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Abstract

In the intersection between case-based reasoning and non-monotonic reasoning, case models serve as frameworks
to evaluate arguments with respect to cases. The evaluation is based on their coherence, presumptive validity,
and conclusiveness, in which all valid arguments must be at least coherent, meaning that those arguments must
be grounded in at least one case. This paper, on the other hand, attempts to explore new evaluations for novel
arguments, which are not required to ground in any case. To develop the new evaluation, we introduce revision
operators in case models and associated properties based on AGM postulates. We then define a conclusively
adherent evaluation, in which novel arguments can be valid. After that, we relate their application to the
understanding of abstract argumentation for case-based reasoning (AA-CBR). We demonstrate how the translation
of AA-CBR case bases into case models can be described through revision sequences; and analyse the properties
of conclusively adherent evaluation related to evaluation and attacks in AA-CBR.
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1. Introduction

Case model [1] is a logical framework proposed to evaluate arguments based on their coherence,
presumptive validity, and conclusiveness. Each case model consists of a set of consistent, mutually
incompatible, and different propositional logical sentences representing cases, and a total and transitive
preference ordering over the cases. Several applications of case models have been investigated, including
ethical reasoning [1], evidential reasoning [2, 3], and legal reasoning [4].

One fundamental requirement in case models is that every valid argument must be at least coherent,
meaning that the argument must be grounded in at least one existing case. However, in several
applications, such as case-based reasoning, it requires to evaluate the validity of arguments even if they
are not grounded in any existing cases, making the arguments always invalid in original evaluations.

Therefore, this paper introduces a crucial extension by defining new evaluations for novel arguments,
which are not grounded in any existing cases. To facilitate this, this paper defines revision operators
for case models, adapting the AGM postulates [5] from belief revision theory. Subsequently, the
paper defines conclusively adherent evaluation, allowing to evaluate novel arguments by attempting to
maximize the satisfaction of defined properties.

Furthermore, this paper explores the application of conclusively adherent evaluation to abstract
argumentation for case-based reasoning (AA-CBR) [6]. AA-CBR is a case-based reasoning model based
on presumptive reasoning and abstract argumentation [7]. This paper demonstrates that we can describe
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the translation of AA-CBR case bases into case models as revision sequences. This translation allows for
an in-depth analysis of the properties of novel arguments within the AA-CBR case base. The analysis
reveals the insights of how case-based reasoning inferences are made, linking conclusively adherent
arguments to the AA-CBR inference and others to the AA-CBR attacks.

The contributions of this paper can be summarised as follows.

+ The paper introduces families of revision operators for case models, including refinement-based
revision operators and single revision operators, and specifically defines a top revision operator
and a bottom revision operator, both of which add at most one case to a case model.

+ The paper defines associated properties of these revision operators, including ¢-success, ¢-
inclusion, vacuity, and extensionality.

« The paper investigates the satisfaction of these properties by different types of revision operators.

+ The paper defines conclusively adherent arguments based on the satisfaction of the properties.

+ The paper demonstrates how to describe the translation of AA-CBR case bases into case models
through bottom revision sequences of novel arguments.

« The paper analyses the properties of novel arguments in the sequences related to AA-CBR
concepts, stating that if a novel argument is conclusively adherent with respect to a translated
case model, then the corresponding situation-outcome pair is valid with respect to the case base,
and if a novel argument is not conclusively adherent with respect to a translated case model, the
corresponding situation-outcome pair would attack some precedent in the AA framework if it is
included in the case base, and vice versa.

The paper is structured as follows. Section 2 provides related work on the background of belief
change and case-based reasoning research. Section 3 describes a formalism of case models, argument
evaluations in case models, and applications of case models in case-based reasoning. Section 4 defines
revision operators for case models with associated properties based on the AGM postulates and con-
clusively adherent evaluation. Section 5 presents an analysis of conclusively adherent arguments on
the translation of AA-CBR case bases into case models. Section 6 discusses several implications of this
paper and suggests future work. Finally, Section 7 concludes this paper.

2. Related Work

Nonmonotonic reasoning researchers have long been interested in making inferences that go beyond
the data explicitly available to a system. This interest has derived the development of various reasoning
paradigms, such as belief change and case-based reasoning, that aim to simulate the kind of flexible,
context-sensitive reasoning that humans routinely perform. These paradigms are especially valuable
when dealing with incomplete, evolving, or conflicting information. Integrating insights from these
reasoning paradigms with modern machine learning models remains a key challenge to make Al systems
more reliable and explainable.

Belief change considers two main entities: beliefs and consequences, usually represented in propo-
sitions. The main data structure in belief revision is belief sets, which is assumed to contain logical
sentences considering some beliefs and all their consequences. To explain the change in belief sets,
several operators have been formulated based on AGM framework [5], which becomes a fundamental
foundation for the formal study of belief change. They establish rationality postulates that govern how
a rational agent should incorporate new, possibly conflicting, information into an existing belief set
while preserving consistency. The AGM postulates provide structure for operations such as expansion,
contraction, and revision, focussing on maintaining coherence and minimal change. Beyond classical
postulates, previous works have proposed new criteria to address limitations of the original framework,
particularly concerning iterative belief revision [8] — how to consistently accommodate a sequence
of belief updates rather than a single change. Following this, several works, such as [9], explore the
relation between belief changes and rational inferences.



