, First-order logics for comparative similarity, Notre Dame J. Formal Log. 29 (1988).
[30] G. Bisson, Why and how to define a similarity measure for object based representation systems,

Towards Very Large Knowledge Bases (1995) 236–246.
[31] M. Ehrig, P. Haase, M. Hefke, N. Stojanovic, Similarity for ontologies-a comprehensive framework

(2005).
[32] A. Borgida, T. Walsh, H. Hirsh, et al., Towards measuring similarity in description logics., Descrip-

tion Logics 147 (2005) 1–8.
[33] K. Janowicz, Sim-dl: Towards a semantic similarity measurement theory for the description logic

alcnr in geographic information retrieval, in: OTM 2019 Conferences, 2006, pp. 1681–1692.
[34] P. González-Calero, B. Díaz-Agudo, M. Gómez-Albarrán, et al., Applying dls for retrieval in

case-based reasoning, in: DL’99, 1999.
[35] V. David, Dealing with Similarity in Argumentation, Ph.D. thesis, Univ. Toulouse III, 2021.

	1 Introduction
	2 Logic and Arguments
	3 Principles for Similarity Measures on FOL Arguments
	4 Similarity Models
	4.1 Similarity between literals
	4.2 Similarity between grounded clauses
	4.3 Similarity between sets of grounded clauses
	4.4 Similarity between instantiations

	5 Axiomatic Evaluation
	6 Related Work
	7 Conclusion

