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Abstract
We address the issue of defining a semantics for deontic argumentation that supports weak permission. Some
recent results show that grounded semantics do not support weak permission when there is a conflict between
two obligations. We provide a definition of Deontic Argumentation Theory accounting for weak permission, and
we recall the result about grounded semantics. Then, we propose a new semantics that supports weak permission.
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1. Introduction

Suppose there is a norm 𝑛1 prescribing 𝐶 under condition 𝐴, with a sanction 𝑆1 for not doing 𝐶 .
Concurrently, there is a second norm 𝑛2, independent of the first, forbidding 𝐶 when 𝐵 holds, and
the violation of this norm is sanctioned by 𝑆2. Both norms are at the same hierarchical level in the
normative system, meaning there are no clear criteria to determine if one norm overrides the other.
This situation constitutes a genuine deontic conflict; specifically, the deontic conclusion that “𝐶 is
obligatory” is ambiguous due to two conflicting reasoning chains, one supporting this conclusion and
another opposing it.

While such scenarios are familiar in deontic reasoning, there is less exploration of how this type of
conflict can impact subsequent deontic reasoning chains. Now, consider a third norm 𝑛3, independent
of 𝑛1 and 𝑛2, which requires 𝐷 if 𝐶 is permitted. The sanction for violating the third norm is 𝑆3.

Now, consider the situation where 𝐴 and 𝐵 are true, but 𝐶 and 𝐷 are not. What sanctions, if any,
apply in this case? Additionally, how does the outcome change if 𝑛3 requires 𝐶 to be not forbidden
or explicitly authorised, rather than merely permitted? Is handling this scenario independent of the
argumentation semantics adopted for modelling deontic reasoning?

Deontic logic offers a powerful framework for analysing and resolving such ambiguities. However,
most Deontic Logic systems are not well-suited to deal with conflicting norms. Formal argumentation
systems provide the tools to address these challenges. They offer a structured way to represent deontic
statements, reason about their implications, and evaluate the validity of arguments. By explicitly
stating premises, rules of inference, and conclusions, formal methods promote transparency, clarity,
and consistency in deontic reasoning. This rigorous approach helps mitigate the risks of implicit bias,
ad hoc judgments, and inconsistencies that plague informal reasoning. The next sections will explore
how formal argumentation frameworks can enhance our ability to navigate the complexities of deontic
logic in diverse contexts, from legal judgments to ethical dilemmas.

The layout of the paper is as follows. Section 2 addresses the challenges of deontic argumentation,
particularly focusing on weak permission and its theoretical nuances. In Section 3, we introduce the
notion of Deontic Argumentation Theory and recall the results of [2] for weak permission under the
grounded semantics. Section 4 presents our new argumentation semantics tailored for weak permission.
Lastly, Section 5 reviews related work in the domain, and Section 6 summarises our findings and
contributions.
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2. Deontic Argumentation: Challenges

Deontic argumentation presents unique challenges. For example, dealing with weak permission within
this context highlights both theoretical nuances and practical implications. As is well known, deontic
logic distinguishes between weak and strong permissions (for an outline [3, 4, 5]). Weak permission is
inferred when an action or a state of affairs is not explicitly prohibited, introducing a potential gray
area in argumentation, especially when deontic conflicts arise. This section spots these challenges,
motivating the need for advanced deontic argumentation frameworks as developed in our research.

2.1. Understanding Weak Permission

The concept of weak permission is rooted in an action being permitted merely due to a lack of explicit
prohibition. When neither prohibition nor obligation is decisively concluded (as, for example, when
the relative strength of conflicting rules is undetermined), both conflicting actions might be weakly
permitted.

The implications of weak permission are significant in deontic reasoning systems like Defeasible
Deontic Logic [4, 6, 7]. A research challenge is to adequately resolve scenarios where weak permissions
are invoked amidst conflicts. This issue persists in both practical legal interpretations and theoretical
frameworks. Consequently, deontic systems must carefully navigate these areas to maintain logical
coherence and practical applicability.

In many real-world cases, like judicial decision-making, the role of weak permission becomes critical.
Judges and legal practitioners frequently encounter scenarios where multiple, potentially conflicting
obligations and permissions must be weighed and interpreted. The arguments must consider all potential
influences and outcomes, requiring a robust framework for integrating diverse types of permissions
and obligations.

Our research identifies and addresses these challenges through the design of a sophisticated argu-
mentation framework that integrates deontic reasoning with formal argumentation techniques. This
approach looks to provide clarity in situations where weak permissions exist alongside conflicting
obligations.

2.2. Some Examples

Assume we work with a Defeasible Deontic Logic in which deontic rules have the form

𝑟 : 𝑎 ⇒ obl(𝑏) 𝑠 : obl(𝑐), 𝑑 ⇒ perm(𝑒).

If 𝑟 is applicable, we derive obl(𝑏); if we know that obl(𝑐) and 𝑑 are the case, then we conclude that 𝑒 is
permitted, i.e., that perm(𝑒). Suppose that we also have the following rule:

𝑡 : 𝑎, 𝑓 ⇒ obl(¬𝑏).

If both 𝑟 and 𝑡 are applicable and we do not have additional information, we cannot conclude either
obl(𝑏) or obl(¬𝑏) but that both 𝑏 and ¬𝑏 are weakly permitted, i.e., perm𝑤(𝑏) and perm𝑤(¬𝑏).

Now, consider judicial adversarial scenarios where the lack of the prohibition is derived during a
legal proceeding. Multiple scenarios can be identified.

Article 520 of the Italian Code of Criminal Procedure states that a judge must issue a sentence of
acquittal if (i) the fact does not constitute a crime or (ii) is not provided by law as a crime. In this
case, the absence of a prohibition is derived from the absence of a crime. In the first case, there is an
obligation or prohibition, but the facts upon which the proceeding is based are not covered by the
obligation or prohibition. Thus, we see that obl(𝑏) is in force, but 𝑓 (the fact of the case) holds but
𝑏 ̸≡ 𝑓 , something which is established via argumentation.

For instance, in the Italian legal system, a public officer who intentionally signs a forged document is
punished with imprisonment. This means that the person is obligated not to sign a document knowing
it is forged. However, if the person accidentally signs the document or signs it without knowing it is



forged, the fact is not covered by the prohibition. In this case, we can say that the action of signing is
weakly permitted because it does not result in punishment.

A more complicated example is the following.

Example 1. In 2019, the Sea Watch 3, an NGO vessel, was on a mission in the Mediterranean Sea to rescue
migrants. The Italian Government issued a decree that banned the Sea Watch 3 from rescue operations (for
migrants) in the Italian Contiguous Zone waters.