Meanwhile, case-based reasoning studies how to reason through cases from prior experience. Pio-
neered case-based reasoning systems, such as HYPO [10], relied mainly on analogical reasoning. Later
works have developed logical frameworks for case-based reasoning, such as abstract argumentation for
case-based reasoning [6] and precedential constraint [11]. Case models [1] can be considered as one of
such developments, but in particular focus on representing cases as logical sentences and evaluating
arguments. Previous works have investigated connections between case models and other case-based
reasoning frameworks, such as the connection with abstract argumentation for case-based reasoning
[12] and the connection with precedential constraint [13].

To our knowledge, this is the first study to connect case models with belief change. This connection
is relevant to several aspects of nonmonotonic reasoning, such as cumulative reasoning and cautious
monotonicity found in conditional logic [14] and case-based reasoning with cases represented as
arguments [15]. However, our focus is on case models, which specifically address the logical properties
of cases, such as logical consistency and mutual incompatibility, with cases represented as logical
sentences rather than arguments, distinguishing case models from those works in conditional logic and
case-based reasoning.

3. Case Models

In this paper, we use a classical logical language £ generated from propositions in a standard way. We
write — for negation, A for conjunction, V for disjunction, <+ for equivalence, T for tautology and L
for contradiction. The associated classical, deductive, and monotonic logical inference is denoted as
F. We say L C L is logically consistent iff each element of L is not a contradiction (formally, ¢ I/ L
for all ¢ € L). We say L C L is consistent iff all elements of L can be true together (formally, L I/ L).
We say L C L is mutually incompatible iff two elements of L cannot be true together (formally, for all
©,1 € L such that ¢ # 1): ¢ A F L). Examples of mutually incompatible sets are {p A ¢, —p A r} or
even {p1 A ¢, p2 A r} if we have a background knowledge that p; A ps - L.

A case model [1] is a pair (C,>) where C' C L is a finite, logically consistent, and mutually
incompatible set of logical sentences, each of which is called a case. > is a total preorder over C,
commonly for modelling preference relations [16]. For ¢,y € C, we write ¢ ~ 9 iff ¢ > 1) and
1 > p, and we write ¢ > ) iff o > 1) and ¢ # ¢. Case model space M is defined as as the set of all
possible case models on the language £. Hence, for all ¢ , 7 and x € C, (C,>) € M has the following
properties [1]:

1. logically consistent: ¥ = (i.e., ¢ I/ L);
mutually incompatible: If I/ ¢ <+ 1), then = —(p A 9) (i.e,, then o A F L);
different: If - ¢ <+ 1), then ¢ = 1;
total: ¢ > Y or ¢ > ;
transitive: If ¢ > 1 and ) > x, then ¢ > x.

AN

In case models, an argument is considered as a pair of logical sentences. Given a case model (C, >)
and an argument (¢, 1) € L x L where ¢ is called a premise and 1 is called a conclusion. An evaluation
F is then considered as a relation from a case model to an argument. Three evaluations, called in this
paper as basic evaluations, have been originally defined as follows [1]:

« (C,>) Feon (@, ) iff (p,1) is coherent with respect to (C, >) e, Jw € C:whk ¢ At); we
then say (i, 1) has a grounding in w.

« (C,>) Fpres (0, v) iff (¢, ) is presumptively valid with respect to (C,>) ie,Jw € C : w -
e A, andVw' € C :if W' F p;thenw > W',

« (C,>) Feone (@, ) iff (p, 1) is conclusive with respect to (C,>) ie, Jw € C : w F ¢ A1); and
Ywe C:ifwk @, thenwk @ A,

Consequently, basic evaluations are ranked from the strongest to the weakest as Fconc, Fpres, Feon as

(C,>) Econe (¢,1) implies (C, >) Fpres (¢, 9); and (C, >) Fpres (¢, ¥) implies (C, >) Eeop (@, ).



Thus, every valid argument according to basic evaluations must be at least coherent, where the premise
and the conclusion can be logically implied from at least one of the cases. This property was originally
designated so that a conclusion is retracted if we extend the premise to the degree that there is no
grounding in any case. We call an argument such that the premise has no grounding in any case as a
novel argument, formally defined as follows.

Definition 1 (Novel argument). An argument (@, ) is novel with respect to (C, >) iff Vw € C, w I/ .
Proposition 1. A novel argument cannot be valid with respect to a basic evaluation.

