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Abstract

Argumentation games, which model reasoning as adversarial dialogue, offer intuitive and explainable mechanisms
for decision-making in Al. However, their implementation has lagged behind inference-focused approaches,
particularly in structured argumentation frameworks like assumption-based argumentation (ABA). This work
presents, to our knowledge, the first application of multi-shot answer set programming (ASP) for implementing
argument games, focusing on ABA dispute derivations. Leveraging a recent rule-based representation of ABA
disputes, our method combines a declarative program with lightweight script-based control of multi-shot aspects,
yielding a modular and adaptable system. We extend this core approach to support alternative games and
show how it can also be used to implement argument games for Dung’s abstract argumentation formalism.
Empirical results show that our implementation outperforms existing ABA dispute systems. We also introduce
an approximate variant that further improves efficiency — reaching the level of the best current inference-focused
ABA system — while maintaining perfect specificity (i.e. true negative rate), demonstrating the practical value of
multi-shot ASP, particularly in interactive settings where explainability is key.
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1. Introduction

Argumentation plays a crucial role in human decision-making, especially in complex situations without
clear-cut answers. Formal models of argumentation, rooted in research in non-monotonic reasoning, offer
argumentation approaches to knowledge representation and reasoning in Al These models underpin a
wide range of applications including in law, medicine, and e-governance.

Models of argumentation range from highly abstract to more detailed, structured approaches. Abstract
models focus on the relationships between arguments — most notably, attacks — without considering
their internal content. In contrast, structured models represent the internal composition of arguments,
including premises and inference steps. Structured models are often viewed as concrete instantiations
of their abstract counterparts.

On the reasoning side, a key distinction is between approaches that treat argumentation as inference -
focusing on selecting acceptable arguments under various semantics — and those that also consider the
argumentation process itself. Among the latter, argument-game approaches are prominent, modeling
reasoning as an adversarial dialogue between a proponent, who defends a claim, and an opponent,
who challenges it [1]. These models are closely linked to broader dialogical frameworks and have been
recognized as particularly suitable for explainable Al, given their ability to dialectically justify claims in
interactive settings [2].

Research on efficient implementation methods in argumentation has largely focused on abstract
models, though structured models - despite their greater complexity — are gaining increasing attention.
In contrast, argumentation-game approaches have received relatively little attention in this regard. A
likely reason is that the reduction techniques successful in implementing argumentation-as-inference
(as evidenced by top-performing systems in the recent main argumentation competition-ICCMA’23 [3])
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are less readily applicable to game-based approaches, due to their iterative and potentially interactive
nature.

Among reduction-based methods, those targeting answer set programming (ASP) are particularly
popular. ASP is a declarative programming paradigm for knowledge representation and reasoning,
offering a concise, expressive rule-based language and efficient solvers. Its strengths in modularity and
succinctness make it a powerful tool for modeling complex problems, with growing use in academia
and industry.

In the standard approach to problem solving with ASP, valid solutions are specified through logic
rules such that the answer sets of a program correspond to the solutions of the problem. A major
computational bottleneck is the grounding phase, where variables are instantiated with constants to
produce variable-free programs. This becomes especially costly in iterative scenarios, where similar but
slightly modified programs must be re-grounded from scratch at each step.

Multi-shot ASP is a recent advancement that enables modifying and re-solving logic programs across
iterations, significantly reducing grounding and solving overhead [4]. This approach has proven
beneficial in various domains including the implementation of games [5, 6].

This paper presents, to our knowledge, the first study of multi-shot ASP for argumentation, in
particular, for implementing argument games. Specifically, we focus on dispute derivations in assumption-
based argumentation (ABA) [7], a key rule-based framework that is also closely related to ASPIC+ [8]
and that is the first structured formalism featured at ICCMA (since 2023). Our main contributions are:

» We present a multi-shot ASP-based approach for implementing ABA dispute derivations, targeting
the latest rule-based dispute representation [9]. This version is the only one with a participating
system at the most recent ICCMA and has outperformed other dispute-based systems in empirical
evaluations [10]. Importantly, it nevertheless also clearly builds on earlier argument- and graph-
based ABA dispute variants [11, 12].

« Compared to previous implementations of ABA disputes, our multi-shot approach is more
declarative. It closely mirrors the formal definitions, delegating execution to the ASP engine,
with a lightweight Python script managing multi-shot control. Thanks to its declarative and
modular design, the approach is easily adaptable. We demonstrate this by extending it to support
alternative games (e.g. complete and stable semantics), and by implementing similar games for
Dung’s AFs [13], the most fundamental of the many abstract argumentation formalisms. We also
provide a simple interactive as well as visual interface to our implementation, proving that such
aspects can also easily be accommodated.

+ Our systematic empirical evaluation shows that, despite being substantially more concise and
interpretable, the multi-shot implementation clearly outperforms the most efficient ABA dispute
system on the ABA track ICCMA’23 benchmarks.

« Moreover, we introduce and evaluate an approximate variant that halts after a fixed number of
iterations. It guarantees no false positives, yet frequently identifies disputes where the proponent
wins. This variant achieves efficiency on par with the best existing inference-focused one-shot
ASP-based ABA system. While it sacrifices accuracy to obtain this efficiency, it demonstrates
that the multi-shot approach offers a strong alternative — especially when the advantages of
game-based methods, such as support for interactivity and explainability, are needed.

« Finally, we propose our approach as a general methodology for implementing and comparing
argument games, extending also to formalisms beyond those explicitly considered in this work,
namely ABA and Dung’s AFs.

2. Background

We begin by very briefly introducing Dung’s AFs, ABA, and ASP programs, focusing on the syntax. We
explain the aspects most relevant to our work in more detail (and provide examples) when turning to
presenting the core ideas behind our approach in Section 3.