𝑟1 : distress, proximity ⇒ obl(assistance)

𝑟2 : SeaWatch,migrants, ItalianContiguousZone ⇒ obl(¬assistance)

Maritime Law stipulates that a vessel in proximity to a distress vessel must assist the vessel in distress (rule
𝑟1). On the other hand, 𝑟2 encodes the prohibition on rescuing migrants in Italian Contiguous Zone waters.
Moreover, Maritime Law requires vessels permitted to refrain from assisting vessels in distress to alert the
closest relevant authorities and keep clear of the rescue area.

𝑟3 : perm(¬assistance) ⇒ obl(alertAuthorities)& obl(keepClear)

Suppose a migrant vessel is in distress in the Italian Contiguous Zone, and Sea Watch 3 is nearby. Does
Sea Watch 3 have the obligation to alert the authorities and keep clear of the rescue area? Here, we have a
conflict over two opposite norms, and it is unclear which one takes precedence over the other.1 Also, suppose
that Sea Watch 3 alerted the competent authorities but remained in the operation area (and eventually
assisted with the rescue operation). Do the Sea Watch 3 actions contravene the norms? As we said, there are
two options. The permission does not follow from the conflict. In this case, the Sea Watch is not required
to leave the area, and it does not contravene the norms. In the second approach, the permission from the
conflict follows (as a weak permission). Leaving the area is a legal requirement, and Sea Watch 3 does not
comply with the norms.

What about if weak permission does not follow from a conflict? We can consider an alternative formulation
of the last provision. Assume that it stipulates that vessels for which the obligation to assist does not hold
must keep clear of the rescue area.

𝑟′3 : not obl(assistance) ⇒ obl(alertAuthorities)& obl(keepClear)

Given the conflict, we can argue that the obligation to offer assistance does not hold, and the Sea Watch 3
has to follow the obligations given by 𝑟′3.

2.3. Motivating Advanced Deontic Argumentation Techniques

The primary motivation for our research is the limitations in existing argumentation semantics as
applied to deontic logic, such as grounded and stable semantics, which inadequately handle weak
permissions under conflict. These methods often prevent justifications for weak permission due to their
inherent limitations in conflict resolution, notably when multiple deontic rules apply simultaneously.

To address these limitations, we propose an argumentation semantics that effectively incorporates
weak permission by allowing a more nuanced evaluation of arguments. Our approach ensures that both
obligations and permissions are considered robustly within argumentative frameworks, promoting a
balance between legal precision and interpretative flexibility.

3. Grounded Semantics and Weak Permission

We recall the results of [2] that show that grounded semantics does not support weak permission when
there is a conflict between two obligations. Moreover, we set the definition for the notion of a deontic
1In response to the Sea Watch 3 incident, an Italian Tribunal established that International Maritime Law prevailed over the
Italian Government Decree for the specific case. However, International Maritime Law scholars debated over the proper
course of action.



argumentation theory. The definitions of argument and attacks are common to the grounded semantics
and the semantics we are going to develop in the next section.

The language of a deontic argument is built from a set of literals (Lit), where a literal is either an
atom (𝑙) or its negation (¬𝑙). In addition, we extend the language with deontic literals. The set of deontic
literals is defined as

{dop(𝑙), not dop(𝑙)|𝑙 ∈ Lit}

where dop is a deontic operator, more precisely dop ∈ {obl, perm, perm𝑤}. Given a literal 𝑙, we use
∼𝑙 to denote the complement of 𝑙; more precisely, if 𝑙 is an atomic proposition, then ∼𝑙 = ¬𝑙. If 𝑙 is a
negated atomic proposition 𝑙 = ¬𝑚, then ∼𝑙 = 𝑚.

Arguments are built from rules, where a rule has the following format:

𝑎1, . . . 𝑎𝑛 ⇒ 𝑐

where {𝑎1, . . . , 𝑎𝑛} is a (possibly empty) set of literals and deontic literals, and 𝑐 is either a literal
or deontic literal but not a weak permission (i.e., 𝑐 ̸= perm𝑤(𝑙), otherwise it would be an explicit
permission).

Definition 1. A Deontic Argumentation Theory is a structure

(𝐹,𝑅)

where 𝐹 is a (finite and possibly empty) set of literals (the fact or assumption of the theory), and 𝑅 is a
(finite) set of rules.

The key concept of an argumentation theory is the notion of an argument. Definition 2 below defines
what an argument is. Each argument 𝐴 has associated with it, its conclusion 𝐶(𝐴) and its set of
sub-arguments Sub(𝐴).

Definition 2. Given a Deontic Argumentation Theory (𝐹,𝑅), 𝐴 is an argument if 𝐴 has one of the
following forms:

1. 𝐴 = perm𝑤(𝑙) for any literal 𝑙 ∈ ℒ, the conclusion of the argument 𝐶(𝐴) = perm𝑤(𝑙), and
Sub(𝐴) = {𝐴}.

2. 𝐴 = 𝑎 for 𝑎 ∈ 𝐹 ; 𝐶(𝐴) = 𝑎 and Sub(𝐴) = {𝐴}.
3. 𝐴 = 𝐴1, . . . , 𝐴𝑛 ⇒ 𝑐, if there is a rule 𝑎1, . . . , 𝑎𝑛 ⇒ 𝑐 in𝑅 such that for all 𝑎𝑖 ∈ {𝑎1, . . . , 𝑎𝑛} there

is an argument𝐴𝑖 such that𝐶(𝐴𝑖) = 𝑎𝑖; 𝐶(𝐴) = 𝑐 and Sub(𝐴) = {𝐴}∪Sub(𝐴1)∪· · ·∪Sub(𝐴𝑛).
4. 𝐴 = 𝐵 ⇒ perm(𝑙), if 𝐵 is an argument such that 𝐶(𝐵) = obl(𝑙); 𝐶(𝐴) = perm(𝑙), and

Sub(𝐴) = {𝐴} ∪ Sub(𝐵).

We call the weak permission arguments (arguments defined by clause (1) above) imaginary arguments.
Arguments defined by the other clauses are called natural arguments. The set of all arguments for a Deontic
Argumentation Theory is Args .

Condition (1) encodes the idea that weak permission is the failure to derive an obligation to the contrary
(more on this when we discuss the notion of attack between arguments). Thus, by default, every literal
is potentially weakly permitted, and we form an argument for this type of conclusion. Condition (2)
gives the simplest form of an argument. We have an argument for 𝑎 if 𝑎 is one of the assumptions/facts
of a case/theory. Condition (3) allows us to form arguments by forward chaining rules. Thus, we can
form an argument from a rule, if we have arguments for all the elements of the body of the rule. The
way the condition is written allows us to create arguments from rules with an empty body. Finally,
condition (4) corresponds to the D axiom of Standard Deontic Logic.