Proof. If E is a basic evaluation, then for every case model (C, >) and argument (¢, ) such that
(C,>) F (o,0), (C,>) Feon (p,1) and hence Jw € C' : w F ¢. Therefore, (¢, 1) cannot be a novel
argument with respect to (C, >). O

Since preferences in case models are total and transitive, each case model (C, >) can be represented
as a sequence of logical sentence sets L1, ..., L, such that, for 1 <4, j < n (we call each L; a layer):

1. Li,..., Ly, is apartition of C (e, C = L1 U...U L, and L; N L; = ()); and
2. p~Yiff 9 € Ly and
3. p>viffope Liandy € Ljand i < j.

Hereafter, we write L1 > ... > L, instead of Ly,..., L, to distinguish it from a general sequence.
Example 1 demonstrates a case model and some examples of basic evaluations.

Example 1. Consider the case model (C,>) = {—big A ~fly} > {wing A fly} > {big A ~fly},
which represents a state of knowledge concerning the distribution of animals across three distinct groups: (1)
the majority group of animals which are not big and cannot fly, (2) the significant group of animals which
have wings and can fly, and (3) the minority group of animals which are big and cannot fly. Examples of
basic evaluations and novel argument with respect to the case model are as follows:

« (T, f1y) is coherent (which can be interpreted as some animals can fly) because the argument has
a grounding in the case wing A £1y.

« (T,—f1y) is presumptively valid (which can be interpreted as animals presumptively cannot fly)
because the argument has a grounding in the case ~big N\ —f1y, which is >-maximal within all
the cases implying the premise.

« (wing, f1y) is conclusive (which can be interpreted as all animals that have wings can fly, according
to the current state of knowledge) because the argument has a grounding in the case wing A\ fly
and all the cases that imply wing also imply wing A f1y.

« (wing A big,—~f1ly) is novel (which can be interpreted as we cannot conclude whether big animals
which have wings cannot fly, according to the current state of knowledge) because the argument has
no grounding in any case.

In this paper, we focus particularly on the application of case models in case-based reasoning [13, 17].
In this application, the arguments are constrained so that the premises and conclusions are from disjoint
domains. Firstly, we assume an outcome domain O, of which each element is called an outcome,
as a finite mutually incompatible subset of £. We call an argument (¢, 1)) an outcome-inference
argument iff the premise ¢ does not imply any outcome (i.e., Vo € O : ¢ I/ 0), and the conclusion v
is an outcome or a special proposition nil, not included in O and not occurring in any case models.
An outcome-inference argument of which the conclusion is an outcome is called an outcome-based
argument while an outcome-inference argument of which the conclusion is n:! is called an outcome-
free argument, used when we could not find any outcome as a conclusion. We extend the basic
evaluations by replacing “ w F ¢ A 9" in the original definition with “Vo € O : w F p and w I/ 0” to
evaluate an outcome-free argument. That is, for a case model (C, >) and an outcome-free argument
(¢, mil), the basic evaluations are extended as follows:



« (C,>) Econ (pynil) iff Jw € C :Vo € O : wt ¢andw f o; we then say (p, nil) has a
grounding in w.

« (C,>) Epres (p,nil) iff Jw e C:Voe O :whk pandw I/ 0,and V' € C :if ' F ; then
w > w.

« (C,>) Feone (p,nil)iff Jw € C :Vo € O : wh pandw If 0;and Vw € C :ifw F ¢, then
Yo € O :<<wk ¢and >> w I/ 0. (The statement in «...» can be omitted).

Proposition 2. Two outcome-inference arguments (¢, 1) and (¢', ") with different conclusions v #
cannot have a grounding in the same case (i.e., a non-contradiction logical sentence).

Proof. Following the extended definition of basic evaluations, if one conclusion is nil, then the proposi-
tion clearly holds. If two conclusions are included in O, then the case implies ¥ A 1)’ which leads to
contradiction as O are mutually incompatible but the case is non-contradiction. d

4. Evaluating Novel Arguments: Lessons from Belief Change

To develop a new evaluation for novel arguments, we first introduce revision operators and their
associated properties based on AGM postulates [5]. A revision operator is defined as follows.

Definition 2 (Revision operator). Let M be the case model space and L be the set of all outcome-inference
arguments with respect to outcome domain O. A revision operator ¢ is a binary operator from M x 7T to M.
The result (called a revised case model) of applying ¢ to a case model (C, >) (called an original case model)
and an outcome-inference argument (i, 1)) (called a revision argument) is denoted as (C,>) © (¢, ).

A revision operator ¢ can satisfy the following properties, for some ¢ € {coh, pres, conc}:

1. t-success iff (C, =) o (9, ) Fe (,1).
2. (-inclusion iff for every outcome-inference argument (@, ),
if (C,>) Fe (@,9) then (C,>) o (¢,9) Fe (p,1).
3. vacuity iff for every outcome-inference argument (o, ), 3
IF(C,2) Heon (2, ) and b # v then (C. =) o (9, ) Heon (7, D) ]
4. extensionality iff for everyNgo/ € L such that ¢ +» ¢ and every outcome-inference argument (o, ),
if (C, =) o (0, ¥) Fe (¢, 1) then (C, =) o (¢',9) Fy (@,9), and vice versa.