An abstract argumentation framework (AF) is a tuple 7 = (A, R), where A is a set of (abstract)
arguments and R C A x A denotes the attack relation. We say that a; attacks az if (a1,a2) € R. A
set of arguments S C A is said to be conflict-free if for no pair of arguments a;,as € S, a; attacks as.
An argument a; € A is said to be defended from as € A by S C A, if as attacks a1 and there is an
argument ag € S that, in turn, attacks as. Finally, a set S C A is admissible if S is conflict-free and
S defends every argument a € S from any argument attacking a. All classical semantics introduced
in [13] are admissibility-based; i.e. they return sets of arguments that are admissible (commonly also
called extensions).

ABA frameworks add further structure to AFs. Concretely, an ABA framework F consists of a tuple
(L, A,7,R). Here, L is the language underlying the framework. As in most work on implementations
for ABA we restrict our attention to what is arguably also the most common instance of ABA: those
frameworks for which £ is a finite set of propositional atoms. A C L are the set of assumptions. ~ is
the contrary relation associating to each a € A its set of contraries ~(«) C L. R is a set of rules of the
form h < B, where B C L and h € L. B is the body, while h is the head of the rule. Again, following
most work on implementations for ABA, we also restrict our attention to flat ABA, i.e. frameworks for
which assumptions cannot appear in the heads of rules. This is also the instance of ABA which has
been featured at the ICCMA competition since 2023.

Arguments in ABA are built by deriving claims from facts via the rules. Le. the head h of any rule
h < () with empty body is an argument with conclusion A (such h can be considered facts). Moreover,
ifay,...,a, are arguments with conclusions hy, ..., hy, andr = h < {h1,..., hy} € R, then the
composition of a1, .. ., a,, with r is an argument with conclusion h. Arguments are, thus, commonly
represented as proof trees with nodes labelled by atoms, and the parent-child relation in the tree
indicating that the atom labelling the parent node is in the body of a rule used to derive the child node.
One argument attacks another if the first argument has as conclusion an atom which is a contrary of an
assumption that is used in the second argument.

As explained in the introduction, disputes are a procedural means of deciding acceptance of an atom
(the goal claim) modelled after argumentation: the proponent must find an argument deriving the
goal claim and defend itself from the opponent by finding jointly consistent arguments attacking the
counter-arguments constructed by the opponent. The opponents role, on the other hand, is precisely to
find counter-arguments to any argument constructed by the proponent. Whoever has the last word in
the dispute wins: i.e. if the opponent builds a counter-argument which the proponent cannot defend
against then the opponent wins, while the proponent wins if it finds defending arguments against
all counter-arguments of the opponent and the opponent cannot find any further counter-arguments.
The goal claim is deemed acceptable whenever there is a dispute for it which the proponent wins;
otherwise the goal claim is unacceptable. As we also indicated in the introduction, different versions
of disputes exist differing in the way arguments are represented and the semantics that they cover.
In this work we make use of the rule-based representation of disputes defined in [9] (which further
simplifies the graph-based representation of [12], which in turn builds on [11]), where the proponent
and opponent directly exchange rules rather than arguments (although the argument representation
can be reconstructed from the rules).

For ASP we make use of the syntax of clingo [4]. ASP programs consist in a finite collection of
rules of the form ag :- a1, ..., Gm, N0t Ayt 1, . . ., NOt Gpyty. Where the a;s (0 < @ < m +[) are atoms.
The latter are expressions of the form p(t1,...,t,) where p is a predicate and the ¢;s are terms. Terms
can be either constants or variables. The latter must be written starting with uppercase letters (e.g. X
or Var), while constants cannot begin with uppercase letters. Positive (of the form a) and negative (of
the form not a) atoms are also called literals.

Rules without variables are called ground. Rules with variables are shorthand for the set of ground
rules obtained by uniformly replacing the variables in the (non-ground) rule with all constants occurring
in the ASP program. If the rule is ground then it can informally be interpreted to mean that ag must
be derived, i.e. be part of a solution of the program, if a1, . .., a,, are derived and ay,11, . . ., 4y are
not derived. Rules with empty bodies (of the form ag :- .) are facts, while those with empty heads (of
the form :- aq,...,am, not am41, ..., not a,4;.) are integrity constraints. While the first indicate that



ap must be a part of all solutions, the second indicates that solutions that satisfy the body of the rule
are not allowed. Formally, solutions to ASP programs, so called answer-sets, are distinguished sets of
(ground) atoms given by the stable-model semantics.

To ease ASP programming, several extensions of the basic syntax have been defined. For instance,
arithmetic expressions can be used in bodies of rules. Also, numbers and strings (enclosed in quotation
marks) can be used as constants, while "_" represents an anonymous variable: an unnamed fresh variable
whose scope is that of the rule where it is used. More significantly, conditional literals are extensions
of literals and are written as a:by, ..., b,, where a and the b;s are positive or negated atoms. These
express that a should be included (e.g. in the body of a rule) whenever by, ..., b,, are derived. They
are particularly useful when combined with variables: for instance, a(X):b(X) denotes all instances
of a(X) for which b(X) is derived. Another construct we make use of are cardinality constraints of
the form {cy;...; ¢} = k expressing that exactly k of the ¢; conditional literals must be derived. For
instance, {a(X) : b(X)} = 1 means that from all of the instances of a(X) for which b(X) is derived,
exactly one must be selected.

In multi-shot ASP [4], the #program directive is used to partition an ASP program into multiple
parametrizable subprograms. Each subprogram is identified by a predicate name and can take parameters,
which are constants that influence its instantiation. Multi-shot solving is enabled by integrating ASP
with an imperative host language, such as Python, through the clingo API. This integration allows
dynamic interaction with the ASP solver via an imperative script. Specifically, a clingo.Control object
is created within the host language, and subprograms are added to it. Through the API, grounding and
solving can then be interleaved using dedicated ground and solve methods. Unlike static, one-shot
solving, this interleaving enables grounding only the parts of the program that are relevant at a given
stage, based on the evolving problem context. The solve method accepts optional arguments, such as
assumptions, which are central to our approach. Assumptions are lists of (atom/truth value) pairs that
constrain the solver by specifying which literals are to be treated as true or false during a particular
solve call, enabling fine-grained control over successive solving phases.