Definition 3. Let 𝐴 and 𝐵 be arguments. 𝐴 attacks 𝐵 (𝐴 > 𝐵) iff

1. 𝐵 = perm𝑤(𝑙) and 𝐶(𝐴) = obl(∼𝑙);



2. ∃𝐵′ ∈ Sub(𝐵), 𝐶(𝐵′) = 𝑙 and 𝐶(𝐴) = ∼𝑙;
3. ∃𝐵′ ∈ Sub(𝐵), 𝐶(𝐵′) ∈ {obl(𝑙), perm(𝑙)} and 𝐶(𝐴) = obl(∼𝑙);
4. ∃𝐵′ ∈ Sub(𝐵), 𝐶(𝐵′) = obl(𝑙), and 𝐶(𝐴) = perm(∼𝑙).

As we alluded to in Section 1, the idea of weak permission is the negation as failure of the obligation
to the contrary. Thus, in Definition 2, we create an argument for the weak permission for any literal
𝑙; however, this argument is attacked by any argument for obl(∼𝑙) (condition (1) above and notice
this is the only case where the attack is not symmetrical). The rest of the conditions define an attack
when the two arguments have opposite conclusions: condition (2) covers the case of plain literals, while
conditions (3) and (4) are reserved for deontic literals. Specifically, we have opposite deontic conclusions
when one of the two is an obligation for a literal, and the other is either an obligation or a permission
for the opposite literal. Furthermore, an argument attacks another argument when the conflict is on
the conclusion of the second argument (this corresponds to the notion of rebuttal) or when there is a
conflict with one of the sub-arguments of the attacked argument (known as undercutting attack).

Example 2. Let us consider the Deontic Argumentation Theory (𝐹,𝑅) where 𝐹 = {𝑎} and 𝑅 contains
the following rules:

𝑟1 : ⇒ obl(𝑝) 𝑟3 : obl(𝑝) ⇒ obl(𝑞) 𝑟5 : perm𝑤(𝑝) ⇒ 𝑠
𝑟2 : ⇒ obl(¬𝑝) 𝑟4 : ⇒ obl(¬𝑞) 𝑟6 : perm(𝑞) ⇒ 𝑡

The set of natural arguments contains 𝐴0 : 𝑎 (given that 𝑎 is a fact) and the following arguments built
from the above rules:

𝐴1 : ⇒ obl(𝑝) 𝐴2 : ⇒ obl(¬𝑝) 𝐴3 : 𝐴1 ⇒ obl(𝑞)
𝐴4 : ⇒ obl(¬𝑞) 𝐴5 : 𝐴1,⇒ perm(𝑝) 𝐴6 : 𝐴2 ⇒ perm(¬𝑝)

𝐴7 : 𝐴3 ⇒ perm(𝑞) 𝐴8 : 𝐴4 ⇒ perm(¬𝑞) 𝐴9 : 𝐴0, 𝐼1 ⇒ 𝑠
𝐴10 : 𝐴7 ⇒ 𝑡

Moreover, for each propositional letter 𝑎, 𝑝, 𝑞, 𝑠, 𝑡 we have two imaginary arguments, one for the letter and
one for its negation. Specifically, we consider the following imaginary arguments:

𝐼1 : perm𝑤(𝑝) 𝐼2 : perm𝑤(¬𝑝) 𝐼3 : perm𝑤(𝑞) 𝐼4 : perm𝑤(¬𝑞)

Arguments 𝐴0, 𝐴1, and 𝐴4 do not have proper subarguments, and have only themselves as their subargu-
ments.

Sub(𝐴3) = {𝐴1, 𝐴3} Sub(𝐴5) = {𝐴1, 𝐴5} Sub(𝐴6) = {𝐴2, 𝐴6}
Sub(𝐴7) = {𝐴1, 𝐴3, 𝐴7} Sub(𝐴8) = {𝐴4, 𝐴8}

Sub(𝐴9) = {𝐴0, 𝐼1, 𝐴9} Sub(𝐴10) = {𝐴1, 𝐴3, 𝐴7, 𝐴10}

The attack relation is as follows (for each argument 𝐴, we list the arguments 𝐴 attacks):

𝐴1 : 𝐴2, 𝐴6, 𝐼2 𝐴2 : 𝐴1, 𝐴3, 𝐴5, 𝐼1, 𝐴10

𝐴3 : 𝐴4, 𝐴8, 𝐼4 𝐴4 : 𝐴3, 𝐴7, 𝐼3, 𝐴10

𝐴5 : 𝐴2, 𝐴6 𝐴6 : 𝐴1, 𝐴3, 𝐴5, 𝐴7, 𝐴10

𝐴7 : 𝐴4, 𝐴8 𝐴8 : 𝐴3, 𝐴7, 𝐴10.

We are ready to recall the standard definitions of Dung argumentation semantics [8].

Definition 4. Let (𝐹,𝑅) be a Deontic Argumentation Theory, and 𝑆 be a set of arguments. Then:

• 𝑆 is conflict free iff ∀𝑋,𝑌 ∈ 𝑆 : 𝑋 ̸> 𝑌 .
• 𝑋 ∈ Args is acceptable with respect to 𝑆 iff ∀𝑌 ∈ Args such that 𝑌 > 𝑋 : ∃𝑍 ∈ 𝑆 such that
𝑍 > 𝑌 .



• 𝑆 is an admissible set iff 𝑆 is conflict free and 𝑋 ∈ 𝑆 implies 𝑋 is acceptable w.r.t. 𝑆.
• 𝑆 is a complete extension iff 𝑆 is admissible and if 𝑋 ∈ Args is acceptable w.r.t. 𝑆 then 𝑋 ∈ 𝑆.
• 𝑆 is the grounded extension iff 𝑆 is the set inclusion minimal complete extension.
• 𝑆 is a stable extension iff 𝑆 is conflict free and ∀𝑌 /∈ 𝑆, ∃𝑋 ∈ 𝑆 such that 𝑋 > 𝑌 .

Definition 5. Let 𝐷 = (𝐹,𝑅) be a Deontic Argumentation Theory, an argument 𝐴 is sceptically justified
under a semantic 𝑇 iff 𝐴 ∈ 𝑆 for all sets of arguments 𝑆 that are an extension under 𝑇 .

Definition 6. A literal or a deontic literal 𝑙 ∈ ℒ is a Justified conclusion under a semantics 𝑇 iff for every
extension 𝑆 under 𝑇 , there is an argument 𝐴 such that 𝐴 ∈ 𝑆 and 𝐶(𝐴) = 𝑙.