In Definition 2, we classify success and inclusion into three levels according to three basic evaluations
using a label “/-" . Intuitively, /-success means that a revision argument should be valid in /-evaluation
with respect to the revised case model. ¢-inclusion means that the valid arguments in /-evaluation
should be preserved their validity after revision. Vacuity means that every incoherent argument with
different conclusion from a revision argument should remain incoherent with respect to the revised
case model. Finally, extensionality means that if two revision arguments are logically equivalent, the
revision should result two revised case models that evaluate any argument equivalently. We then define
a family of revision operators based on case model refinement [18], defined as follows.

Definition 3 (Case Model Refinement [18]). A case model refinement is an order = over the case model
space M such that for (C,>),(C’,>"y € M, (C,>) < (C",>') iff forallw € C, there existsw' € C’
such that w' F w. We then say (C’,>') refines (C, >).

It has been studied that < is a reflexive and transitive order [18], meaning that it is an order over
the case model space, starting from the case model with the empty case set ({), ) to more refined case
models. A refinement-based revision operator is defined as follows.

Definition 4 (Refinement-based revision operator). A revision operator ¢ is refinement-based iff for every
(C,>) € M and every outcome-inference argument (¢, ), (C,>) © (¢, ) Feon (¢,1) (coh-success);
and (C,>) = (C,>) o (p, 1)) (revision-as-refinement).

Consequently, refinement-based revision operators are assured to satisfy coh-inclusion.



Proposition 3. Every refinement-based revision operator satisfies coh-inclusion.

Proof. Let (,1)) be an outcome-inference argument, ¢ be a refinement-based revision operator, and
(C",2") = (C, =) o (¢, 7). Since (C, >) < (C’,>"), for every outcome-inference argument (@, 1)), if
there is w € C such that w F @ A 1 then there is w’ € C’ such that ' F w and hence W' F @ A 1.

Therefore, if (C, >) E.on (P, {b) then (C, >) o (¢, ¥) Feon (&, 7;) O

Since every refinement-based revision operator satisfies coh-success and coh-inclusion, it cannot
satisfy conc-success and conc-inclusion, showing that maintaining conclusiveness is challenging for
refinement-based revision operators (see [18] for details on the hardness of the validity change).

Proposition 4. Every refinement-based revision operator cannot satisfy conc-success.

Proof. Let (C,>) be a case model with non-empty case set C' (i.e., C' # ()). Consider an outcome-
inference argument (¢, 1) such that (C, >) E..n (¢, ), and (¢, ¢’) be an outcome-inference argument
such that ¢’ # 1). Since (C, >) Ecop, (p, 1), there is a case w € C' that (¢, 1) has a grounding in. Let ¢
be a refinement-based revision operator and (C’, >") = (C, >) ¢ (¢, ¢'). Then, there is w’ € C’ such
that w’ - w (according to Definition 3) and hence (¢, 1) has a grounding in w’, w’ F ¢, and (p, ¢’) has
no grounding in w’. Thus, (C,>) ¢ (¢, V) Feone (¢,1"). Therefore, no refinement-based operator can
satisfy conc-success in this setting. O

Proposition 5. Every refinement-based revision operator cannot satisfy conc-inclusion.

Proof. Let (g, 1)) be an outcome-inference argument and (, 1)) be an outcome-inference argument
with ¢ - @ and 1) # ¢. Consider a case model (C,>) such that (C,>) Feone (&,1). Let o be a
refinement-based revision operator and (C’, >') = (C, >) ¢ (¢, v). Since ¢ satisfies coh-success and
@ F @, there is ' € C' such that (p, ) has a grounding in ', w’ + &, and (¢, 1) has no grounding
in . Thus, (C,>) Eeone (@,1) but (C,>) o (¢, 1) Heone (@,1). Therefore, no refinement-based
operator can satisfy conc-inclusion in this setting. O

Next, we define a sub-family of refinement-based revision operators, called single revision operators,
which add at most one case to an original case model so that a revision argument has a grounding in
the added case. To simplify the definition, we assume that, in a case model (C, >), each case w; € C
contains a unique proposition p; not occurring in arguments such that p; A p; - L for two distinct
cases wj,w; € C (i.e. w; # wj). This p; works as a naming proposition to ensure the requirement of
mutual incompatibility in case models. We then say a single revision operator is simple if the added
case is minimally constructed from the revision argument. Specifically, we define two simple revision
operators. One is a top revision operator, where the new case is added to the new highest layer. The
second is a bottom revision operator, where the new case is added to the new lowest layer. The formal
definition is as follows.

Definition 5 (Single, top, and bottom revision operator). A revision operator ¢ is single iff

* lf<C7 2> Feoh (‘Pa ¢>: <07 Z> <& ((P, ¢) = <C, Z>, and
o if (C,>) Feon (9, 9), (C,2) o (p,4) = (CU{wn}, >')

where (¢,1) has a grounding in w,, and the preference > is preserved in >', meaning that for every case

o, eC,o > iff o >" 1.

