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Abstract
Aleatoric Logic is a logic of chance, where the interpretation of propositional atoms is modelled as the flip of a
coin, or a marble drawn from an urn. Propositions correspond to these chance events and consequently their
interpretation is inherently probabilistic. Propositions are not evaluated as true or false, but instead are evaluated
as likelihoods, giving a many-valued logic similar to fuzzy logics. An equational theory is given through an
equivalence relation that associates two propositions with identical likelihood: for example the chance of a coin
landing heads and then tails, will be the same as the chance of the coin landing tails and then heads, regardless of
the coin’s bias. In this paper we present a refined syntax for aleatoric logic and provide a proof system for the
equational theory.
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1. Introduction

When our knowledge is lacking, we often defer to chance. For example, if we are unsure which route
may be faster we may have an imaginary coin that we flip, where the outcome determines the choice.
When we have knowledge, or experience, this might inform the chance so we may think there is an 80%
chance that the second route is faster, and this associates a bias on our imaginary coin (or epistemic
uncertainty). We may not have direct experience of the routes in question, but we might have related
experience (rain slows traffic, traffic is busier leaving the city in the afternoon, trains are more frequent
in the evening etc). These experiences can be combined into a complex proposition to determine the
chance that one route is better than another.

This kind of everyday reasoning with course probabilities is the focus of this paper. We will present
a logic of chance events, aleatoric logic, which is a refinement of earlier work [1, 2]. Our focus is on the
reasoning process, and particularly proof theory. As aleatoric logic is many-valued (so propositions
are evaluated as likelihoods), we will focus on its equational theory, and present an axiomatization for
when two propositions necessarily have the same likelihood. We will discuss key properties of this
axiomatization and show that it is sound.

2. Related work

There has been a considerable number of works that have examined the semantics of probability. Early
work includes Kolmogorov [3], Ramsey [4] and de Finneti [5], who produced axioms for reasoning
about probabilities of events. There have been a number of very good works that have examined logics
of probabilistic reasoning, including [6, 7, 8, 9]. These approaches include a modality for the probability
of some event occurring. As the probabilities are explicit in the syntax, these approaches reason about
the probabilities of events: compare the certain statement route 1 is faster 80% of the time to the uncertain
statement route 1 is faster. The first is about an explicit probability and is always true or false, whilst
the second is a probabilistic statement that may be sometimes true and sometimes false.

Fuzzy logics and many valued logics take a similar many valued approach to reason about linguistic
variables in the presence of vagueness [10, 11, 12, 13], where the semantics allow for the increasing
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or decreasing of plausibility, without necessarily committing to the absolute certainty of a proposi-
tion. When the product semantics are used (so the plausibility of two propositions taken together are
multiplied) there is some correspondence with independent random events like the flipping of coins,
although the semantics are not entirely probabilistic: the residual operator has no probabilistic analogue
and complementation does not represent the failure of an event to occur. An axiomatization of the
Basic Logic BL is given and extended to various settings and forms including first order logics. While
the underlying fuzzy logic is many valued, BL axiomatises the set of propositions whose interpretation
is necessarily true (or equal to 1). Rational Pavelka Logic [14] introduces a set of rational constants
between 0 and 1 to the language, and is able to extend the axiomatization BL to the set of propositions
necessarily greater than some threshold. In [13] Majer and Sedlár introduce a many valued probabilistic
modal logic, that is an extension of Łukasiewicz logic.

An equational proof theory has previously been presented for the aleatoric calculus and aleatoric
modal calculus. These logics are substantially simpler than the one we investigate here, as they do not
include the fixed point operator introduced in [1].

3. Aleatoric Propositions

Here we present a syntax and semantics for describing aleatoric propositions, and their probabilities.
The essential elements of the language are a set of propositional atoms corresponding to some

proposition, and operations describing propositions built from these elements (negation, conjunction,
iteration).

3.1. Syntax

For the syntax we assume a set of propositional atoms 𝒜 = {𝐴,𝐵,𝐶, . . . }, corresponding to proposi-
tions.

Definition 1. The syntax for ℒ, the language of aleatoric propositions, is given by the Backus-Naur
form:

ℒ = 𝛼 ::= 𝑋 | ¬𝛼 | 𝛼 ∧ 𝛼 | 𝛼◁▷𝛼 | F𝑋.𝛼

where 𝑋 ∈ 𝒜, and in the proposition F𝑋.𝛼, 𝑋 must be linear in 𝛼: an atomic proposition 𝑋 ∈ 𝒜 is linear
in 𝛼 if and only if for every sub-formula 𝛽 ∧ 𝛾 of 𝛼, 𝑋 does not appear in 𝛽. Any propositional atom 𝑋
that does not only appear within the scope of F𝑋 operators in 𝛼 is free in 𝛼 and we let fr(𝛼) refer to the
set of free variables in 𝛼. Parentheses will be used to indicate precedence.

The propositions are conceived of as events of chance: every separate occurrence of an atom is
considered as a flip of a biased coin, or a Bernoulli test. The operations are built recursively so that every
proposition may be considered to be a complex Bernoulli test, as follows:

• ¬𝛼 (not 𝛼) inverts the outcome of the test, so success is replaced by failure and vice-versa
• 𝛼 ∧ 𝛽 (𝛼 and 𝛽) is a test that passes if and only if the test for 𝛼 passes and the test for 𝛽 passes.
• 𝛼◁▷𝛽, (𝛼 or 𝛽) is a test that randomly and fairly chooses either 𝛼 or 𝛽 to test, and passes if and

only if the chosen test passes1.
• F𝑋.𝛼, corresponding to a test where every evaluation of the atom 𝑋 is replaced by the original

proposition, F𝑋.𝛼.

The fixed point operator, F𝑋.𝛼, required that 𝑋 is linear in 𝛼, and this is to ensure that the fixed point
is unique and non-ambiguous. This is a similar notion to monotonicity, which is used when defining
fixed points in discrete domains.

We use the abbreviations 𝛼 ∨ 𝛽 for ¬(¬𝛼 ∧ ¬𝛽) and 𝛼 → 𝛽 for ¬(𝛼 ∧ ¬𝛽).

1The choice of the term “or” will no doubt be controversial as it clashes with the familiar term for logical disjunction. However,
arguably the common usage of the term is just as good a match for this aleatoric or.