Example 3. Let us consider a Deontic Argumentation Theory where 𝐹 = ∅ and 𝑅 contains the two rules

𝑟1 : ⇒ obl(𝑎) 𝑟2 : ⇒ obl(¬𝑎)

This theory has the following arguments:

𝐴1 : perm𝑤(𝑎) 𝐴3 : ⇒ obl(𝑎) 𝐴5 : 𝐴3 ⇒ perm(𝑎)

𝐴2 : perm𝑤(¬𝑎) 𝐴4 : ⇒ obl(¬𝑎) 𝐴6 : 𝐴4 ⇒ perm(¬𝑎)

For the attack relation, we have the following instances

𝐴3 > 𝐴2 𝐴3 > 𝐴4 𝐴3 > 𝐴6 𝐴5 > 𝐴4 𝐴5 > 𝐴6

𝐴4 > 𝐴1 𝐴4 > 𝐴3 𝐴4 > 𝐴5 𝐴6 > 𝐴3 𝐴6 > 𝐴5

It is easy to verify that {} is a complete extension (and trivially, it is the minimal complete extension w.r.t.
set inclusion). Thus, it is the grounded extension of the theory. Accordingly, there is no argument in the
grounded extension such that its conclusion is either perm𝑤(𝑎) or perm𝑤(¬𝑎). Hence, perm𝑤(𝑎) and
perm𝑤(¬𝑎) are not justified conclusions under the grounded semantics.

When we consider the stable semantics, we have the following two extensions:

{𝐴1, 𝐴3, 𝐴5} {𝐴2, 𝐴4, 𝐴6}

Clearly, perm𝑤(𝑎) is a conclusion of the first extension but not of the second one; conversely, perm𝑤(¬𝑎)
is a conclusion of the second extension but not of the first one. Consequently, perm𝑤(𝑎) and perm𝑤(¬𝑎)
are not justified conclusions under the stable semantics.

The above example should suffice to show that weak permission is not supported by grounded and
stable semantics when a deontic conflict exists: we have a scenario where we fail to conclude that an
obligation, but at the same time, we cannot conclude the weak permission of the opposite. However,
we can generalise the result; the result holds for any theory with a conflict between two applicable
obligation rules. This is formalised by the following definition.

Definition 7. A Deontic Argumentation Theory is conflictual when it contains a pair of rules 𝑏1, . . . , 𝑏𝑛 ⇒
obl(𝑐) and 𝑑1, . . . 𝑑𝑚 ⇒ obl(¬𝑐), such that there are arguments 𝐵𝑖 with conclusion 𝑏𝑖, 1 ≤ 𝑖 ≤ 𝑛, and
𝐷𝑗 with conclusion 𝑑𝑗 , 1 ≤ 𝑗 ≤ 𝑚. We will call 𝑐 the conflicted literal.

Theorem 1. Let 𝐷 = (𝐹,𝑅) be a conflictual theory. For any conflicted literal 𝑙, perm𝑤(𝑙), perm𝑤(¬𝑙)
are not justified conclusions under grounded and stable semantics.

Proof. Let 𝑙 be a conflicted literal. By the definition of argument, the theory 𝐷 and the fact that the
theory is conflicted, we have the following arguments:

𝐴1 : perm𝑤(𝑙) 𝐴3 : 𝐵1, . . . , 𝐵𝑛 ⇒ obl(𝑙)

𝐴2 : perm𝑤(¬𝑙) 𝐴4 : 𝐷1, . . . , 𝐷𝑚 ⇒ obl(¬𝑙)



such that 𝐴3 > 𝐴2 and 𝐴4 > 𝐴1. Given that there are arguments attacking 𝐴1 and 𝐴2, these two
arguments are not in the minimal complete extension. Accordingly, perm𝑤(𝑙) and perm(¬𝑙) are not
justified conclusions under the grounded semantics.

Given the attack relationship among 𝐴1, 𝐴2, 𝐴3 and 𝐴4, we can conclude that there are at least two
extensions 𝐸1 and 𝐸2 such that 𝐴1, 𝐴3 ∈ 𝐸1 and 𝐴2, 𝐴4 /∈ 𝐸1, and 𝐴2, 𝐴4 ∈ 𝐸2 and 𝐴1, 𝐴3 /∈ 𝐸2.
Hence, there is an extension where no argument has perm𝑤(𝑙) as its conclusion, and there is an
extension where no argument has perm𝑤(¬𝑙) as its conclusion. Therefore, perm𝑤(𝑙) and perm𝑤(¬𝑙)
are not justified conclusions under the stable semantics.

4. An Argumentation Semantics for Weak Permission

We take the notions defined in the previous section and extend it to a semantics that can deal with weak
permission. The new semantics is based on and extends the argumentation semantics for Defeasible
Logic [9] with conditions to deal with imaginary arguments.

The first step is to use the notion of attack between arguments to define the notions of support and
undercut. Support means that all proper subarguments of an argument are in the set of arguments
that supports it; undercut means that the set of arguments that undercuts an argument supports an
argument that attacks a proper subargument of the argument. This means that the premises of the
undercut argument do not hold.

Definition 8. A set of arguments 𝑆 supports an argument 𝐴 if every proper subargument of 𝐴 is in 𝑆.

Definition 9. A set of arguments 𝑆 undercuts an argument 𝐵 if 𝑆 supports an argument 𝐴 that attacks
a proper natural subargument of 𝐵.

Example 4. Consider a Deontic Argumentation Theory where 𝑅 contains the following rules:

𝑟1 : ⇒ 𝑎 𝑟2 : 𝑎 ⇒ obl(𝑏) 𝑟3 : perm𝑤(¬𝑏) ⇒ 𝑑 𝑟4 : perm(¬𝑏) ⇒ 𝑒

At this stage, we can define the notion of wp-acceptable and wp-rejected arguments. The main
difference is that we have to distinguish between natural and imaginary arguments. An imaginary
argument is an argument for a weak permission, and weak permission means that it is impossible to
have a valid argument for the obligation to the contrary. In other words, weak permission succeeds
when we fail to derive the obligation to the contrary. Accordingly, we must be able to tell when an
argument is acceptable or when an argument is rejected. Given that weak permission requires that we
reject the obligation of the contrary, an imaginary argument is acceptable when all arguments for the
prohibition are rejected. A natural argument is acceptable when we can show that the arguments that
attack it cannot fire (their premises do not hold).

Definition 10. An argument 𝐴 is wp-acceptable by the sets of arguments 𝑅 and 𝑆 iff

1. 𝐴 is an imaginary argument and ∀𝐵 ∈ Args , 𝐵 > 𝐴, 𝐵 is wp-rejected by 𝑅 and 𝑆; or
2. 𝐴 is a natural argument, 𝑆 supports 𝐴, and ∀𝐶 ∈ Args , 𝐶 > 𝐴, either 𝑆 undercuts 𝐶 or 𝐶 ∈ 𝑅.