Definition 6 (Simple, top, and bottom revision operator). A single revision operator ¢ is simple iff the
new case wy, in Definition 5 satisfies the following conditions:

o if is an outcome (i.e, p € O), wy = ppn A @ A ); and
o if isnil, wy, = pp A @,



where p,, is a new naming proposition. A top revision operator A is a simple revision operator such
thatVw € C : w, >' w and a bottom revision operator V is a simple revision operator such that
Yw e C:w > wy.

Intuitively, the top revision operator gives preference to new cases, whereas the bottom one gives
preference to existing cases. Example 2 demonstrates examples of revisions using the bottom revision
operator.

Example 2. Let {po,p1,p2,p3} be a mutually incompatible set of naming propositions. Consider an
outcome domain O = {f1ly, ~fly} and a case model (C,>) = {pg A ~big A =f1ly} > {p1 A wing A
fly} > {p2 A big A =f1y} (similar to Example 1 but with naming propositions).

« (C,>) A (wing A big,~fly) = {p3 A wing A big A ~fly} > {po A =big A ~fly} >
{p1 A wing A\ f1y} > {pa A big A ~fly}. Since the top revision operator gives preference to
the new case, the revision does not preserve the presumptive validity of some arguments, such as
(T,—f1y).

« (C,>)V(wingA\big,—fly) = {popA—bigA—fly} > {p1AwingAfly} > {p2Abigh—Fly} >
{ps Awing A\ big A —~f1y}. Since the bottom revision operator gives preference to the existing cases,
the revision preserves the validity of any presumptively valid arguments, such as (T,—f1ly).

Table 1 shows the satisfaction of the properties by refinement-based, single, top, and bottom, revision
operators. v’ means that the revision operator always satisfies the property while x means that the
revision operator does not always satisfy the property. The following propositions show the proof of
some non-trivial results in the table.

Table 1
Satisfaction of Properties by Revision Operators
Revision Success Inclusion . . .
Vacuity Extensionality
Operators
coh— pres— conc— coh— pres— conc—
Refinement-based v X X v X X X X
Single v X X v X X v X
Top v v X v X X v v
Bottom v X X v v X v v

Proposition 6. Every single revision operator is refinement-based.

Proof. Let (C,>) be a case model, (¢, 1)) be an outcome-inference argument, ¢ be a single revision
operator, and (C’, >') = (C,>) ¢ (¢,1). From Definition 6, C' C C’. Therefore, for every w € C,
w € C' logically implies itself and hence a single revision operator is refinement-based. g

Proposition 7. Every single revision operator satisfies vacuity.

Proof. Let (C,>) be a case model, (¢, 1)) be an outcome-inference argument, ¢ be a single revision
operator, and (C',>') = (C,>) o (p, ). For every outcome-inference argument ($, 1) such that
Y # 9, if (C,>) Heon (p, 1) and hence there is no w € C' that (@, 1)) has a grounding in, then there is
no w' € €’ such that (», ¢) has a grounding in either because w,, is only a case that is added and (i, ?))

has a grounding in w,,. Therefore, for every outcome-inference argument (p, 1%) such that ¢ # 1, if

(C,2) Feon (,9) then (C,2) o (9, 9) Feon (,9)). O
Proposition 8. Every simple revision operator satisfies extensionality.

Proof. Let (C, >) be a case model, (¢, 1)) be an outcome-inference argument, and ¢ be a simple revision
operator. Since it is trivial in the case (C,>) F.op (¢, %) then we prove in the case (C, >) Heon (@, ).
From Definition 6, if ) € O, consider w,, = p, A ¢ A and w!, = pl, A ¢’ A ; and if ¢ = nil, consider



wn = pn A @ and w!, = pl, A ¢'. Then, every outcome-inference argument (, 1) that has a grounding
in wy,, also has a grounding in w/,, and vice versa (naming propositions do not occur in arguments).

Therefore, (C,>) o (¢, 1) Fy (@, ) iff (C,>) o (¢’ 1) Ep (p, ) for every £ € {coh, pres,conc}. 0O
Proposition 9. The top revision operator (A) satisfies pres-success.

Proof. Let (C, >) be a case model and (¢, ¢’) be an outcome-inference argument. From Definition 6,
(C,>) A (p,0) = (CU{wn},>) andVw € C : w, >" w. Then, Vw € C U {w,} : ifw F ¢ then
wy, > w. Therefore, (C,>) A (p, V) Epres (¢, ). O

Proposition 10. The bottom revision operator (V) satisfies pres-inclusion.

Proof. Let (C,>) be a case model and (¢, 1)) be an outcome-inference argument. From Definition 6,
(C,>)V(p, ) = (CU{wp},>") such that Vw € C : w >’ w,,. Then, for every outcome-inference
argument (p, 1), if (C,>) Epres (p,1) then there is w € C that (@,1)) has a grounding in, and for
everyw' € C'ifw' F ¢ thenw > . Since w > wy, and w >" W/, for every w” € C U {w, } if " F ¢
then w > w”. Therefore, (C, >)V (0, V) Epres (@, ). O

Interestingly, if a revision argument is novel, every simple revision operator satisfies conc-success
(and hence pres-success).