For example, consider the proposition:

F𝑋.((𝐴 ∧𝑋)◁▷(𝐴 → 𝑋))

This is interpreted as a test where a random choice is made between the left and right arguments of◁▷.
If 𝐴 ∧𝑋 is chosen then the test 𝐴 is performed. If it fails, the whole proposition fails, while if it passes,
we must test 𝑋 which is a proxy for repeating the test from the beginning. On the other hand, if the
right argument, 𝐴 → 𝑋 is chosen, then if the test for 𝐴 fails, the whole proposition passes, while if 𝐴
passes then we must test 𝑋 so we repeat the test from the start.

3.2. Semantics

The semantics describe the likelihood of a proposition given an interpretation, where an interpretation
simply assigns likelihoods to atoms.

Definition 2. An interpretation is a map I : 𝒜 −→ [0, 1] that assigns a probability to each variable.
Given an interpretation, I, let I[𝑋←𝑥] be the interpretation where for all 𝑌 ∈ 𝒜, I[𝑋←𝑥](𝑌 ) = I(𝑌 ) if
𝑌 ̸= 𝑋 , and I[𝑋←𝑥](𝑋) = 𝑥.

Definition 3. The interpretation, I may be extended to the whole of ℒ as follows2:

𝑋I = I(𝑋)

(¬𝛼)I = 1− 𝛼I

(𝛼 ∧ 𝛽)I = 𝛼I · 𝛽I

(𝛼◁▷𝛽)I = (𝛼I + 𝛽I)/2

(F𝑋.𝛼)I = 1/2 if 𝛼I[𝑋←1/2]
= 1/2, and

(F𝑋.𝛼)I = 𝑝 where 𝛼I[𝑋←𝑝]
= 𝑝, otherwise.

We call 𝛼I the I-likelihood of 𝛼, or just likelihood of 𝛼 when I is clear from context.

The semantics are similar to fuzzy logic [10, 11], with the product T-norm, but there is no notion of a
residual, and the negation operator is quite different. The operators and propositions act as elements in
a chance driven protocol, with atomic propositions being elements of pure chance, ¬𝛼 is the chance
of the test 𝛼 failing, 𝛼 ∧ 𝛽 is the chance of 𝛼 and 𝛽 passing, noting that each occurrence of 𝛼 and 𝛽
is an independent event, 𝛼◁▷𝛽 is the chance of a random choice of 𝛼 or 𝛽 passing, and F𝑋.𝛼 is the
chance of 𝛼, where 𝑋 is interpreted as having the same chance as F𝑋.𝛼. The fact that 𝑋 is linear in 𝛼
is sufficient to ensure that (F𝑋.𝛼)I is always uniquely determined.

Lemma 4. In all interpretations I, for all propositions F𝑋.𝛼, the I-likelihood of F𝑋.𝛼 is always uniquely
defined.

Proof: (Sketch) To see this, it is enough to notice that when 𝑋 is linear in 𝛼, and 𝛼 does not contain
any fixed point operators, then 𝛼I may always be written as

𝑓(𝑌 I
1 , . . . , 𝑌

I
𝑛 ) + 𝑔(𝑌 I

1 , . . . , 𝑌
I
𝑛 ) ·𝑋I

where the 𝑌1, . . . , 𝑌𝑛, 𝑋 are the variables of 𝛼, and 𝑓 and 𝑔 are polynomial functions, such that for
all interpretations 𝑓(𝑌 I

1 , . . . , 𝑌)𝑛
I) + 𝑔(𝑌 I

1 , . . . , 𝑌
I
𝑛 ) ≤ 1. Therefore, the evaluation of (F𝑋.𝛼)I is the

solution to the equation:

𝑥 = 𝑓(𝑌 I
1 , . . . , 𝑌

I
𝑛 ) + 𝑔(𝑌 I

1 , . . . , 𝑦
I
𝑛) · 𝑥, so, (F𝑋.𝛼)I =

𝑓(𝑌 I
1 , . . . , 𝑌

I
𝑛 )

1− 𝑔(𝑌 I
1 , . . . , 𝑌

I
𝑛 )

.

2The split for (F𝑋.𝛼)I is to account for the case where 𝛼 = 𝑋 , and there are infinitely many fixed points. See the proof of
Lemma 4.



Table 1
Some useful abbreviations for aleatoric propositions.

Operator Expression Description
1/2 F𝑋.𝑋 half
⊥ F𝑋.(1/2 ∧𝑋) fail/No
⊤ ¬⊥ pass/Yes

𝛼 ∨ 𝛽 ¬(¬𝛼 ∧ ¬𝛽) 𝛼 disjunct 𝛽
𝛼 → 𝛽 ¬𝛼 ∨ 𝛽 𝛼 implies 𝛽

(𝛼?𝛽 :𝛾) F𝑋.

⎛⎝ (𝛼 ∧ 𝛽) ∨𝑋
◁▷

(¬𝛼 ∧ 𝛾) ∨𝑋

⎞⎠◁▷

⎛⎝ (𝛼 → 𝛽) ∧𝑋
◁▷

(¬𝛼 → 𝛾) ∧𝑋

⎞⎠ if 𝛼 then 𝛽 else 𝛾

𝛼
0
𝑚 ⊤ 𝛼 0 out of𝑚.

𝛼
𝑛
0 ⊥ 𝛼 𝑛 out of 0.

𝛼
𝑛
𝑚 (𝛼?𝛼

𝑛−1
𝑚−1 :𝛼

𝑛
𝑚−1 ) 𝛼 > 𝑛 out of𝑚.

↑ 𝛼 F𝑋.(𝛼 → 𝑋) always 𝛼 (suf.)
↓ 𝛼 F𝑋.(↑ 𝛼 ∨𝑋) always 𝛼 (nec.)
□𝛼 F𝑋((↑ 𝛼 ∨𝑋)◁▷(↓ 𝛼 ∧𝑋)) always 𝛼

Note if the denominator of this equation is 0, then the equation is effectively 𝑥 = 𝑥, so every value
is a solution, and particularly 𝑥 = 1/2 is a solution, so we would have (F𝑋.𝛼)I = 1/2. If alpha does
contain fix point operators, then we can apply this argument inductively, where 𝑓 and 𝑔 are now
rational functions, noting that the linearity constraint is enough to ensure that the denominator would
always be functionally independent of 𝑋I. □

Given these semantics we are able to define some familiar concepts as aleatoric propositions with ℒ.
Table 1 contains some useful abbreviations.