The next definition specifies when an argument is rejected. Specifically, an imaginary argument
is rejected when there is an argument for the obligation to the contrary that is acceptable (thus we
did not fail to establish the obligation to the contrary). A natural argument is rejected when one of its
subarguments is rejected or when there is an argument attacking it that is supported by the already
accepted arguments. Thus, there is an applicable rule for the opposite of the conclusion of the (rejected)
argument

Definition 11. An argument 𝐴 is wp-rejected by the sets of arguments 𝑅 and 𝑆 iff

1. 𝐴 is an imaginary argument and ∃𝐵 ∈ Args , 𝐵 > 𝐴, 𝐵 ∈ 𝑆; or
2. 𝐴 is a natural argument and



a) ∃𝐵 ∈ Sub(𝐴), 𝐵 ̸= 𝐴, and 𝐵 ∈ 𝑅; or
b) ∃𝐵 ∈ Args , 𝐵 > 𝐴, and 𝑆 supports 𝐵.

The wp-semantics (or wp-extension) is then defined by the following fixed-point construction, where
we iteratively build the sets of wp-acceptable and wp-rejected arguments. Notice that since we have to
capture both what arguments are acceptable and what arguments are rejected, the extension is given
by the pair of such sets of arguments.

Definition 12. The wp-extension of a Deontic Argumentation Theory 𝑇 is the pair

(JArgs,RArgs)

such that

JArgs =
∞⋃︁
𝑖=1

𝐽𝑇
𝑖 RArgs =

∞⋃︁
𝑖=1

𝑅𝑇
𝑖

where

• 𝐽𝑇
0 = ∅; 𝑅𝑇

0 = ∅;
• 𝐽𝑇

𝑛+1 = {𝐴 ∈ Args : 𝐴 is wp-acceptable by 𝑅𝑇
𝑛 and 𝐽𝑇

𝑛 };
• 𝑅𝑇

𝑛+1 = {𝐴 ∈ Args : 𝐴 is wp-rejected by 𝑅𝑇
𝑛 and 𝐽𝑇

𝑛 }.

Whenever clear from the context, we will drop the references to the sets 𝑅 and 𝑆 when speaking of
wp-accepted and wp-rejected arguments.

Example 5. Let us consider again the Deontic Argumentation Theory of Example 2. The arguments and
the instances of the attack relation are the same for the grounded semantics and the wp-semantics.

Let us go step-by-step through the construction of the wp-extension. The first step is to determine the
arguments that are wp-acceptable and wp-rejected by 𝐽𝑇

0 and 𝑅𝑇
0 , namely the empty set. To this end, we

start by listing what arguments are supported and undercut by 𝐽𝑇
0 and 𝑅𝑇

0 . It is easy to verify that the
only arguments supported by 𝐽𝑇

0 and 𝑅𝑇
0 are

𝐴0, 𝐴1, 𝐴2, 𝐴4.

These are the arguments that do not have any proper subarguments (we ignored all imaginary arguments
since they are not involved in any attack, and the condition to ). The next step is to determine the arguments
that are undercut, namely:

𝐴3, 𝐴5, 𝐴6, 𝐴7, 𝐴10.

𝐴6 is undercut because it is attacked by 𝐴1; the arguments 𝐴3, 𝐴5, 𝐴7 are undercut because they are
attacked by 𝐴2, and, finally, 𝐴10 because it is attacked by 𝐴4.

Then, we can compute 𝐽𝑇
1 and 𝑅𝑇

1 :

𝐽𝑇
1 = {𝐴0, 𝐴4} 𝑅𝑇

1 = {𝐴1, 𝐴2, 𝐴3, 𝐴5, 𝐴6, 𝐴7, 𝐴10}

Argument 𝐴0 is trivially wp-acceptable because no argument attacks it, and it does not have any proper
subarguments. 𝐴4 is attacked by 𝐴3 and 𝐴7, but these two arguments are undercut by 𝐽𝑇

0 . Arguments 𝐴1,
𝐴5, 𝐴7, and 𝐴10 are wp-rejected because they are attacked by 𝐴2, which is supported by 𝐽𝑇

0 . Arguments
𝐴2 and 𝐴6 are wp-rejected because they are attacked by 𝐴1, which is supported by 𝐽𝑇

0 . 𝐴3 is wp-rejected
because it is attacked by 𝐴4, which is supported by 𝐽𝑇

0 .
We can now move to the next step, where we compute 𝐽𝑇

2 and 𝑅𝑇
2 . In addition to the arguments supported

by 𝐽𝑇
0 , 𝐽𝑇

1 supports 𝐴8 (𝐴4 ∈ 𝐽𝑇
1 ).

𝐽𝑇
2 = 𝐽𝑇

1 ∪ {𝐼1, 𝐼2, 𝐼4, 𝐴8} 𝑅𝑇
2 = 𝑅𝑇

1 ∪ {𝐼3}



The imaginary arguments 𝐼1, 𝐼2 and 𝐼4 are wp-acceptable because they are attacked respectively by 𝐴2,
𝐴1 and 𝐴3, and these arguments are wp-rejected by 𝑅𝑇

1 . Argument 𝐴8 is wp-acceptable because it is
now supported by 𝐽𝑇

1 and it is attacked by 𝐴3 and 𝐴7. 𝐴3 and 𝐴7 are undercut by 𝐽𝑇
1 . 𝐼3 is wp-rejected

because it is attacked by 𝐴4, which is wp-acceptable by 𝐽𝑇
1 .

For the next and final step, we compute 𝐽𝑇
3 and 𝑅𝑇

3 . This time, 𝐽𝑇
2 adds support for argument 𝐴9

(because 𝐼1 ∈ 𝐽𝑇
2 ), and then 𝐴9 is wp-acceptable, because it is attacked by 𝐴2, but 𝐴1 attacks 𝐴2 and it is

supported by 𝐽𝑇
2 .

Theorem 2. For any Deontic Argumentation Theory 𝑇 = (𝐹,𝑅) the wp-extension is unique.

Proof. The proof that the wp-extension is unique is by induction on the steps of the construction of the
wp-extension, that if an argument is wp-justified/ wp-rejected by 𝑅𝑇

𝑛 and 𝐽𝑇
𝑛 , then the argument is wp-

justified/wp-rejected by 𝑅𝑇
𝑛+1 and 𝐽𝑇

𝑛+1. The induction proves that the extension of the wp-extension
is monotonically increasing, and then we can apply the Knaster-Tarski Theorem to conclude that the
wp-extension is the unique least/greatest fixed-point.