Proposition 11. If a revision argument is novel with respect to the original case model, every simple
revision operator satisfies conc-success.

Proof. Let (C, >) be a case model, (¢, 1) be a novel argument with respect to (C, >), and ¢ be a simple
revision operator. From Definition 1 and Definition 6, (C, >) ¢ (¢, ) = (C' U {w, }, >') and for every
w € C, w I/ . Therefore, there is only w,, € C' U {w,} such that w,, F ¢ and (y, ¢) has a grounding in
wp,. Therefore, (C,>) ¢ (¢, 1) Feone (@, 0). O

Consequently, if a revision argument is novel with respect to the original case model, the bottom
revision operator becomes satisfying all the properties defined except conc-inclusion. We then define
conclusively adherent evaluation as follows.

Definition 7 (Conclusively adherent evaluation). Let (C,>) be a case model and (¢, 1)) be an outcome-
inference argument. (¢, 1) is conclusively adherent with respect to (C, >), denoted as (C, >) Fconc—ad
(i, ), iff for every conclusive outcome-inference argument (', ') with p = ', ' = 1.

Example 3. Continuing from Example 2, let O = {f1y,~f1ly} and (C,>) = {po A ~big A = fly} >
{p1 A wing A 1y} > {p2 A big A —~fly}. Examples of conclusively adherent evaluations are as follows:

« (C,>) Feonc—ad (wing N\ australia, £1y) because its conclusion is consistent with (wing, £1y),
which is the only conclusive outcome-inference argument with the premise that can be implied from
wing N\ australia.

« (C,>) Heonc—ad (wingA\big, £1y) because its conclusion is not consistent with (big, —£1y), which
is a conclusive outcome-inference argument with the premise that can be implied from wing N big.

Following Definition 7, it is impossible to have two conclusively adherent arguments with the same
premise but different conclusions. Interestingly, conclusively adherent arguments can be either coherent
arguments or novel arguments. For example, (wing A australia, fly) in Example 3 demonstrates
a conclusively adherent argument which is novel. Following the proof in Proposition 5, if a revision
argument is conclusively adherent, the bottom revision operator becomes satisfying conc-inclusion,
making it satisfy all properties defined in Definition 2.

Corollary 1. If a revision argument is conclusively adherent with respect to the original case model, the
bottom revision operator (V) satisfies conc-inclusion.



5. Evaluating Novel Arguments: Lessons from AA-CBR

In this section, we apply conclusively adherent evaluation studied in the previous section to understand
abstract argumentation for case-based reasoning (AA-CBR) [6]. AA-CBR is one case-based reason-
ing model based on presumptive reasoning and abstract argumentation. It assumes a binary distribution
of outcomes, that is, assumes an outcome domain O = {04, 704} where o4 is a default outcome. Let
F be a finite consistent set of propositions, of which each subset is called a situation. We define the
conjunction of all the propositions in a situation X as con(X). That is, con(X) = A, cx i if X # 0,
and con(()) = T (i.e., tautology) if X = ().

A case baseT' C 27 x O is a finite set of situation-outcome pairs representing precedents. In AA-CBR,
it assumes that a case base I' is default-consistent (that is, (), 704) ¢ T') and outcome-consistent (that
is, (X, 0) € T" implies (X, 0') ¢ T for any o' # o).

A case-based evaluation |~ is a relation from a case base to a situation-outcome pair. Let I" be a case
base and (X, 0) be a situation-outcome pair. I" v (X, 0) intuitively determines whether a situation-
outcome pair (X, 0) is valid with respect to I. Analogous to what we have defined, if every (X', o') € T,
X ¢ X', then we say (X, o) is a novel situation-outcome pair with respect to I'. As it is named, an
AA-CBR evaluation is based on abstract argumentation framework [7], recapped as follows.

Definition 8 (abstract argumentation framework). An abstract argumentation framework (AA frame-
work) is a pair (A, ~~). Each element of A represents an argument and ~~ is a binary relation over A. For
xz,y € A, ifx ~> y then we say x attacksy. For a set of arguments E C A and an argumentx € A, E
defends x if, for every y € A that attacks x, there is an argument z € E attacks y. Then, the grounded
extension of (A, ~») can be constructed inductively as G = | J,~, Gi, where Gy is the set of unattacked
arguments, and fori > 0, G4 1 is the set of arguments that G; defends.

The AA-CBR evaluation is determined by the default argument (), 04) and relevant precedents,
forming an AA-framework in which precedents with different outcomes and concisely specific situations
attack the others. We denote the AA-CBR evaluation as |~ formally defined as follows.

aacbr’

Definition 9 (AA-CBR evaluation). An AA framework corresponding to a case base I, a default outcome
04, and a situation N is (A, ~) satisfying the following conditions [6]:

c A=TU {(N7 ?)} U {(07 Od)};
« (precedent attacks) for (X, 05), (Y, 0,) € T U{(0, 04)}, it holds that (X, 05) ~ (Y, 0y) iff

1. (different outcomes) o, # oy , and
2. (specificity) Y C X, and
3. (concision) A(Z,0,) € T withY C Z C X;

« (irrelevant attacks) for (Y,0,) € I', (N,?) ~» (Y, 0,) holds iff Y £ N.