Of particular note is the abbreviation (𝛼?𝛽 :𝛾), which was taken as a primitive in the earlier work.
The semantic interpretation is

(𝛼?𝛽 :𝛾)I = 𝛼I · 𝛽I + (1− 𝛼I) · 𝛾I, (1)

so𝛼 is tested, and if it holds, the proposition is interpreted as 𝛽 and if it fails the proposition is interpreted
as 𝛾. It is non-trivial to deduce this interpretation so we derive it here. The subformulas are evaluated
as:

((𝛼 ∧ 𝛽) ∨𝑋)I = 𝛼I · 𝛽I + (1− 𝛼I · 𝛽I) ·𝑋I

((¬𝛼 ∧ 𝛾) ∨𝑋)I = 𝛾I − 𝛼I · 𝛾I + (1− 𝛾I + 𝛼I · 𝛾I) ·𝑋
((𝛼 → 𝛽) ∧𝑋)I = (1− 𝛼I + 𝛼I · 𝛽I) ·𝑋I

(((¬𝛼 → 𝛾) ∧𝑋)I = (𝛼I + 𝛾I − 𝛼I · 𝛾I) ·𝑋I

The aleatoric or operators take a uniformly weighted sum of the formulas (each is multiplied by 1/4):

⎛⎝ ((𝛼 ∧ 𝛽) ∨𝑋)◁▷((𝛼 → 𝛽) ∧𝑋)
◁▷

((¬𝛼 ∧ 𝛾) ∨𝑋)◁▷((¬𝛼 → 𝛾) ∧𝑋)

⎞⎠I

=
∑︁⎡⎢⎢⎣

𝛼I · 𝛽I + (1− 𝛼I · 𝛽I) ·𝑋I

𝛾I − 𝛼I · 𝛾I + (1− 𝛾I + 𝛼I · 𝛾I) ·𝑋
(1− 𝛼I + 𝛼I · 𝛽I) ·𝑋I

(𝛼I + 𝛾I − 𝛼I · 𝛾I) ·𝑋I

⎤⎥⎥⎦ /4(2)

= (𝛼I · 𝛽I + (1− 𝛼I) · 𝛾I + 3 ·𝑋)/4 (3)

Solving for the fix point we have:⎛⎝F𝑋
((𝛼 ∧ 𝛽) ∨𝑋)◁▷((𝛼 → 𝛽) ∧𝑋)

◁▷
((¬𝛼 ∧ 𝛾) ∨𝑋)◁▷((¬𝛼 → 𝛾) ∧𝑋)

⎞⎠I

=
(𝛼I · 𝛽I + (1− 𝛼I) · 𝛾I)/4

1− 3/4
. (4)

as required.



Within the minimal language, ℒ, we are able to describe some interesting non-aleatoric properties.
Particularly ⊤ is the event that always happens, or in traditional terms: true. Correspondingly ⊥ is the
event that never happens, or false. These abbreviations are then important in defining logical operators
such as conjunction, disjunction, and implication, although care must be taken with these operators as
their operands are aleatoric. For example, 𝜑 = 𝛼 ∧ (𝛼 → 𝛽) is not equivalent to 𝛽, since 𝛼 is an event
that must occur twice in this equation. Indeed, expanding it out we find 𝜑I = 𝛼I ·(𝛼I ·𝛽I+1−𝛼I) ̸= 𝛽I.

On the other hand 1/2 is entirely aleatoric and represents pure random chance. Finally, the operation
□𝛼 allows us to determine whether a formula is always Yes. We use the operator and language of modal
logic here, using the box operator to indicate that alpha is necessary. This is not a modal interpretation,
and there are no possible worlds, although one could make the analogy that each time an atom is
sampled corresponds to a possible world.

4. Aleatoric Logic

The aleatoric propositions described so far do not conform to the standard definition of a logic, which
is, roughly, a set of true statements in a given language. The aleatoric propositions given an inherently
probabilistic many valued logic. In the case of Fuzzy Logics like the Basic Logic [11], MTL ([15] and RPL
[14] have provided recursive axiomatisations of the sets of propositions that are always true. However
in the context of aleatoric logic, such a set would not be very interesting, as none of these propositions
would contain an element of chance.

To build a logic of aleatoric propositions we must introduce an unambiguous relationship between
propositions, and the simplest relationship is equivalence, to mean that two propositions have identical
chance.

4.1. Identities

Definition 5. An aleatoric identity is a pair of aleatoric propositions 𝛼, 𝛽 ∈ ℒ, and is denoted 𝛼 ≃ 𝛽,
with the intended meaning that 𝛼 and 𝛽 have exactly the same likelihood. Let Ξ be the set of all aleatoric
identities.

Given some interpretation, I, we say I em satisfies the identity 𝛼 ≃ 𝛽 if 𝛼I = 𝛽I. If an identity is
satisfied by all interpretations, we say it is a valid identity.

With the concept of identity we are able to go beyond the extensional interpretation of what is
observed, to the intensional interpretation of which propositions are equivalent.

Some valid identities are:

• 𝛼 ≃ ¬¬𝛼: Expanding the semantics we have (¬¬𝛼)I = 1− (1− 𝛼I) = 𝛼I.
• 𝛼 ∧ 𝛽 ≃ 𝛽 ∧ 𝛼: (𝛼 ∧ 𝛽)I = 𝛼I · 𝛽I = 𝛽I · 𝛼I = (𝛽 ∧ 𝛼)I.
• F𝑋.(𝛼◁▷𝑋) ≃ 𝛼: solving for 𝑥 = (𝛼I + 𝑥)/2 we get F𝑋.(𝛼◁▷𝑋)I = 𝛼I.
• F𝑋.(𝐴 ∧𝑋)◁▷(𝐴 → 𝑋) ≃ 1/2: as discussed in Section 3, this expression is as likely to be true

as it is to be false.

The first is familiar as double negation, and the second is the commutativity of conjunction. Both are
typical of Boolean reasoning. The third one is a combined property of the◁▷operation and the fixed
point. If we repeatedly sample a fair coin, it will eventually land heads.

4.2. Theories

Having established a notion of true logical statements via identities, we can consider more than just the
set of valid identities; we can consider systems that conform to a set of given identities.