Let us start by the case when an argument 𝐴 ∈ 𝐽𝑇
1 . We have two sub-cases.

1) 𝐴 is an imaginary argument. Thus, it does not have any proper subargument (so no argument
can be wp-rejected), and every argument attacking it is rejected by ∅ and ∅ (𝑅𝑇

0 and 𝐽𝑇
0 ). Let 𝐵 be an

argument attacking 𝐴. Since 𝐴 is wp-acceptable, then 𝐵 is wp-rejected; therefore there is an argument
𝐶 , 𝐶 > 𝐵 and 𝐶 is supported by ∅. This means that 𝐶 does not have any proper subarguments, which
in turn means that any 𝐽𝑇

𝑖 supports 𝐶 rejecting 𝐵 in any iteration of the construction. Hence, 𝐴 ∈ 𝐽𝑇
1 .

2) 𝐴 is a natural argument. By construction 𝐴 is wp-acceptable by 𝑅𝑇
0 and 𝐽𝑇

0 ; by definition, 𝐴 is
supported by 𝐽𝑇

0 , namely ∅, thus, again, 𝐴 does not have any proper subarguments. Accordingly, 𝐴
is supported by any 𝐽𝑇

𝑖 . The arguments attacking it are undercut by 𝐽𝑇
0 . This means that for every

argument 𝐵 attacking 𝐴, there is an argument 𝐶 supported by 𝐽𝑇
0 . But as we have just seen for 𝐴, the

argument 𝐶 is supported by any 𝐽𝑇
𝑖 . So, 𝐴 ∈ 𝐽𝑇

1 .
We can now move to the case of a wp-rejected argument. Thus, 𝐴 ∈ 𝑅𝑇

1 . Again, we have two
sub-cases.

1) 𝐴 is an imaginary argument. 𝐴 is wp-rejected by 𝑅𝑇
0 and 𝐽𝑇

0 , if there is an argument attacking 𝐴
that is supported by 𝐽𝑇

0 . We have already seen that an argument supported by 𝐽𝑇
0 is supported by any

𝐽𝑇
𝑖 . Accordingly, 𝐴 is wp-rejected at any step of the construction of the wp-extension; hence 𝐴 ∈ 𝑅𝑇

1 .
2) 𝐴 is a natural argument. Given that 𝑅𝑇

0 = ∅, 𝐴 cannot be in 𝑅𝑇
0 because one of its proper

subarguments is in 𝑅𝑇
0 . Thus, there is an argument 𝐵 attacking in that is supported by 𝐽𝑇

0 . We can
argue, as in the other case, that 𝐵 is supported by any 𝐽𝑇

𝑖 , and thus, 𝐴 ∈ 𝑅𝑇
1 .

For the inductive step, as usual, we assume that the property holds for arguments in 𝐽𝑇
𝑛 and 𝑅𝑇

𝑛 .
Hence, for the justified arguments we can conclude that if an argument is wp-accepted for some set
of arguments 𝐽𝑇

𝑘 (𝑘 < 𝑛), then the argument is supported by 𝐽𝑇
𝑛 ; at this stage we can replicate the

reasoning of the inductive base to conclude that if an argument is wp-acceptable by 𝑅𝑇
𝑛 and 𝐽𝑇

𝑛 , then it
is wp-acceptable by 𝑅𝑇

𝑛+1 and 𝐽𝑇
𝑛+1.

For the case when an argument 𝐴 is in 𝑅𝑇
𝑛+1 in addition to the cases discussed in the inductive

base that carry over by the inductive hypothesis, we have to examine the situation that there a proper
subargument 𝐴′ of 𝐴 is wp-rejected by 𝑅𝑇

𝑛 and 𝐽𝑇
𝑛 . This means that 𝐴′ ∈ 𝑅𝑇

𝑛 , and that argument has
been added at a step before 𝑛. Thus, we can appeal to the inductive hypothesis to conclude that 𝐴′

would be in all 𝑅𝑇
𝑚, 𝑚 ≥ 𝑛. Thus, 𝐴 ∈ 𝑅𝑇

𝑛+1.
We have just proved that the construction of the wp-extension is monotonically increasing. Then,

by the Knaster-Tarski Theorem, the construction has a least fixed point, and the least fixed point is
unique.

The next step is to show that the wp-semantics is correct. For correctness we have to consider
two properties. We have to show that the wp-extension is conflict-free, thus the set of wp-acceptable
arguments does not contain arguments for and against a given conclusion and that no argument is both
wp-justified and wp-rejected.



Theorem 3. For any Deontic Argumentation Theory 𝑇 = (𝐹,𝑅):

• JArgs ∩ RArgs = ∅ (no argument is both wp-justified and wp-rejected);
• the wp-extension is conflict-free.

Proof. We start by proving that the intersection of the wp-acceptable argument and the wp-rejected sets
of arguments is empty. The proof is by contradiction and induction. Assume that there is an argument
𝐴 such that 𝐴 ∈ JArgs and 𝐴 ∈ RArgs . This means that there is some 𝑛, 𝐴 ∈ 𝐽𝑇

𝑛 and 𝐴 ∈ 𝑅𝑇
𝑛 . We

prove by induction that this is impossible.
For the inductive base, suppose that 𝐴 ∈ 𝐽𝑇

0 and 𝐴 ∈ 𝑅𝑇
0 . We have two cases: 𝐴 is an imaginary

argument or 𝐴 is a natural argument.
𝐴 is an imaginary argument. 𝐴 ∈ 𝑅𝑇

1 means that there is an argument 𝐵, such that 𝐵 > 𝐴 and
𝐵 ∈ 𝐽𝑇

0 . But 𝐽𝑇
0 = ∅, so there is no such argument 𝐵. Hence, 𝐴 /∈ 𝑅𝑇

1 . Thus, 𝐴 cannot be in the
intersection of 𝐽𝑇

1 and 𝑅𝑇
1 .