3. Multi-shot ASP encodings of disputes

In this section, we present our proposal for using multi-shot ASP to implement disputes. For ease of
understanding and also show the flexibility of our approach, we first consider the simpler case of Dung’s
AFs in Section 3.1, and then apply the same methodology to implement ABA disputes in Section 3.2. In
Section 3.3 we present extensions for the stable semantics and visualisation purposes.

3.1. Abstract argumentation

For Dung AFs we make use of the fact that these can also be captured in ABA and, thus, tackle a
specialization of ABA disputes for AFs. Our multi-shot implementation comprises two components
shown in Figure 1: the ASP encoding, and the Python script controlling multi-shot solving via the clingo
API. The latter forms the backbone of our approach and will also be reused in the ABA implementation
described in Section 3.2.

The implementation assumes an input AF instance and a designated argument whose acceptance is
to be evaluated, both encoded as ASP facts. Given an argumentation framework F = (A, R), its ASP
encoding is:

en(F):={arg(a) |a € A} U{att(a,b) | (a,b) € R}

The designated argument a € A, referred to as the goal argument, is encoded as g(a).

The ASP encoding in Figure 1 is divided into three subprograms via lines 1, 5 and 17: 1) base: for
initialization, 2) updateState(t): to update the internal state at each step, and 3) step(t): to select
the next move. The updateState(t) and step(t) subprograms take the current dispute step number
as a parameter.



from clingo import Control, Number as N

2 Function as F

3| def main(instance, base_code, encoding):
1| ctl = Control()

5/ ctl.load(instance)

6| ctl.load(encoding)

71 ctl.add("base”, []1, base_code)

| ctl.ground([("base”, (O)1)

9l t = 0

10| while True:

11 ctl.ground([("updateState” ,[N(t)1)])

12 p_win = (F("end”,[N(t),F("p")1),True)

13 res = ctl.solve(assumptions=[p_win],

14 on_model=print)

15 if res.satisfiable:

16 return True

17 o_win = (F("end”,[N(t),F("0")1),False)

1 | #program base.
% initialize
m(@,p,G) :- g(G), not att(G,G), arg(G).

#program updateState(t).

defeat(t,C) :- m(_,p,P), att(P,C). % defeated

7 pm(t,p,P) :- m(_,0,0), att(P,0), not defeat(_,P),
8 not m(_,p,P), not att(P,P),

9 not att(P,D1) : m(_,p,D1). % possible p. move
o|pm(t,0,0) :- m(_,p,P), att(0,P), not defeat(_,0),
1 not m(_,0,0). % possible o. move

12| end(t,p) :- g(G), m(_,p,G), not pm(t,o,_),

13 defeat(_,01) : m(_,0,01). % p. won

14| end(t,0) :- not pm(t,p,_), m(_,0,0),

15 not defeat(_, 0). % opp. won

17 | #program step(t).

| mt,0,A) 1= pm(t-1,0,A). 18 res = ctl.so}veFassumptions:[o_win])
1o [T GRS S S R S R T I 19 if res.unsatisfiable:

, PyA) P P - P U=y return False

0 21 t += 1

g e e 2| ctl.ground ([("step”,INCt)I)1)

Figure 1: Multi-shot ASP encoding of AF disputes (left) and main control Python script (right).

At an abstract level, a dispute is a sequence of moves. For AFs, each move consists of a player —
proponent or opponent, represented by constants p and o (the colors are for ease of reading) - choosing
an argument to play. The key predicate is m/3, representing a move with parameters: step number,
player, and chosen argument. The predicate pm/3, on the other hand, indicates available moves at a
given step.

The base subprogram is grounded at the start, initiating the dispute with the proponent playing the
goal argument at step 0, provided it is consistent (i.e., it does not attack itself).

The updateState(t) subprogram updates the internal state at each step t using auxiliary predicates.
The predicate defeat/2 collects all arguments attacked by the proponent so far (the "defeated" argu-
ments). In Line 7, possible proponent moves are determined. A valid proponent move must (i) counter
an opponent’s argument, (ii) not be defeated, (iii) not have been used before by the proponent, (iv) be
consistent, and (v) not attack other proponent arguments. In Line 10, opponent moves are derived.
These must (i) attack a proponent’s argument, (ii) not be defeated, and (iii) not have been used already
by the opponent.

The rules in Line 12 and Line 14 define the end/2 predicate, indicating whether the game has been
won. The proponent wins if (i) the goal is among their arguments, (ii) the opponent has no more
available moves, and (iii) all opponent arguments have been defeated. It is easy to see that if the
proponent wins, their argument set corresponds to an admissible extension as per Section 2. The
opponent wins if (i) the proponent has no available moves and (ii) at least one undefeated opponent
argument remains.

The step(t) subprogram selects the next move. Disputes branch only at proponent moves, as
admissibility requires the opponent to play all possible counter-attacks to a proponent’s argument.
Conversely, for each opponent move, the proponent must select one counter-argument. For efficiency
(though this is easy to adapt), the encoding prioritizes opponent moves, performing all available
opponent moves at each step (Line 18). A proponent move is selected only when no opponent moves
are possible (Line 19).

The #show directive at the end of Figure 1 simply indicates which atoms are shown when printing
the answer-sets. Concretely, the atoms indicating the moves made at each step are shown.

We now turn to the Python control script presented in Figure 1 (right). The main function (Line 3)
takes three arguments: the ASP encoding of the input AF, a base program for initialization, and the
main encoding for the argumentation formalism (e.g., the ASP code in Figure 1, left). The base program
offers additional flexibility and control. For Dung’s AFs, for instance, it is used to specify the goal



Figure 2: Representation of two steps of a dispute for the argumentation framework F = (A, R) and goal d,
where A = {a,b,c,d,e} and R = {(a,€),(d,a), (c,d), (b,c), (e,b), (e,c)}. The left figure depicts the dispute
state after a proponent move m(@,p,d) and opponent move m(1,0,c); the right figure depicts the state in
which the proponent has won after making am(2,p, e) move. The numbers above the arguments indicate the
step at which their status is determined. The status is shown via colors: green — put forward by the proponent
(e.g., e at step 2 viam(2,p,e)), yellow — put forward by the opponent, red — defeated unplayed arguments (e.g.,
a via defeat (@, a)), blue — possible moves at a step (e.g., pm(1,p,b), pm(1,p,e)).

argument of the dispute in a short ASP program, such as that containing the fact g(a) for a given goal
argument a.