Given a set of identities, Θ ⊆ Ξ, we may ask whether it is necessary that some identity holds in any
interpretation where every identity in Θ holds.



Definition 6. We refer to a set of identities as a theory, and given a theory Θ and some interpretation I,
such that every identity in Θ is satisfied by I, we say I satisfies Θ, written I |= Θ.

The notion of satisfiability and validity may be extended to theories.

Definition 7. If there is some interpretation I where I |= Θ we say Θ is satisfiable and if every interpre-
tation satisfies Θ we say Θ is valid. For every identity, 𝛼 ≃ 𝛽, if every interpretation I that satisfies Θ also
satisfies 𝛼 ≃ 𝛽, we say Θ validates 𝛼 ≃ 𝛽, written Θ |= 𝛼 ≃ 𝛽.

Theories impose constraints on the probabilities that atoms can represent. For example 𝑋 ≃ 𝑋 ∧𝑋
requires that I(𝑋) = I(𝑋)2, which only has the solutions 0 and 1, so this identities requires 𝑋 to be
certain (always Yes or always No).

4.3. Deductive systems

We would like to be able to describe a system of natural deduction for aleatoric identities, so that given
a theory of known aleatoric identities, we are able to infer all consequential identities. To do this we
require the notion of a substitution.

Definition 8. Given 𝛼, 𝛽 ∈ ℒ and 𝑋 ∈ 𝒜 the substitution of 𝛽 for 𝑋 in 𝛼 (written 𝛼[𝑋∖𝛽]) is
defined recursively as follows: 𝑌 [𝑋∖𝛽] = 𝑌 (where 𝑌 ̸= 𝑋), 𝑋[𝑋∖𝛽] = 𝛽, (¬𝛼)[𝑋∖𝛽] = ¬(𝛼[𝑋∖𝛽]),
𝛼1 ∧ 𝛼2[𝑋∖𝛽] = 𝛼1[𝑋∖𝛽] ∧ 𝛼2[𝑋∖𝛽], 𝛼1 ◁▷ 𝛼2[𝑋∖𝛽] = 𝛼1[𝑋∖𝛽] ◁▷ 𝛼2[𝑋∖𝛽], (F𝑌 𝛼)[𝑋∖𝛽] =
F𝑌 𝛼[𝑋∖𝛽], where 𝑋 ̸= 𝑌 , and 𝑌 does not occur free in 𝛽, and (F𝑋𝛼)[𝑋∖𝛽] = F𝑋𝛼.

Substitutions can be applied sequentially, so given 𝑋 = (𝑋0, . . . , 𝑋𝑛−1) ∈ 𝒜𝑛 and 𝛽 =
(𝛽0, . . . , 𝛽𝑛−1) ∈ ℒ𝑛, we write 𝛼[𝑋∖𝛽] as an abbreviation for 𝛼[𝑋0∖𝛽0] . . . [𝑋𝑛−1∖𝛽𝑛−1].

If a substitution is defined we say it is a valid substitution.

Note that the substitutions account for the free variables, so fixed point operators in 𝛼 will not affect
the interpretation of 𝛽 in the substitution 𝛼[𝑋∖𝛽]. The deductive system consists of inference rules.

Definition 9. An aleatoric rule 𝛼1 ≃ 𝛽1, . . . , 𝛼𝑛 ≃ 𝛽𝑛 ⊢ 𝛼 ≃ 𝛽 is a pair consisting of a finite set of
identities, {𝛼1 ≃ 𝛽1, . . . , 𝛼𝑛 ≃ 𝛽𝑛} ⊂ Ξ (the antecedent); and a single identity 𝛼 ≃ 𝛽 (the consequent).
When the antecedent is the empty set we write ⊢ 𝛼 ≃ 𝛽 and refer to it as an aleatoric axiom. We refer to a
set of aleatoric rules as a deductive system.

Entailment follows from the repeated application of rules, closed under substitution:

Definition 10. Given a deductive system, Δ, and a theory, Θ, the Δ-closure of Θ is ΘΔ, the smallest
theory where: Θ ⊆ ΘΔ; and for any rule 𝛼1 ≃ 𝛽1, . . . , 𝛼𝑛 ≃ 𝛽𝑛 ⊢ 𝛼 ≃ 𝛽, such that 𝛼1 ≃ 𝛽1, . . . , 𝛼𝑛 ≃
𝛽𝑛 ∈ ΘΔ we have 𝛼 ≃ 𝛽 ∈ ΘΔ.

Given some deductive system Δ and a theory, Θ, we say Θ entails 𝛼 ≃ 𝛽 in Δ if 𝛼 ≃ 𝛽 ∈ ΘΔ

With these definitions we can now define the logical concepts: consistent, sound and complete.

Definition 11. A theory Θ is consistent for a deductive system Δ, if ⊤ ≃ ⊥ /∈ ΘΔ.
A deductive system Δ is consistent if ∅ is consistent for Δ.

Definition 12. A deductive system Δ is sound if for every theory Θ, and every identity 𝛼 ≃ 𝛽 ∈ ΘΔ,
we have for every interpretation I that satisfies Θ, 𝛼I = 𝛽I.

Definition 13. A deductive system Δ is complete for a theory Θ, if for every identity 𝛼 ≃ 𝛽 where
Θ |= 𝛼 ≃ 𝛽, we have 𝛼 ≃ 𝛽 ∈ 𝜃Δ. A deductive system Δ: is complete if it is complete for every finite
theory; is strongly complete if it is complete for every theory; and is complete for validity if it is complete
for the empty theory.



Note, in many proof systems being “complete” and “complete for validity” are synonymous, since
implication and conjunction allow entailment from a finite theory to be represented in a single proposi-
tion (at least for compact logics). However, implication and conjunction over identities are not available
in this setting, so “complete” and “complete for validity” are quite different concepts.

We are now able to formulate the following questions:

1. Can we define a sound deductive system that is complete for validity?
2. Can we give a sound a complete deductive system for all theories?

The difference between these two questions is non-trivial. A sound deductive system that is complete
for validity only needs to generate identities that are necessarily true, for example 𝛼 ∧ 𝛽 ≃ 𝛽 ∧ 𝛼.
However, there is no concept of a negative identity, or inequality, so there is no requirement to generate
⊤ ̸≃ ⊥ for example.