If (0, 04) is in the grounded extension of (A, ~>) thenT p .. (N, 0q). Otherwise, T' N, —o0gq).

aachr (

Hence, the AA-CBR evaluation is consistent and complete, meaning that for every situation X, either
r r\/aacbr (X’ Od) or I r\/aacbr (X’ _'Od)'

Example 4. Let O = {fly,—~fly} where —fly is a default outcome and a case base I' =
{({wing, thin}, f1y), ({big}, ~f1ly)}. Figure 1 depicts the AA framework corresponding toT', ~f1ly,
and{wing, big}. Consequently, T {wing, big}, ~f1ly) as (0, ~f1ly) is in the grounded extension
of the AA framework.

aacbr (



The previous work [13] shows that we can translate
any AA-CBR case bases into case models. Given a case

(0,
/

base I" and a case-based evaluation (v, a translated case

model (C,>) is defined as any case model that evalu- ({wing, thin}, fly) | |({big}, ~fly)
ates every non-novel argument as presumptively valid iff ~
the corresponding situation-outcome pair is valid with ({wing,big},?)

respect to I'. That is, for every non-novel situation-
outcome pair (X, 0) with respect to T', ' |~ (X, 0) iff Figure 1: Corresponding AA framework
(C,>) Epres (con(X),0).

Again, we cannot evaluate novel arguments in the translated case model using =,¢,. For instance,
given I in Example 4, since ({wing, australia}, ~fly) is a novel situation-outcome pair with respect
to I', the argument (wing A australia, —fly) can be novel with respect to the translated case model
and hence it cannot be presumptively valid. To evaluate novel arguments, we describe a translated
case model discussed in [12, 13], as a bottom revision sequence in which each argument in a revision
sequence is novel with respect to the prior revised case model.

Proposition 12 (adapted from [12, 13]). Given a AA-CBR case base I, there exists a translated case model
(C, >) which can be written as a revision sequence: (C,>) = (0,0)V(con(X1),01)V ... V(con(Xy,), 0,)
such that if X; C X theni < j foreveryl <1i,j < n.

A revision sequence in Proposition 12 can be obtained by enumerating all non-novel situation-
outcome pairs that are valid with respect to the case base. Example 5 demonstrates a translated case
model from a bottom revision sequence, given the case base I" in Example 4.

Example 5. GivenI" in Example 4, (C,>) = (0,0)V(T,—~£1y)V(wing, ~f1y)V(thin, ~£1y)V
(wing A thin, f1y)V(big, —fly), which is equivalent to {po A ~fly} > {p1 A wing A =fly} >
{p2 A thin A =fly} > {p3 A wing A thin A £ly} > {ps A big A\ = fly}, is a translated case model.

In Example 5, each revision argument is also novel with respect to the prior revised case model in
the sequence. Now, we consider whether each revision argument is conclusively adherent with respect
to the prior revised case model as follows.

* <®7 ®> Feonc—ad (Ta _'le)

* <®7 ®>V(T7 ~f1y) Feonc—ad (Wing, =f1ly)

« (0,0)V(T,—fly)V(wing, =f1y) Feone_aaq (thin, ~f1ly)

« (0,0)v(T,—fly)V(wing, ~f1ly)V(thin, =f1y) Feonc—aa (Wing A thin, fly)

« (0,0)V(T,=fly)V(wing, =fly)V(thin, =fly)V(wing A thin, f1y) Feone_qq (big, 7f1ly)

We have that if a novel revision argument is not conclusively adherent with respect to the prior
revised case model, such as (wing A thin, fly) in the example, then it contributes a precedent attack
in AA-CBR in the corresponding AA-framework.

Proposition 13. LetI" be an AA-CBR case base with default outcome o4 and (C, >) be a translated case
model. For every novel situation-outcome pair (X, o) with respect toT', (C, >) ¥ onc—ad (con(X), o) iff
(X, 0) attacks an argument in the AA-framework corresponding toT' U {(X, 0)}, o4 and any situation N.

Proof. (Left-to-right) If (C, >) Heone—ad (con(X), 0), then there exists a conclusive argument (¢, —0)
with con(X) F ¢. It implies that (1) there is (Y,—0) € T' U {((),04)} such that (con(Y’),—0) is
conclusive with respect to (C, >) and ¢  con(Y") (2) there is no (Z,0) € T'U {(0,04)} such that
(con(Z),0) is coherent and con(Z) F ; otherwise, (con(Y'), —0) cannot be conclusive. It implies
that there is no (Z,0) € T U {((,04)} such that Y C Z C X. Therefore, (X, 0) attacks (Y, —0) in the
corresponding AA framework.