𝐴 is a natural argument. 𝐴 ∈ 𝐽𝑇
1 means that 𝐽𝑇

0 = ∅ supports 𝐴, thus Sub(𝐴) = {𝐴} and 𝐴
does not have any proper subarguments. Moreover, 𝐽𝑇

0 undercuts all arguments attacking 𝐴. Suppose
𝐵 > 𝐴, then 𝐽𝑇

0 undercuts 𝐵, thus 𝐽𝑇
0 supports an argument 𝐶 that attacks a proper subargument

of 𝐷 of 𝐵, 𝐷 ∈ Sub(𝐵), 𝐷 ̸= 𝐵. 𝐴 ∈ 𝑅𝑇
1 means that there is an argument 𝐵, such that 𝐵 > 𝐴 and

𝐽𝑇
0 = ∅ supports 𝐵. Thus, Sub(𝐵) = {𝐵}, and we get a contradiction since 𝐶 cannot attack a proper

subargument 𝐷 of 𝐵.
For the inductive step, we assume that the property holds for 𝑛 (𝐽𝑇

𝑛 ∩𝑅𝑇
𝑛 = ∅) and we show that

it holds for 𝑛 + 1. Assume that 𝐴 ∈ 𝐽𝑇
𝑛 and 𝐴 ∈ 𝑅𝑇

𝑛 . Again, we have two cases: 𝐴 is an imaginary
argument or 𝐴 is a natural argument.
𝐴 is an imaginary argument. 𝐴 ∈ 𝐽𝑇

𝑛+1 means that every argument attacking 𝐴 is wp-rejected by
𝑅𝑇

𝑛 and 𝐽𝑇
𝑛 . Thus, any argument 𝐵, such that 𝐵 > 𝐴, is in 𝑅𝑇

𝑛 . 𝐴 ∈ 𝑅𝑇
𝑛+1 means that there is an

argument 𝐵, such that 𝐵 > 𝐴 and 𝐶 ∈ 𝐽𝑇
𝑛 . Hence, 𝐵 ∈ 𝐽𝑇

𝑛 ∩𝑅𝑇
𝑛 , against the inductive hypothesis.

𝐴 is a natural argument. 𝐴 ∈ 𝐽𝑇
𝑛+1 means that 𝐽𝑇

𝑛 supports 𝐴, and every argument 𝐵 attacking
𝐴 is undercut by 𝐽𝑇

𝑛 . Thus, for every argument 𝐴′ ∈ Sub(𝐴), 𝐴′ ̸= 𝐴, 𝐴′ is in 𝐽𝑇
𝑛 . Moreover, for

an argument 𝐵 such that 𝐵 > 𝐴, 𝐽𝑇
𝑛 supports an argument 𝐶 that attacks a proper subargument of

𝐵′ of 𝐵 (𝐵′ ∈ Sub(𝐵), 𝐵′ ̸= 𝐵). 𝐴′ ∈ Sub(𝐴), 𝐴′ ̸= 𝐴 such that 𝐴′ ∈ 𝑅𝑇
𝑛 (and this is against the

inductive hypothesis) or (2) there is an argument 𝐵 such that 𝐵 > 𝐴 and 𝐽𝑇
𝑛 supports 𝐵. Therefore,

∀𝐵′ ∈ Sub(𝐴), 𝐵′ ̸= 𝐴, 𝐵′ ∈ 𝐽𝑇
𝑛 . But, 𝐵′ is undercut by 𝐽𝑇

𝑛 , thus there is an argument 𝐶 supported
by 𝐽𝑇

𝑛 that attacks 𝐵′. Thus, 𝐵′ ∈ 𝑅𝑇
𝑛 against the inductive hypothesis.

For the wp-semantics, conflict-free means that we do not have pairs of arguments 𝐴 and 𝐵 such that
𝐴 > 𝐵 and 𝐴,𝐵 ∈ JArgs .

Let us suppose that an extension is not conflict-free; this means that there is some 𝑛 such that there
are two arguments 𝐴 and 𝐵 such that 𝐴,𝐵 ∈ 𝐽𝑇

𝑛+1, and 𝐴 > 𝐵. By construction of the attack relation,
we have that 𝐴 is a natural argument. Thus, 𝐴 ∈ 𝐽𝑇

𝑛+1 means that 𝐽𝑇
𝑛 supports 𝐴, and every argument

𝐶 attacking 𝐴 is undercut by 𝐽𝑇
𝑛 .

𝐵 is either an imaginary argument or a natural argument. If 𝐵 is an imaginary argument, 𝐵 ∈ 𝐽𝑇
𝑛+1

means that every argument attacking 𝐵 is wp-rejected by 𝑅𝑇
𝑛 and 𝐽𝑇

𝑛 . But, 𝐴 attacks 𝐵, thus 𝐴 is
wp-rejected by 𝑅𝑇

𝑛 and 𝐽𝑇
𝑛 , so 𝐴 ∈ 𝑅𝑇

𝑛+1; but we just proved that this is impossible, no argument is
both wp-justified and wp-rejected.

If 𝐵 is a natural argument, 𝐴 attacks 𝐵, and 𝐽𝑇
𝑛 supports 𝐴, thus, 𝐵 ∈ 𝑅𝑇

𝑛+1. But, as we have just
seen, this is impossible.

We extend the notion of wp-justified conclusions to literals and deontic literals. A literal is wp-justified
if it is the conclusion of a wp-justified argument.

Definition 13. Given a Defeasible Argumentation Theory 𝑇 , an argument 𝐴 is justified under the
wp-semantics (or wp-justified) iff 𝐴 ∈ JArgs .

A literal or a deontic literal is justified under the wp-semantics (or wp-justified) iff it is the conclusion of
a justified argument under the wp-semantics.



Example 6. When we consider the Deontic Argumentation Theory of Example 2, and the construction of
the extension in Example 5, we can see that the arguments 𝐴0, 𝐴4, 𝐴8, 𝐴9, 𝐼1, 𝐼2 and 𝐼4 are wp-justified.
Thus, the wp-justified conclusions are

𝑎, obl(¬𝑞), perm(¬𝑞), 𝑠, perm𝑤(𝑝), perm𝑤(¬𝑝), perm𝑤(¬𝑞)

The final step is to show that weak permission is supported by the wp-semantics. This means that
we can infer that a weak permission is in force even when a conflict between two obligations exists.
Accordingly, we refine the definition of a conflictual theory to be more aligned with the wp-semantics.

Definition 14. A Deontic Argumentation Theory is wp-conflictual it contains a pair of rules

𝑎0, . . . , 𝑎𝑛 ⇒ obl(𝑙) 𝑏0, . . . , 𝑏𝑚 ⇒ obl(¬𝑙)

such that the arguments 𝐴𝑖 (0 ≤ 𝑖 ≤ 𝑛) and 𝐵𝑗 (0 ≤ 𝑗 ≤ 𝑚) have conclusions 𝐶(𝐴𝑖) = 𝑎𝑖 and
𝐶(𝐵𝑗) = 𝑏𝑗 , and the 𝐴𝑖 and 𝐵𝑗 are wp-justified. We also say that 𝑙 is a wp-conflictual literal.

Theorem 4. Let 𝑇 be a wp-conflictual theory and 𝑙 a wp-conflictual literal such that the proper subar-
guments of the arguments for obl(𝑙) and obl(¬𝑙) are wp-justified. Then perm𝑤(𝑙) and perm𝑤(¬𝑙) are
wp-justified.