This becomes important when we consider complete deductive systems for all theories. For example,
the identity 𝑋 ∨ ¬𝑋 ≃ 𝑋 ∧ ¬𝑋 is not satisfiable in any interpretation3, so {𝑋 ∨ ¬𝑋 ≃ 𝑋 ∧ ¬𝑋}
would entail ⊤ ≃ ⊥ in a complete deductive system.

4.4. A characterisation of valid identities

In this section we present a substitution schema of axioms and rules to characterise the valid identities
of aleatoric logic.

Definition 14. The deductive system, aleatory logic, (AL) consists of the following rules, where 𝛼, 𝛽, 𝛾,
𝛿 are any aleatoric propositions such that rules are well formed.

id ⊢ 𝛼 ≃ 𝛼
∧-comm ⊢ 𝛼 ∧ 𝛽 ≃ 𝛽 ∧ 𝛼
∧-assoc ⊢ (𝛼 ∧ 𝛽) ∧ 𝛾 ≃ 𝛼 ∧ (𝛽 ∧ 𝛾)
dn ⊢ ¬¬𝛼 ≃ 𝛼
dist-¬ ⊢ ¬(𝛼◁▷𝛽) ≃ (¬𝛼)◁▷(¬𝛽)
dist-∧ ⊢ (𝛼◁▷𝛽) ∧ 𝛾 ≃ (𝛼 ∧ 𝛾)◁▷(𝛽 ∧ 𝛾)
swap ⊢ (𝛼◁▷𝛽)◁▷(𝛾 ◁▷𝛿) ≃ (𝛽 ◁▷𝛿)◁▷(𝛼◁▷𝛾)
same ⊢ 𝛼◁▷𝛼 ≃ 𝛼
simp ⊢ (𝛼 ∧ 𝛽)◁▷¬(¬𝛼 ∧ ¬𝛽) ≃ 𝛼◁▷𝛽
half ⊢ ¬F𝑋.𝑋 ≃ F𝑋.𝑋
amp ⊢ ¬(𝛼 ∧ 𝛽) ∧ F𝑋.𝑋 ≃ ¬𝛼◁▷(𝛼 ∧ ¬𝛽)
fp-elim ⊢ F𝑋.𝛼 ≃ 𝛼[𝑋∖F𝑋.𝛼]
subst 𝛼 ≃ 𝛽 ⊢ 𝛾[𝑋∖𝛽] ≃ 𝛾[𝑋∖𝛼]
trans 𝛼 ≃ 𝛽, 𝛽 ≃ 𝛾 ⊢ 𝛼 ≃ 𝛾
fp-intro 𝛼 ≃ 𝛽[𝑋∖𝛼] ⊢ 𝛼 ≃ F𝑋.(𝛽), where 𝛽 ̸≃ 𝑋
order 𝛼◁▷𝛾 ≃ 𝛽 ◁▷𝛾 ⊢ 𝛼 ≃ 𝛽.

The condition on fp-intro The condition on fp-intro is in some sense circular and deserves
discussion. It requires that 𝛽 is not identical to 𝑋 , as in such a case we would have (through the id
axiom) that for every proposition 𝛼, 𝛼 ≃ 𝑋[𝑋∖𝛼] and so for every proposition 𝛼, ⊢ 𝛼 ≃ F𝑋.𝑋 and
the whole system would collapse to a trivial singleton. Due to the linearity constraint, the only way this
collapse might occur is if 𝛽 is identical to 𝑋 . It is not enough to say that 𝛽 is not equal to 𝑋 , because 𝛽
could take trivially equivalent forms like 𝑋◁▷𝑋 .

There are several possible ways to enforce this: syntactically we could require that 𝛽 has the form
𝛾1 ◁▷𝛾2 where 𝑋 does not occur in 𝛾2. This would suffice, but it is not clear that it would be general
enough and it certainly complicates some otherwise simple proofs. We have included the condition for

3Substituting into Definition 3, this would require us to find a solution for 1− 2𝑥+ 2𝑥2 = 0 with 𝑥 ∈ [0, 1], which does not
have any real solutions.



now, as it is the simplest compromise, and may be treated as an oracle. However, more work needs to
be done to ensure that it is sound and well defined. The concern is that some identity ⊢ 𝛼 ≃ 𝛾 might
be inferred through an application of fp-elim assuming 𝛽 ̸≃ 𝑋 , but only from the identity ⊢ 𝛼 ≃ 𝛾,
we are able to infer 𝛽 ≃ 𝑋 . A careful argument needs to be given to justify that such a situation cannot
arise.

We provide some example derivations to demonstrate the deductive system AL and establish some
useful theorems.

1. F𝑋.𝛼 ≃ ¬F𝑋.¬𝛼[𝑋∖¬𝑋]. That is the fixed point operator is self dual.

F𝑋.𝛼 ≃ 𝛼[𝑋∖F𝑋.𝛼] fp-elim
F𝑋.𝛼 ≃ ¬¬𝛼[𝑋∖¬𝑋][𝑋∖¬F𝑋.𝛼] dn

¬F𝑋.𝛼 ≃ ¬𝛼[𝑋∖¬𝑋][𝑋∖¬F𝑋.𝛼] id, subs, dn
¬F𝑋.𝛼 ≃ F𝑋.¬𝛼[𝑋∖¬𝑋] fp-intro, if 𝛼 ̸≃ 𝑋
¬F𝑋.𝛼 ≃ F𝑋.¬𝛼[𝑋∖¬𝑋] half, if 𝛼 ≃ 𝑋
F𝑋.𝛼 ≃ ¬F𝑋.¬𝛼[𝑋∖¬𝑋] dn

2. 𝐴 ≃ F𝑋.((𝐴 ∧𝑋)◁▷(𝐴 ∨𝑋)). This equivalence is akin to a Bernoulli race: where given a test
two outcomes (say heads and tails) we run the test to see if a randomly chosen outcome (heads or
tails, chosen fairly) occurs, and if it does not occur, we repeat the process. The outcome of the
process is identical to the original test. The proof is below:

𝐴 ≃ 𝐴◁▷𝐴 same
𝐴 ≃ (𝐴 ∧𝐴)◁▷(𝐴 ∨𝐴) simp
𝐴 ≃ ((𝐴 ∧𝑋)◁▷(𝐴 ∨𝑋))[𝑋∖𝐴] rewriting
𝐴 ≃ F𝑋.((𝐴 ∧𝑋)◁▷(𝐴 ∨𝑋) fp-intro

3. 𝛼◁▷¬𝛼 ≃ F𝑋.𝑋 . A fair choice between a test or its negation a the same as a fair coin flip.