Once the encodings are loaded, the base subprogram is grounded - this includes grounding the input
framework as well as the goal directive. The step counter t is then initialized to 0.

The main loop begins in Line 10, where the subprogram updateState(t) is grounded for the current
step t. In Line 12, an assumption is constructed — this is a pair consisting of a literal and a truth value.
For a given step t = n, the assumption (end(n,p), True) is created, asserting that the proponent has
won at step n. This assumption is passed to the solver to constrain answer sets accordingly. If the solve
is successful, this indicates that a dispute of length n exists in which the proponent wins.

If the solve fails, the script proceeds to Line 17, where the assumption (end(n, 0), False) is created.
This assumption asserts that the opponent has not won at step n (i.e., there is at least one answer set
which does not contain end(n, 0), meaning also that the proponent has not yet lost and the dispute
may continue). If this second solve also fails, it implies that - regardless of the move the proponent
makes at step n - they will loose to the opponent and, hence, the procedure can terminate.

If neither condition holds, the search proceeds: t is incremented, a new move is selected via the
step(t) subprogram (Line 22), and the next iteration begins. Figure 2 provides the visualisation of a
dispute for an exemplary AF generated by our system MS-DIS' (using the listings from Figure 1).

3.2. Assumption-based argumentation

To implement ABA disputes our approach is the same as that presented in Section 3.1. In particular, Fig-
ure 1 (right) continues to serve as the Python script controlling the multi-shot execution. The only
difference lies in the inputs provided to this script.

Given an ABA instance F = (£, A, , R), its encoding as a set of ASP facts is defined as follows:

en(F) :={assumption(a) | a € A} U{contrary(a,b) | (a,b) € 7}

U |J {head(r,h)} U {body(r,b) | b€ B}
r=h<B€ER

The goal of the dispute is a statement s € L that is to be justified dialectically. This is encoded
as g(s). For ABA, further inputs (which we will explain shortly) are facts encoding the termination
condition and the advancement type. For the dispute for the admissible semantics these are "tt(ta)."
and "at(dabf)." respectively.

The multi-shot ASP encoding for ABA disputes is shown in Figure 3. As with the encoding for AF
disputes, the program is divided into three sub-programs: base, updateState(t), and step(t), each
fulfilling the same roles as in the AF encoding.

At the most abstract level, ABA disputes also consist of a sequence of moves. The main difference
compared to disputes for AFs is that each move now involves one of the players — the proponent or
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the opponent (represented by the constants p and o as in the AF encoding) — putting forward either
an assumption or a rule from the ABA framework. Thus, what is explicitly constructed is a rule set
for each player, consisting of the assumptions and rules they have played. When a rule is played by
a player, each statement in the rule’s body and head is also considered as played by that player. For
the proponent, this amounts to committing to the rule and its associated statements; for the opponent,
it reflects an exploration of a possible line of attack against the proponent’s commitments. To avoid
redundancy, the proponent’s rule set is considered a subset of the opponent’s rule set.

The rule sets determine, in an implicit manner, the arguments available to each player: these are
exactly the arguments that can be constructed from the rules and claims contained in their rule
set. Hence, the proponent’s arguments are those derivable from the proponent’s rule set, while the
opponent’s arguments include all arguments derivable from their own rule set, which subsumes that of
the proponent.

The fact that players in ABA disputes put forward both rules and assumptions allows us to distinguish
between different types of moves. In the encoding given in Figure 3, we distinguish between eight
move types, represented by the constants pb1, pb2, pf1, pf2, ob1, ob2, of 1 and of2. Proponent move
types begin with p, and opponent move types begin with o. The letters b and f stand for "backward"
and "forward’, respectively.

The backward moves pb1 and ob1 are used to justify a claim s already in the player’s rule set by
introducing a rule h <— B such that h = s. Conversely, the forward moves pf1 and of1 add a rule
h <— B when its body B is in the player’s current claim set.

The backward moves pb2 and ob2 are used to attack an assumption a of the opposing player by
introducing a rule h < B such that h € ~(a). Finally, the forward moves pf2 and of2 introduce an
assumption a; € ~(ag), provided that ay is an assumption in the opposing players claim set.

We refer to all move types that involve rules (i.e., all except pf2 and of2) as rule move types, and they
are declared using the predicate rMT/1. Among the proponent’s moves, all except pf1 are considered
branching, and are denoted using the branchMT/1 predicate. As in the case of AF disputes, only the
proponent can introduce branching in the search for a winning dispute. The reason why pf1 is not
branching is that it simply derives consequences from claims the proponent has already committed
to. Therefore, pf1 does not introduce a choice point, but rather derives consequences that follow from
previous choices.

Moves in ABA disputes are encoded via the predicate m/4, which now takes four arguments to
represent (i) the dispute step, (ii) the player, (iii) the move type, and (iv) the rule or assumption involved
in the move. Specifically, m(t,P,T,X) encodes a move made at turn t, by player P, of type T. If T is
a rule move type (i.e., rMT(T) holds), then X refers to the rule’s identifier; otherwise, it refers to the
assumption introduced.

As in the AF encoding, possible moves are defined via the predicate pm/4, which also now has arity
4. To track the evolving rule sets of each player, we use the auxiliary predicates stS/3 and stR/4.
The predicate stS(t,S,P) denotes that statement S has been used by player P at step t. Similarly,
stR(t,P,h,r) records that a rule r = h <— B has been used by player P at step t.

Turning now from the predicates used to the encoding itself, as in the encoding for AFs, the base
and updateState(t) subprograms define various auxiliary predicates that are used to constrain the
possible moves available to the proponent and opponent at each step. The actual move to perform is
selected by the step(t) subprogram.