Proof. We can assume, without any loss of generality, that the arguments 𝐵𝑗 and 𝐶𝑘 have no attacks.
Hence, the set of attacks for the theory is

𝐴1 > 𝐴2 𝐴1 > perm𝑤(¬𝑙)
𝐴2 > 𝐴1 𝐴2 > perm𝑤(𝑙)

By definition all subarguments of 𝐴1 and 𝐴2 are wp-justified. 𝐴1 is the only argument attacking
perm𝑤(¬𝑙), 𝐴2 attacks 𝐴1 and 𝐴2 is supported by the wp-extension. Hence, 𝐴1 is wp-rejected. 𝐴1 is
the only argument attacking perm𝑤(¬𝑙). Hence, perm𝑤(¬𝑙) is a justified argument. We can repeat the
same argument for perm𝑤(𝑙).

To conclude we show that the wp-semantics is an extension of the grounded semantics. To this end
we need the following lemma.

Lemma 1. All subarguments of a justified argument are justified.

Proof. It is an immediate consequence of Definition 10.

Theorem 5. Given a deontic argumentation theory, every argument justified under the grounded semantics
is also justified under the wp-semantics.

Proof. It follows immediately from Lemma 1, since an argument that is justified by a set of arguments
is also supported by the same set.

5. Related Work

Formal argumentation has been investigated for a long time in the field of Artificial Intelligence and
Law (for a comprehensive though a bit outdated survey, see [10]). However, the issue of incorporating
deontic reasoning in argumentation frameworks has been neglected. Moreover, the issue of weak
permission received almost no attention.

van der Torre and Villata [11] extends ASPIC+ [12] with deontic operators and analyses the framework
in terms of Input/Output logic. However, it does not consider weak permission.

The scope of [13] is formal argumentation for handling norms in multi-agent systems, presenting
methods for representing and interpreting hierarchical normative systems, and addressing open texture



in legal interpretation using fuzzy logic. No focus is devoted on deontic reasoning and weak permissions:
deontic assertions are simply conclusion in ASPIC+ setting.

The aim of [14] is to propose an argumentation framework to address different types of normative
conflicts. Arguments are built by triples (𝑏, 𝑖, 𝑑) where 𝑏 is a formula for the brute facts of the arguments,
𝑖 represents the institutional facts, and finally 𝑑 is the deontic conclusion of the argument, which is
either an obligation or a permission. While the work considers various notions of conflicts, it does
not consider weak permission. Moreover, the argumentation framework adopts Dung’s semantics,
including grounded semantics. Thus, it cannot deal with weak permission when unresolved conflicts
exist.

Riveret, Rotolo and Sartor [15] presented a modular rule-based argumentation system designed
to represent and reason about conditional norms, including obligations, prohibitions, and weak and
strong permissions. However, the work treated such notions as labels of literals without exploring
their argumentative nature. Similar considerations apply to [16], in which deontic argumentation
and probabilistic argumentation were merged. Riveret, Rotolo and Sartor [15] presented a modular
rule-based argumentation system designed to represent and reason about conditional norms, including
obligations, prohibitions, and weak and strong permissions. However, the work treated such notions as
labels of literals without exploring their argumentative nature. Similar considerations apply to [16], in
which deontic argumentation and probabilistic argumentation were merged.

The work by Straßer, Arieli and Berkel [17, 18] focuses on the relationships between formal argumen-
tation and sequent style and Input/Output inference systems. However, in general, they do not consider
permission (and weak permission) [18] or Standard Deontic Logic [17]. While [18] restricts its focus to
grounded semantics, [19, 20] consider also other semantics (preferred and stable) but no permission,
and given the results of [2] these approaches are not able to characterise weak permission. The work
by Straßer, Arieli and Berkel [17, 18] focuses on the relationships between formal argumentation and
sequent style and Input/Output inference systems. However, in general, they do not consider permission
(and weak permission) [18] or Standard Deontic Logic [17]. While [18] restricts its focus to grounded
semantics, [19, 20] consider also other semantics (preferred and stable) but no permission, and given
the results of [2] these approaches are not able to characterise weak permission.

The proposal in [21] builds an argumentation framework in ASPIC+ style for deontic reasoning based
on Standard Deontic Logic extended with a preference relation. The approach considers permission
as the dual of obligation, and then evaluates arguments based on the complete semantics. Notice that
in case of a conflict, the complete semantics will provide two extensions, and the proof of Theorem 1
shows the two extensions contain opposite obligations, and weak permission is not sceptically justified.

The approach closer to our work is Defeasible Deontic Logic (DDL) [4]. DDL can with conflicts and
weak permission; DDL offers a constructive proof-theoretic approach to deontic reasoning, though
its proof theory has a strong argumentation flavour. However, no argumentation semantics has been
advanced for DDL. The wp-semantics is based on the argumentation semantics for Defeasible Logic [9].
Given that wp-semantics is an extension of the semantics proposed by [9] for defeasible logic to account
for deontic operators (including weak permission) we expect that the wp-semantics characterise DDL.
A preliminary analysis in argumentation was developed in [22]. In this paper a first treatment of weak
permission was developed by introducing the concept of argument agglomeration set, with respect
to which an argument for a prohibition is rejected, thus proving the corresponding weak permission.
However, no systematic study on argumentation semantics was offered, just confining the study to
DDL.

Grounded semantics and the semantics proposed in [9] correspond (respectively) to ambiguity
propagation and ambiguity blocking. [23, 24] point out that legal and deontic reasoning support
ambiguity blocking and ambiguity propagation. In general, the two approaches are incompatible. [24]
proposed an extension of DDL, DDL+ that is a conservative extension of the variants. DDL+ has been
defined proof-theoretically. However, DDL+ is a conservative extension of DDL. Accordingly, we plan
to investigate an argumentation framework that allows up to integrate the two competing semantics.

While the wp-semantics covers the case of weak permission, it fails to explain the deontic operators
(apart from weak permission being the failure to conclude the prohibition of the opposite). To fill this



gap, we plan to extend the approach we proposed in [25] to account for the meaning of the deontic
operators in a possible world (neighbourhood) semantics for Defeasible Deontic Logic [26].

6. Conclusions

In this paper, we have proposed a new semantics for deontic argumentation that can deal with weak
permission. The semantics is based on the argumentation semantics for Defeasible Logic. We have
shown that the semantics is unique, conflict-free, and that no argument is both justified and rejected. We
have also shown that the semantics is able to characterise weak permission when there are unresolved
conflicts addressing thus the issue with grounded semantics.

Declaration on Generative AI

Apple AI was used to proofread the document to spot typos and minor grammatical errors. The authors
confirm that they have reviewed and edited the content as needed and take full responsibility for the
content of the publication.
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