(𝛼◁▷¬𝛼) ≃ ¬¬(𝛼◁▷¬𝛼) dn
(𝛼◁▷¬𝛼) ≃ ¬(¬𝛼◁▷𝛼) dn dist-¬
(𝛼◁▷¬𝛼) ≃ ¬((¬𝛼◁▷𝛼)◁▷(¬𝛼◁▷𝛼)) same, subs
(𝛼◁▷¬𝛼) ≃ ¬((𝛼◁▷¬𝛼)◁▷(𝛼◁▷¬𝛼)) swap, subs
(𝛼◁▷¬𝛼) ≃ ¬(𝛼◁▷¬𝛼)) same, subs
(𝛼◁▷¬𝛼) ≃ F𝑋.¬𝑋 fp-intro
(𝛼◁▷¬𝛼) ≃ F𝑋.𝑋 (1), half

5. Soundness

We show the soundness of the rules and axioms of AL, and provide a discussion of the axioms.

Lemma 15. The deductive system AL is sound.

Proof: We will also give some discussion of each axiom as we address them in turn.

• id: ⊢ 𝛼 ≃ 𝛼. This follows trivially since for all interpretations I, 𝛼I = 𝛼I.
• ∧-comm: ⊢ 𝛼 ∧ 𝛽 ≃ 𝛽 ∧ 𝛼. This follows directly from the commutativity of multiplication: for

all interpretations (𝛼 ∧ 𝛽)I = 𝛼I · 𝛽I = 𝛽I · 𝛼I = (𝛽 ∧ 𝛼)I.
• ∧-assoc: ⊢ (𝛼 ∧ 𝛽) ∧ 𝛾 ≃ 𝛼 ∧ (𝛽 ∧ 𝛾). This follows from the associativity of multiplication:
((𝛼 ∧ 𝛽) ∧ 𝛾)I = 𝛼I · 𝛽I · 𝛾I = (𝛼 ∧ (𝛽 ∧ 𝛾))I.

• dn: ⊢ ¬¬𝛼 ≃ 𝛼. This is the standard double negation axiom: (¬¬𝛼)I = 1− (1− 𝛼I) = 𝛼I.
• dist-¬: ⊢ ¬(𝛼 ◁▷ 𝛽) ≃ (¬𝛼) ◁▷ (¬𝛽). Negation distributes over the aleatoric or operator:
(¬(𝛼◁▷𝛽))I = 1− (𝛼I + 𝛽I)/2 = ((1− 𝛼I) + (1− 𝛽I))/2 = ((¬𝛼)◁▷¬𝛽))I.



• dist-∧: ⊢ (𝛼 ◁▷ 𝛽) ∧ 𝛾 ≃ (𝛼 ∧ 𝛾) ◁▷ (𝛽 ∧ 𝛾). Conjunction also distributes over aleatoric or:
((𝛼◁▷𝛽) ∧ 𝛾)I = ((𝛼I + 𝛽I)/2) · 𝛾I = (𝛼I · 𝛾I + 𝛽I · 𝛾I)/2 = ((𝛼 ∧ 𝛾)◁▷(𝛽 ∧ 𝛾))I

• swap: ⊢ (𝛼1 ◁▷ 𝛼2) ◁▷ (𝛽1 ◁▷ 𝛽2) ≃ (𝛼2 ◁▷ 𝛽2) ◁▷ (𝛼1 ◁▷ 𝛽1). This axiom captures the limited
associativity and commutativity of the aleatoric or operator. As the aleatoric or operation
is essentially a weighted sum (in fact an average), we can change the order of the operands,
provided we preserve the depth of nesting. For all interpretations I, ((𝛼1 ◁▷𝛼2)◁▷(𝛽1 ◁▷𝛽2))

I =
(𝛼I

1 + 𝛼I
2 + 𝛽I

1 + 𝛽I
2)/4 = ((𝛼2 ◁▷𝛽2)◁▷(𝛼1 ◁▷𝛽1))

I.
• same: ⊢ 𝛼 ◁▷ 𝛼 ≃ 𝛼. As aleatoric or works as an average, it is idempotent: (𝛼 ◁▷ 𝛼)I =
(𝛼I + 𝛼I)/2 = 𝛼I.

• simp: ⊢ (𝛼 ∧ 𝛽)◁▷¬(¬𝛼 ∧ ¬𝛽) ≃ 𝛼◁▷𝛽. This simplification rule is interesting, and not obvious.
It reflects an interesting logic puzzle, where you are given a coin with an unknown bias, and
you can choose to flip it once (winning if it lands heads), or flip it twice, but if you flip it twice
you will only win if it lands heads 𝑥 times, where 𝑥 is randomly chosen to be 1 or 2 (with equal
chance). It can be shown that your chance of winning remains the same regardless of your choice.
In terms of this axiom:

((𝛼 ∧ 𝛽)◁▷¬(¬𝛼 ∧ ¬𝛽))I = ((𝛼I · 𝛽I) + (𝛼I + 𝛽I − 𝛼I · 𝛽I))/2

= (𝛼I · 𝛽I)/2

= (𝛼◁▷𝛽)I.

• half : ⊢ F𝑋.𝑋 ≃ ¬F𝑋.𝑋 . As mathematically every value is a fixed point of 𝑋 , this axiom
defines the fixed point in this case to be 1/2. Note that the semantics could have also been defined
to use a greatest fixed point ((F𝑋.𝑋)I = 1), or a least fixed point ((F𝑋.𝑋)I = 0), and these
semantics could also remove the linearity constraint on fixed point variables, so in the greatest
fixed point semantics (F𝑋.((𝑋 ∨𝑋) ∧ ¬𝑋) = (3−

√
5)/2. Such semantic variations are left to

future work. The soundness of the axiom is a direct application of the semantics.
• amp: ⊢ ¬(𝛼 ∧ 𝛽) ∧ F𝑋.𝑋 ≃ ¬𝛼 ◁▷ (𝛼 ∧ ¬𝛽). This is an interesting axiom, named amp for

aleatoric modus ponens, as it may be rewritten as (𝛼 → 𝛽)∧F𝑋.𝑋 ≃ ¬𝛼◁▷(𝛼∧ 𝛽) (substituting
𝛽 for ¬𝛽). Ignoring the factor of a half on the left side (F𝑋.𝑋) this could be read as 𝛼 implies
𝛽 is the same as either ¬𝛼 or 𝛼 ∧ 𝛽, where or is interpreted aleatorically. In this way, it gives a
sense of a deductive operation similar to modus ponens. The soundness follows as:

(¬(𝛼 ∧ 𝛽) ∧ F𝑋.𝑋)I = (1− 𝛼I · 𝛽I) · 1/2
= (1− 𝛼I + 𝛼I − 𝛼I · 𝛽I)/2

= ((1− 𝛼I) + (𝛼I) · (1− 𝛽I))/2

= (¬𝛼◁▷(𝛼 ∧ ¬𝛽))I.