The base subprogram, which is grounded at the start, defines in lines 2 to 4 the rule move types and
branching move types, as well as the players (via the plr/1 predicate). In lines 5 and 6, all statements
appearing in rules are collected using the rS/2 predicate. In Line 7, the dispute is initialised by adding the
goal statement to both the proponent and opponent rule sets, provided the goal is not an inconsistent
assumption. In Line 8, the remBloR/4 predicate — encoding rules that are initially blocked for the
proponent — is populated with those rules that are inconsistent.

The updateState(t) subprogram, as in the AF case, updates the internal state of the dispute. Lines 11
and 12 define the so-called defences and culprits: defences are assumptions to which the proponent is
committed, while culprits are assumptions contrary to some claim in the proponent’s rule set (i.e. these



1| #program base.

2| rMT(pb1;pb2;pf1;0b1;0b2;0f1). % rule move types

3| branchMT (pb1;pb2;pf2). % branching (br.) move types

4| plr(p;0). % players; proponent (p.) and opponent (0.)

51rS(R,S) :- head(R,S). % rule’s statements from rule heads

6| rS(R,S) :- body(R,S). % rule’s statements from rule bodies

71stS(0,S,P) :- g(S), not contrary(S,S), plr(P). % goal - initial statement

s | remBloR(Q,R,H,p) :- head(R,H), rS(R,S1), rS(R,S2), contrary(S1,S2). % blocked, inconsistent rules

10 | #program updateState(t).

11| def(t,D) :- stS(_,D,p), assumption(D). % defence

12| cul(t,C) :- stS(_,S,p), contrary(C,S). % culprit

13 | defCtr(t,DC) :- def(_,D), contrary(D,DC). % defence contrary
14| culCtr(t,CC) :- cul(_,C), contrary(C,CC). % culprit contrary

16 | remR(t,R,H,P) :- not stR(_,R,H,P), head(R,H), plr(P). % remaining player’s rule
17 | remBloR(t,R,H,P) :- remR(t,R,H,P), body(R,B), cul(_,B), plr(P). % blocked remaining player P.’s rule
18 | remBloR(t,R,H,p) :- remR(t,R,H,p), rS(R,S), defCtr(_,S). % blocked remaining p.’s rule

B

unexpS(t,H,p) :- stS(_,H,p), not stR(_,_,H,p). % unexpanded statement

21| stExpS(t,H,0) :- stS(_,H,0), remBloR(_,R,H,0) : remR(t,R,H,0). % fully expanded statement
22 | stBloS(t,S,0) :- stS(_,S,0), cul(_,S). % state blocked statement

23 | stBloS(t,S,0) :- stExpS(t,S,0), not assumption(S), stBloR(t,R,S,0) : stR(_,R,S,0).

24 | stBloR(t,R,H,0) :- stR(_,R,H,0), body(R,B), stBloS(t,B,0). % state blocked rule

26 | comS(t,S,p) :- def(_,D). % complete statement

27| comS(t,H,p) :- stR(_,R,H,p), comS(t,S,p) : body(R, S).

28 | unbloComS(t,S,0) :- stS(_,S,0), assumption(S), not cul(_,S). % unblocked complete (unb. com.) statement
29 | unbloComS(t,H,0) :- stS(_,H,0), not stBloS(t,H,o0), unbloComR(t,_,H,0).

30 | unbloComR(t,R,H,0) :- stR(_,R,H,0), not stBloR(t,R,H,0), unbloComS(t,B,0) : body(R, B).% unb. com. rule
31 | unbloSupSS(t,S,0) :- stS(_,S,0), contrary(D,S), def(t,D), not stBloS(t,S,0).% unb. statements support. S
32 | unbloSupSS(t,S,0) :- stS(_,S,0), not stBloS(t,S,0), unbloSupSR(t,R,_,0), body(R, S).

33 | unbloSupSR(t,R,H,0) :- stR(_,R,H,0), not stBloR(t,R,H,0), unbloSupSS(t,H,0).% unb. rules supporting S

34| culCan(t,C) :- assumption(C), unbloSupSS(t,C,0). % culprit candidate

36 | pm(t,p,pb1,R) :- remR(t,R,H,p), not remBloR(_,R,H,p), unexpS(t,H,p). % possible move (pm) "PB1"

37 pm(t,p,pb2,R) :- remR(t,R,H,p), not remBloR(_,R,H,p), culCan(t,C), contrary(C, H), not stS(_,H,p),
38 not contrary(D, H) : def(_,D). % pm "PB2"

39 | pm(t,p,pf1,R) :- remR(t,R,H,p), not remBloR(_,R,H,p), comS(t,B,p) : body(R, B). % pm "PF1"

40 | pm(t,p,pf2,A) :- culCan(t,C), contrary(C,A), assumption(A), not stS(_,A,p), not contrary(A,A),

41 not cul(_,A), not contrary(D,A) : def(_,D). % pm "PF2"

22| pm(t,o0,0b1,R) :- remR(t,R,H,0), not remBloR(_,R,H,0), unbloSupSS(t,H,0). % pm "OB1"

43| pm(t,0,0b2,R) :- remR(t,R,H,0), not remBloR(_,R,H,0), contrary(D, H), def(_,D). % pm "0OB2"

44 | pm(t,o0,0f1,R) :- remR(t,R,H,0), not remBloR(_,R,H,0), unbloComS(t,B,0) : body(R, B). % pm "OF1"

i5 | pm(t,o0,0f2,A) :- contrary(D,A), def(_,D), assumption(A), not stS(_,A,0). % pm "OF2"

47| stS(t,S,P) :- m(_,p,T,R), rMT(T), rS(R,S), plr(P). % new state statement
48 | stS(t,A,P) :- m(_,p,T,A), not rMT(T), plr(P).

49| stS(t,S,0) :- m(_,o0,T,R), rMT(T), rS(R,S).

50| stS(t,A,0) :- m(_,0,T,A), not rMT(T).