(Right-to-left) If (X, o) attacks (Y, —0) € I' U {(0), 0q)} in the corresponding AA framework, then
Y C X and there is no (Z,0) € T U{(0,04)} such that Y C Z C X. Thus, there is a conclusive
argument (¢, —0) such that con(X) - ¢ and ¢ - con(Y). Therefore, (C, >) Feonc—ad (con(X), o).

O



On the other hand, if a novel revision argument is conclusively adherent, then the corresponding
situation-outcome pair is valid with respect to the case base.

Proposition 14. Let I" be an AA-CBR case base and (C, >) be a translated case model. For every novel
situation-outcome pair (X, o) with respect to I, if (C, >) Feonc—ad (con(X), o) thenI' X, o).

aachr (

Proof. If (C,>) Feonc—ad (con(X), o), then for every conclusive argument (¢, 1) with con(X) F ¢,
1) = o. It implies that (1) there is (X,,,0) € T U {(0, 04)} with ¢ F con(X,,) and hence X,, C X (2)
there does not exist (Y, —0) such that X C Y'; otherwise, such (¢, %)) cannot be conclusive. Therefore,

all such (X, 0) are nearest cases [6] to X and share the same outcome o and hence I'~,, (X, 0). O

The converse of Proposition 14 is not true. Thatis, ', ;. (X, 0) does not imply that (C, >) Feonc—ad
(con(X),0). The reason is that, for any novel situation outcome pair (X, 0), there are possibly two
conclusive arguments with opposite conclusions (¢, 0) and (¢’, —0) such that con(X) + ¢ and
con(X) F ¢'. For instance, from Example 5, we have I'~~, . ({wing, thin,big}, =f1ly) but the
translated case model (C, >) Hconec—aa (Wing A thin A big, —fly) because there are two conclusive
arguments with opposite conclusions, namely (wing A thin, fly) and (big, ~fly).

6. Discussion and Future Work

The analysis in the previous section highlights two key observations. First, we showed that novel
arguments which are not conclusively adherent are related to precedent attacks in AA-CBR. Second, we
showed that novel arguments which are conclusively adherent are related to the AA-CBR evaluation.
Interestingly, these observations are parallel to precedential constraint [11]. In precedential constraint,
certain cases are constrained - i.e., the outcome must be decided in a specific way — otherwise, they
cannot be consistently added as new precedents. In contrast, unconstrained cases can be consistently
added as new precedents regardless of their outcome. This similarity suggests a promising direction
for future work of translating precedential constraint case bases into case models through revision
sequences.

Since AA-CBR employs argumentation to infer an outcome for every situation, it allows arguments
that are not conclusively adherent to be considered valid. When such valid arguments are added as new
precedents, they introduce new attacks that alter the grounded extensions of the corresponding AA
frameworks. This observation is consistent with previous findings on AA-CBR [15], which show that
the addition of valid arguments can change the validity of other arguments. Formally, it is possible that
I paenr (X1,01) and Tk o (X2, 02) do not imply I' U {(X1, 01) } Py uepr (X2, 02). This implies the
same conclusion to [15] that AA-CBR lacks cautious monotonicity and does not satisfy all the postulates
of iterated belief change.

Cumulative AA-CBR (cAA-CBR) [15] has been developed as a cautious monotonic version of AA-CBR
that includes a new argument into its case base only if the argument is invalid with respect to the
existing case base. Thus, translated case models from the cAA-CBR case bases can be described as
revision sequences of novel arguments that are not conclusively adherent with respect to the preceding
revised case model. This motivates further research to identify more evaluations for novel arguments
in order to examine other CBR models, such as precedential constraint and cAA-CBR.

7. Conclusion

This paper investigated new evaluations in case models for novel arguments, which are not required to
have a grounding in any existing cases. To facilitate this, we introduced revision operators for case
models and proposed a set of associated properties —adapted from the AGM postulates — including
£-success, ¢-inclusion, vacuity, and extensionality. We then systematically examined whether these
properties are satisfied by various types of revision operators.



A key contribution of this work is the introduction of the conclusively adherent evaluation. An
outcome-inference argument is conclusively adherent iff every conclusive arguments with more general
premises shares the same outcome. We showed that the bottom revision operator satisfies all the
defined properties only if the revision argument is conclusively adherent. Furthermore, we investigated
translated case models from abstract argumentation for case-based reasoning (AA-CBR) case bases as
revision sequences of novel arguments. The investigation revealed two findings:

1. Novel arguments that are not conclusively adherent correspond to precedent attacks in AA-CBR.
This results from the presence of a conclusive argument with a differing outcome, triggering an
attack in the corresponding AA framework.

2. Novel arguments that are conclusively adherent correspond to the AA-CBR evaluation. That is, if
a novel argument is conclusively adherent with respect to the translated case model, then the
corresponding situation-outcome pair is valid with respect to the AA-CBR case base.

Future research can explore how to generalise the translation of case bases into case models via
revision sequences for other case-based reasoning models and explore suitable evaluations for them.
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