• fp-elim: ⊢ F𝑋.𝛼 ≃ 𝛼[𝑋∖F𝑋.𝛼]. This is the standard fixed point definition. Note that in
Definition 8, 𝛼[𝑋∖F𝑋.𝛼] is only defined if 𝛼 is free for 𝑋 in 𝛼. That is, no free variable of 𝛼 can
become bound in the substitution. Soundness follows since (F𝑋.𝛼)I = 𝑝 where 𝛼I[𝑋←𝑝]

= 𝑝. As
the semantics are recursive and (F𝑋.𝛼)I = 𝑝, 𝛼I[𝑋←𝑝]

= 𝛼[𝑋∖F𝑋.𝛼]I as required.
• subst: 𝛼 ≃ 𝛽 ⊢ 𝛾[𝑋∖𝛽] ≃ 𝛾[𝑋∖𝛼]. As the semantics are given recursively, substituting equiva-

lent propositions into the same form will give equivalent propositions. Note that a substitution
𝛾[𝑋∖𝛼] is only defined if 𝛼 is free for 𝑋 in 𝛾. Also, note that the order of 𝛼 and 𝛽 are switched
so this axiom also establishes the symmetry of the ≃ relation. From 𝛼 ≃ 𝛽, and the substitution
instance of id: 𝑋 ≃ 𝑋 , the subst rule allows us to derive 𝛽 ≃ 𝛼.

• trans: 𝛼 ≃ 𝛽, 𝛽 ≃ 𝛾 ⊢ 𝛼 ≃ 𝛾. This rule simply establishes ≃ as a transitive relation, which
follows trivially from the transitivity of equality. This rule along with the axiom id and the subst
rule is enough to ensure that ≃ is an equivalence relation.

• fp-intro: 𝛼 ≃ 𝛽[𝑋∖𝛼] ⊢ 𝛼 ≃ F𝑋.(𝛽), where 𝛽 ̸≃ 𝑋 . This rule allows a fixed point operator
to be introduced, where a fixed point has been deduced. That is, if 𝛼I = 𝛽[𝑋∖𝛼]I, then 𝛼I is



a fixed point of 𝑋 in 𝛽. However, there is a problem in that 𝛼 may not be the only fixed point
in (and exclusively in) the case that 𝛽 is identical to 𝑋 (see Lemma 4). As discussed above, the
condition that 𝛽 ̸≃ 𝑋 is somewhat problematic, but it is the best compromise we have for now.

• order: 𝛼◁▷ 𝛾 ≃ 𝛽 ◁▷ 𝛾 ⊢ 𝛼 ≃ 𝛽.This rule is sound since if (𝛽I + 𝛾I)/2 = (𝛼I + 𝛾I)/2, then
multiplying both sides of the equation by 2 and subtracting 𝛾I is enough to show 𝛽I = 𝛼I. This
rule is required particularly for showing completeness for theories, where equivalences may
be stated without being able to be reduced to common elements. That is, we can derive such
equivalences where they necessarily hold in all interpretations, but give a theory that specifies
𝑋◁▷𝑌 ≃ 𝑍 ◁▷𝑌 , we will have 𝑋I/2 + 𝑌 I/2 = 𝑍I/2 + 𝑌 I/2 so can derive 𝑋I = 𝑍I.

We have shown all the rules of AL to be sound. □

6. Completeness for Validity

The completeness of the system AL is conjectured, but remains an open question.

Conjecture 16. The deductive system AL is complete for the validity of aleatoric logic.

The proposed proof of completeness for validity will proceed with the following steps:

1. Introduce a normal form for aleatoric propositions, referred to as aleatoric normal form (anf).
2. Show that every aleatoric proposition is provably equivalent to a proposition in anf.
3. Show a partial correspondence between anf and the rational functions from [0, 1]𝒜 to [0, 1].
4. Show that when two propositions in anf correspond to the same rational function, then they are

provably equivalent.

6.1. Aleatoric Normal Form

Aleatoric Normal Form shows that every proposition can be effectively represented by repeated Bernoulli
Tests over a finite set of propositional atoms. This normal form has previously been exploited to give
an expressiveness completeness result in [1].

Definition 17. Let 𝑋 be a reserved atom in ℒ. The set of propositions in 𝑋-aleatoric normal form is
generated by the following Backus-Naur form:

conj = 𝐴 | ¬𝐴 | conj ∧ conj

clause−𝑋 = 𝑋 | (¬conj ∧𝑋) | (conj ∨𝑋) | clause◁▷clause
anf−𝑋 = F𝑋.clause

Where 𝑋 is clear from context we just refer to aleatoric normal form, anf.

This normal form is closely related to the 𝑘-block normal form of [1], which was applied to show that
aleatoric logic was expressively complete for the set of rational functions from [0, 1]𝒜 to (0, 1).

Definition 18. A rational function, 𝑓 : (0, 1)𝒳 −→ (0, 1) is a 𝑘-block-function if there exists polynomi-
als ℓ and 𝑚:

ℓ(𝒳 ) =
∑︀

𝑎∈𝜌𝑘𝒳
ℓ𝑎

∏︀
𝑥∈𝒳 𝑥𝑎(𝑥,+) · (1− 𝑥)𝑎(𝑥,−)

𝑚(𝒳 ) =
∑︀

𝑎∈𝜌𝑘𝒳
𝑚𝑎

∏︀
𝑥∈𝒳 𝑥𝑎(𝑥,+) · (1− 𝑥)𝑎(𝑥,−)

where 𝜌𝑘𝒳 = {𝑎 ∈ {0, . . . , 𝑘}𝒳×{+,−} |
∑︀

𝑥∈𝒳 𝑎(𝑥,+) + 𝑎(𝑥,−) = 𝑘}, for all 𝑎 ∈ 𝜌𝑘𝒳 , ℓ𝑎 and 𝑚𝑎 are
integers such that ℓ𝑎 < 𝑚𝑎 and 𝑓(𝒳 ) = ℓ(𝒳 )/𝑚(𝒳 ).