51| stR(t,R,H,P) :- m(_,p,T,R), head(R,H), rMT(T), plr(P). % new state rule
52 | stR(t,R,H,0) :- m(_,0,T,R), head(R,H), rMT(T).

s4 | term(t) :- tt(ta), g(G), comS(_,G,p), comS(_,CC,p) : culCtr(_,CC);

55 not unbloComS(t,DC,0) : defCtr(_,DC).

56 | end(t,p) :- term(t), not pm(t,o,_,_). % p. won; termination condition satisfied and o. cannot move
57| end(t,0) :- not term(t), not pm(t,p,_,_). % o won; term. cond. not satisfied and p. cannot move

50 | #program step(t).
m(t,P,T,X) :- pm(t-1,P,T,X), not branchMT(T), t > @. % proceed with non-br. move type
{ m(t,P,T,X) : pm(t-1,P,T,X) } =1 :- t > 0, branchMT(T) : pm(t-1,_,T,_). % choose one br. move

62
#show m/4.

Figure 3: Multi-shot ASP encoding of ABA disputes for the admissible semantics.

are attacked by the proponent). Lines 13 and 14 then define the contraries of defences and culprits.
In Line 16, the predicate remR/4 gathers the remaining rules for each player, i.e., rules not yet used.
The subsequent lines define the subset of these that are blocked. For both players (Line 17), rules are
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Figure 4: Two dispute states - 4 (top) and 5 (bottom) - for the ABA framework F = (L, A,7,R),
where A = {a,b,c,d,e,ze}, ~(1) = {x7} for 7 € {a,b,c,d,e} (there are no further contraries),
and R = s <« d,p,a;p < zc;xc + f;xd < e;xa < b,t;t < c. The dispute state on the top has been ob-
tained via the sequence of moves: m(1,p,pb1,s < p,d,a), m(2,0,0b2,za < b,t), m(3,0,0b2,zd < ¢),
m(4,p,pb1,p + xc). At step 4, the proponent has two possible moves: pm(4,p,pf2,ze) and
pm(4,p,pbl,xzc + f). Performing the latter gives rise to the move m(5,p,pb1,zc + f) and the dispute
state shown at the bottom. Green pieces are introduced by the proponent, yellow ones by the opponent. Black
arrows depict rules, while blue arrows represent attacks. Dashed arrows show dependencies between rules as
well as between assumptions and rules. Assumptions are shown in boldface. Red rules are blocked, dark red
statements are culprits and light red blocked opponents statements. Blue indicates possible moves. Numbers in
squares next to a rule or assumption indicate the step at which they obtain their current status. For example, a
“4” next to p < xc indicates that this rule was introduced by the proponent at step 4, which is also when ¢ < ¢
became blocked (shown in red) due to ¢ becoming a culprit (because attacked by xc). Additional information
can be retrieved: e.g. statement s becomes a proponent’s complete piece at step 5 (indicated by the number
above it), represented by comS(5, s,p); ¢ becomes a culprit at step 4 (cul (4,c¢)); or e and b become culprit
candidates at steps 3 and 2, respectively (culCan(3,e) and culCan(2,b)).

blocked if they contain a culprit in the body - i.e., assumptions that are attacked by the proponent.
Additionally, for the proponent, rules that contain the contrary of a defence in their body are also
blocked, as they would render the proponent’s rule set inconsistent.

In Line 20, the predicate unexpS/3 identifies unexpanded statements within the proponent’s rule set:
statements for which no rule has yet been introduced that justifies them. Conversely, in Line 21, the
predicate stExpS/3 identifies fully expanded statements in the opponent’s rule set — those for which all
matching-head rules are blocked. The next lines then define the opponent’s blocked statements: either
culprits (Line 22), or non-assumption statements for which all rules with a matching head are blocked
(Line 23). A blocked rule (stB1oS/4), defined in Line 24, is any rule that contains a blocked statement in
its body.

Lines 26 and 27 define the complete statements of the proponent: every defence is a complete
statement, as is any statement derivable via rules whose body is composed entirely of other complete
statements. These capture the statements for which the proponent has complete arguments. The
opponent’s analogous notions — unblocked complete statements (unbloComS/3) and unblocked complete
rules (unbloComR/4) — are defined in Line 28-30. These represent statements and rules that are part of
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Figure 5: Argument-based representation of the dispute states from Figure 4 (left corresponding to top, right to
bottom), with similar symbols and coloring scheme. The green rectangles represent the proponent’s arguments;
the yellow the opponent’s.

complete arguments of the opponent and that are not attacked by the proponent.

Lines 31-33 identify unblocked supporting statements and rules of the opponent (unbloSupSS/3,
unbloSupSR/4), i.e. those that contribute to justifying a contrary of a defence. These support the
identification of culprit candidates in Line 34 — assumptions that appear in such justifications. Since
these assumptions are part of a potential attack on the proponent, they become potential targets for
counter-attack.

Lines 36-45 define the possible moves to choose from at step t. These are:

+ pb1 - the proponent introduces a rule h <— B with head h = s to justify a currently unexpanded
statement s in their rule set, provided h < B is non-blocked and unused.

+ pb2 - the proponent introduces a rule i <— B whose head is contrary to a culprit candidate, such
that h < B is consistent, non-blocked, unused, and does not attack any defences.

« pf1 — the proponent introduces an unblocked rule h <— B whose body consists of complete
statements, thus allowing the derivation of the new claim h.

« pf2 — the proponent introduces an assumption a that is the contrary of a culprit candidate a and
a is consistent, unused, not itself a culprit, and does not attack any defences.

+ ob1 - the opponent introduces a rule h <— B with head h = s, where s is a statement contributing
to an argument attacking a defence, and h < B is non-blocked and unused.

« 0b2 - the opponent introduces a rule i <— B whose head is contrary to a defence, provided
h < B is non-blocked and unused.

« of 1 — the opponent introduces a rule h <~ B whose body is composed solely of unblocked
complete statements, thereby reinforcing or extending attacks on the proponent.

« of2 — the opponent introduces an assumption a, provided it is the contrary of a defence a and
has not yet been used.

Lines 47-52 then extract the statements and rules used in the selected move and add them to the
respective player’s rule set, ensuring that the opponent also has access to any rule or statement used by
the proponent.

Finally, Line 54 defines the termination condition for admissible semantics (ta): the dispute terminates
successfully if (i) the goal is a complete statement of the proponent (i.e. the proponent has a complete
argument for the goal), (ii) all culprits are complete statements (the proponent has complete arguments
for all statements used to attack the opponent), and (iii) no contrary of a defence is an unblocked
complete statement (all arguments of the opponent attacking the proponent are blocked, i.e. in turn
attacked by the proponent). If this condition holds and no further opponent moves are possible, the
proponent wins (Line 56); if the condition fails and the proponent has no remaining moves, the opponent
wins (Line 57).

As in the encoding for AFs, the step(t) subprogram selects the next move, giving precedence to
non-branching moves. Only if no such move is applicable will a single branching move among the
available branching types be selected. Finally, the #show directive indicates that when printing the
answer sets only the atoms encoding selected moves at each step are shown.



1 | #program updateState(t). 1| graph(m).

2| % add another option to perform "PF2" move 2| graph((A,1),m) :- arg(A).

3| pm(t,p,pf2,A) :- at(ds), assumption(A), 3| node(A, (A,1)) :- arg(A).

4 not cul(_,A), not stS(_,A,p), i | edge((A,B),m) :- att(A,B).

5 not contrary(A,A), 5

6 not contrary(D,A) : def(_,D). 6| attr(node,A,fillcolor, "green”) :- m(_,p,A).

7 7| attr(node,A,fillcolor,"yellow”) :- m(_,0,A).

8| % define: remaining assumptions s | attr(graph, (A,1),label, T) :- m(T,_,A).

9|% - neither defences, nor culprits 9

10| remA(t,A) :- tt(ts), assumption(A), 10| ldefeat(Tm,A) :- defeat(Tm,A), not m(_,_,A),

11 not def(_,A), not cul(_,A). 11 Tm = #min { T : defeat(T,A) }.

12 12 | attr(graph, (A,1),label,Tm) :- ldefeat(Tm,A).

13| % modify termination criteria: 13| attr(node,A,fillcolor,"red”) :- ldefeat(_,A).

14| term(t) :- tt(ts), g(G), comS(_,G,p), 14

15 comS(_,CC,p) : culCtr(_,CC); 15| Ipm(Tm,P,A) :- pm(Tm,P,A), not m(_,_,A), not defeat(_,A),
16 not unbloComS(t,DC,0) : defCtr(_,DC); 16 Tm = #max { T : pm(T,_,A) }.

17 not remA(t,A) : assumption(A). 17 | attr(graph, (A,1),label,T) :- lpm(T,_,A).

18 % require no assumption be remaining 18| attr(node,A,fillcolor,"lightblue”) :- lpm(_,_,A).

Figure 6: Left: extension of the encoding in Figure 3 for the stable semantics. Right: code for the graphical
representation of AF disputes (Figure 1) with clingraph.

Two steps of a dispute as generated by our system MS-DIS for an exemplary ABA framework is shown
in Figure 4. This shows the rule-based representation which consists in the graph of dependencies and
attacks among rules, together with labels (via colors) indicating the status of statements and rules at
the dispute state. The corresponding argument-based representation is shown in Figure 5.

3.3. Extensibility

One of the main advantages of the ASP-based approach is its modularity: adding new functionalities
often requires only small, local modifications. This section illustrates this extensibility with two
examples: first, we show how to adapt the ABA dispute encoding to support stable semantics, and
second: we demonstrate how to obtain a graphical representation of AF disputes, utilizing clingraph.

Stable semantics. Figure 6 (left) shows a code fragment extending Figure 3 for the stable semantics.
For a goal statement s, the proponent wins the dispute iff a stable extension exists containing an argument
for s. The proponent’s defence set in such a case corresponds to a set of stable assumptions [7]. Figure 6
specifically extends the updateState subprogram from Figure 3 with two small additions. First (Line 3),
it introduces a new forward move type (pf2) that allows the proponent to propose an assumption even
if it does not attack a culprit (unlike pf1). The conditions are: the assumption (i) is not a culprit, (ii) is
not already in the claim set, (iii) is consistent, and (iv) does not attack any current defences. Second, the
termination condition is extended for stable semantics (Line 14), triggered by tt(ts). In addition to the
admissible criteria, it requires that all assumptions be either culprits or defences, i.e., all non-proponent
arguments are attacked by the proponent. Remaining assumptions are identified via the remA predicate
(Line 10). To enable the stable semantics, the advancement and termination types at(ds) and tt(ts)
are passed as the base code parameter to the main solve call in Figure 1 (right).

Graphical representation. Figure 6 (right) shows how a graphical representation of disputes — here
for AFs — can be generated with just a few lines of ASP code using clingraph [14]. In Line 1, the
main graph m is declared, followed by the creation of subgraphs (A,[) for each argument A. Each
subgraph contains a single node representing A, allowing step number labels to be attached individually.
Edges are then added between arguments according to the attack relation. In Line 6 and the following
lines, arguments used by the proponent (opponent) are colored green (yellow) and labeled with the
step in which they were introduced. Defeated arguments are marked in red starting at Line 10, and
labeled with the first step in which they became defeated. Finally, from Line 15, possible next moves
are highlighted in light blue and annotated similarly. The visualization in Figure 2 is generated directly
from the encoding (plus a few additional facts to enhance aesthetics) shown above. A similar encoding



was used for ABA disputes, with an example shown in Figure 4. These visualizations make dispute
derivations easier to follow and are straightforward to produce within MS-DIS.

4. Implementation and evaluation

4.1. System

The code listings in Section 3 are part of our system MS-DIS, which implements dispute derivations
for both AFs and ABA. The system supports both automatic and interactive modes and includes a
visualization component. In automatic mode, given a claim and an ABA framework (or an argument
and an AF), the system attempts to construct a winning dispute for the proponent. In interactive mode,
the user is guided through the dispute process, with the system presenting available moves at each step
and updating the dispute state based on the selected move. The visualization component is implemented
using clingraph [14] as explained in Section 3.3. Further details can be found on the GitHub page.