A 𝑘-block function is designed to correspond to to the notion of 𝑘-block normal form aleatoric proposi-
tions, and also has an elegant correspondence to rational functions 𝑓 : [0, 1]𝒳 −→ (0, 1).



Lemma 19. Given some rational function 𝑓 : [0, 1]𝒳 −→ (0, 1), there is some 𝑘-block function 𝑓 ′ :
[0, 1] −→ (0, 1) such that 𝑓(𝒳 ) = 𝑓 ′(𝒳 ).

This is applied in [1] to give the following theorem.

Theorem 20. 1. For every aleatoric proposition 𝛼 ∈ ℒ defined over the free variables in 𝒳 , 𝑓𝛼(𝒳 ) is
a rational function from (0, 1) to (0, 1).

2. For 𝑘-block-function 𝑓(𝒳 ) from (0, 1)𝒳 to (0, 1), there is some aleatoric proposition 𝛼 such that
𝑓𝛼(𝒳 ) = 𝑓(𝒳 ).

3. For every rational function 𝑓(𝒳 ) from [0, 1]𝒳 to (0, 1), there is some aleatoric proposition 𝛼 such
that 𝑓𝛼(𝒳 ) = 𝑓(𝒳 ).

This motivates the proposed proof structure that we have given. While the result in [1] is a purely
semantic argument, the aim here is to formalise it in the deductive system AL. The reduction to rational
functions gives both a notion of equivalence (that of being functionally equivalent) and also a notion
of irreducibility: an aleatoric proposition in aleatoric normal form is irreducible if the numerator and
denominator of the corresponding rational function are co-prime.

The first conjecture required for the completeness proof is as follows:

Conjecture 21. Every aleatoric proposition, 𝛼, is equivalent to some proposition 𝛼̂ in aleatoric normal
form, where 𝛼 ≃ 𝛼̂ is provable in AL.

This is likely to be shown via an inductive transformation, showing each step is provably correct. One of
the more difficult steps is applying a version of the distributivity property required for the clause−𝑋
normal form. It can be shown that

𝛼 ∧ ¬(𝛽 ∧ 𝛾) ≃ F𝑋

⎡⎣ ((𝛼 ∧ ¬𝛽) ∨𝑋)◁▷((𝛼 ∧ 𝛽 ∧ ¬𝛾) ∨𝑋)
◁▷

(𝛼 ∧𝑋)◁▷(¬(𝛼 ∧ 𝛽 ∧ 𝛾) ∧𝑋)

⎤⎦
Given 𝛼 is in aleatoric normal form, it can be written as

𝛼 ∼= F𝑋.◁▷

⎡⎢⎢⎢⎢⎢⎢⎣

(𝑎11 ∧ . . . ∧ 𝑎1𝑥1) ∨𝑋
. . .
(𝑎𝑛1 ∧ . . . ∧ 𝑎𝑛𝑥𝑛) ∨𝑋
¬(𝑏11 ∧ . . . ∧ 𝑏1𝑦1) ∧𝑋
. . .
¬(𝑏𝑚1 ∧ . . . ∧ 𝑏𝑚𝑦𝑚) ∧𝑋

⎤⎥⎥⎥⎥⎥⎥⎦
where 𝑎𝑖𝑗 and 𝑏𝑖𝑗 are of the form 𝐴 or ¬𝐴 where 𝐴 ∈ 𝒜. Here, the aleatoric-or operation (◁▷) is
applied uniformly to a set of propositions, so for example, F𝑋 ◁▷ [𝛼1, 𝛼2, 𝛼3] is an abbreviation for
F𝑋.((𝛼1 ◁▷𝛼2)◁▷(𝛼3 ◁▷𝑋)). This representation is reminiscent of a truth table representation used in
Boolean propositional logic: the 𝑎𝑖 rows are the combinations of variables that are specified as true;
and the 𝑏𝑖 rows are the combinations of variables that are specified as false. However, the nature of
aleatoric logic replaces the “combinations of variables” with multi-sets of positive and negative atoms.

Letting𝐴 be an arithmetical variable, and¬𝐴 be (1−𝐴), we can show that the semantic interpretation
of 𝛼 is equivalent to the multivariate rational function:

𝛼 =

∑︀𝑛
𝑖=1

∏︀𝑛𝑖
𝑗=1 𝑎𝑖𝑗∑︀𝑛

𝑖=1

∏︀𝑛𝑖
𝑗=1 𝑎𝑖𝑗 +

∑︀𝑚
𝑖=1

∏︀𝑚𝑖
𝑗=1 𝑏𝑖𝑗

Now it is possible that the numerator and denominator of this rational function have a common factor.
The following conjecture is required:



Conjecture 22. Every aleatoric proposition, 𝛼, is equivalent to some proposition 𝛼* in aleatoric normal
form, where 𝛼 ≃ 𝛼* is provable in AL, and 𝛼* is an irreducible rational function, in the sense that the
numerator and the denominator are relatively prime.

The completeness then follows from the following conjecture:

Conjecture 23. Given two propositions, 𝛼 and 𝛽, where:

1. 𝛼 and 𝛽 are in aleatoric normal form;
2. 𝛼 and 𝛽 are equivalent, irreducible rational functions;
3. 𝛼 and 𝛽 are equivalent rational function;

we can show 𝛼 ≃ 𝛽 in AL.

This conjecture follows from the swap, ∧-comm and ∧-assoc axioms.
These conjectures are sufficient to give the completeness of AL: by Conjecture 22, any two semanti-

cally equivalent propositions, 𝛼 and 𝛽, must have irreducible aleatoric normal form variants 𝛼* and 𝛽*

where 𝛼 ≃ 𝛼*, 𝛽 ≃ 𝛽* such that 𝛼* and 𝛽* are functionally equivalent. By Conjecture 23, we have
𝛼* ≃ 𝛽*, and the result follows by the trans rule.

Declaration on Generative AI

The author(s) have not employed any Generative AI tools.
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