4.2. Experimental setup

In our experiments, we focus on the implementation of MS-DIS (version 1.0) for ABA and, specifically, on
the efficiency of its automatic mode. Since the automatic and interactive modes can also be interleaved,
the results are relevant beyond the purely automatic setting.

We consider four aspects: (1) the performance benefit of the multi-shot approach; (2) comparison with
previous implementations of ABA disputes; (3) comparison with the most efficient inference-oriented
(i-e. also not dispute-based) system for ABA; and (4) the use of approximation within MS-DIS.

As to (1), we compare the multi-shot variant of MS-DIS - our main approach — with a naive one-
shot iterative version that restarts grounding and solving from scratch at each step. For a given step
number n, the first solver call checks whether the proponent can win within n steps, and the second
whether the search should continue. These correspond to lines 13 and 18 in Figure 1 (right).

As to (2), we compare MS-DIS with flexABle (version 1.0), which implements rule-based dispute
derivations for ABA as proposed in [10]. The system flexABle has been shown to outperform ear-
lier ABA systems [11, 12] and was the only ABA dispute solver to participate in the latest ICCMA
competition [3].

As to (3), we compare MS-DIS to aspforaba [15] (downloaded on 4.6.25), which uses static one-shot
ASP encodings. As the top-performing ABA solver in ICCMA’23, aspforaba offers an upper bound
for performance. While we consider the comparison of MS-DIS and aspforaba informative, we did
not expect MS-DIS to outperform aspforaba, given that the latter is optimized for decision problems,
whereas MS-DIS aims to simulate a dispute justifying a claim. In particular, to decide acceptance of
claims aspforaba requires a single call to an ASP solver, while MS-DIS requires multiple calls (albeit
making use of multi-shot capabilities).

As to (4), we evaluate a step-bounded approximation mode of MS-DIS, where a winning dispute
is returned only if found within a fixed step limit; otherwise, the instance is deemed unsatisfiable.
We test bounds of 5, 10, and 25 steps. This ensures 100% specificity (true negative rate), allowing a
fair comparison with an approximate mode of flexABle offering similar guarantees. In flexABle,
approximation is achieved by restricting the opponent to a randomly selected subframework [10]. In
our setup, the proponent sees the full framework, while the opponent is limited to 5%, 25%, or 50% of it,
maintaining the specificity guarantee.

For our experiments, we use the ICCMA’23 ABA benchmarks [3], which comprise 400 instances
containing between 25 and 5000 atoms. Each instance includes a query requiring solvers to determine
credulous acceptance under admissible semantics. The benchmarks span all combinations of the
following parameters: assumptions set at 10% or 30% of atoms; rule counts of up to 5 or 10 per atom;
and rule body sizes capped at 5 or 10. Solvers were given a 600-second timeout per instance, with any
run exceeding this limit recorded as a timeout. Notably, the correct outcome for 19 instances remains
unknown, as no participant in ICCMA’23 produced a result for them.
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Figure 7: Table on the left shows solving results for all 400 instances (top part) and for the 381 with known
correct answers (bottom part). “-” indicates the exact solver; “naive” denotes MS-DIS in the naive iterative
mode; “approx.” denotes approximate setup. Approximate setups compare MS-DIS with step limits 5, 10, 25 and
flexABle with opponent sampling at 5%, 25%, and 50%. Metrics: number of timeouts (#t-out.), incorrect results
(#inc.), total time in hours (time [h]), accuracy excluding timeouts (% acc.), and accuracy treating timeouts as
incorrect (% acc. t). All values are rounded to the nearest integer. Plot on the right shows solving times for
all instances, ordered by time (x-axis: solving time in seconds, y-axis: instance index). Solid label background
indicates exact solver; white background: approximate.

In our experiments both MS-DIS and aspforaba make use of the ASP solver clingo [4] version 5.6.2.
We made use of a high-performance computing cluster, with 64 GB of RAM allocated per task.

4.3. Results

The results of our experiments are summarized in Figure 7. MS-DIS, in the exact (i.e. non-approximate),
multi-shot variant solved 36 more instances than flexABle and took 5 hours less of total solving time.
Interestingly, even the naive iterative MS-DIS variant performs slightly better than flexABle.

Regarding approximate methods, we find MS-DIS to outperform flexABle across nearly all metrics.
For instance, an approximation with an upper bound of 10 steps in MS-DIS results in significantly fewer
timeouts compared to flexABle with 25% sampling (81 timeouts for MS-DIS versus 146 for flexABle
in the instances in the bottom half of the table). Additionally, MS-DIS achieves greater accuracy (90%
compared to 71%, excluding timeouts; 71% compared to 44%, including timeouts) and a shorter total
solving time (19 hours versus 25 hours). Notably, setting the upper bound to 25 steps guarantees 100%
accuracy (excluding timeouts), suggesting that successful disputes rarely require more than 25 steps,
regardless of the framework size.

By sacrificing accuracy, MS-DIS approaches the performance of aspforaba, and with a 5-step bound,
it can even surpass aspforaba — albeit with an approximate accuracy of 60%. This highlights a potential
niche for dispute-based systems, even when the primary goal is merely to determine the acceptance of
claims. In particularly hard instances, executing a bounded dispute (especially with human-in-the-loop
guidance) may yield more insight than receiving a time-out from systems such as aspforaba.

5. Conclusion

To the best of our knowledge, this is the first study of multi-shot solving for argument games, focusing
on disputes in ABA and AFs. Our prototype, MS-DIS, outperforms existing dispute ABA systems,
and its approximate variant matches the efficiency of the leading inference-focused ABA system —
showing the benefits of the approach, especially when interaction and explanation are needed. More
generally, our modular encodings and modern ASP systems suggest that multi-shot solving can serve
as a common basis for implementing and comparing argument games. As shown for AFs and ABA, the



control components (Figure 1-right) are reusable across two-player games, while the ASP modules for
initialization (base), state updates (updateState(t)), and move selection (step(t)) must be adapted.
We envision developing a library of encodings for argument games in diverse formalisms.
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