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Abstract
Extended abstract of a paper published at IJCAI 20251 [2]—Constraint Logic Programming (CLP) is a logic
programming formalism used to solve problems requiring the consideration of constraints, like resource allocation
and automated planning and scheduling. It has previously been extended in various directions, for example to
support fuzzy constraint satisfaction, uncertainty, or negation, with different notions of semiring being used as
a unifying abstraction for these generalizations. None of these extensions have studied clauses with negation
allowed in the body. We investigate an extension of CLP which unifies many of these extensions and allows
negation in the body. We provide semantics for such programs, using the framework of approximation fixpoint
theory (AFT), and give a detailed overview of the impacts of properties of the semirings on the resulting semantics.
As such, we provide a unifying framework that captures existing approaches and allows extending them with a
more expressive language.
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Many problems require the consideration of constraints; examples of such problems can be relatively
simple, like sudokus and similar puzzles, or more complex, like the real-world applications of resource
allocation and automated planning and scheduling. Classically, a problem as such may be formulated as
a Constraint Satisfaction Problem (CSP) and solved using Constraint Logic Programming (CLP). We
investigate an extension of CLP capable of handling semiring-based constraints with negation.

Consider an informal example constraint logic program, which describes the allocation of a limited
number of working hours to two different tasks.

1 % We define two tasks,
2 % taking 6 and 4 hours to complete respectively.
3 task(t1, 6).
4 task(t2, 4).
5 % A task is completed if enough time is scheduled.
6 completed(Task, HoursScheduled) :-
7 task(Task, HoursRequired),
8 HoursRequired ≤ HoursScheduled.
9 % We set a time limit of eight hours.

10 inTimeLimit(Hours1, Hours2) :-
11 Hours1 + Hours2 ≤ 8.
12 % A schedule is evaluated by the degree to which both tasks
13 % are completed and the total allotted time does not exceed
14 % the time available.
15 schedule(HoursTask1, HoursTask2) :-
16 completed(t1, HoursTask1),
17 completed(t2, HoursTask2),
18 inTimeLimit(HoursTask1, HoursTask2).

1A full version of the paper, including proofs and appendices, is available on arXiv [1].
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Using classical answer set programming semantics to evaluate this program with the goal
schedule(HoursTask1, HoursTask2) returns false. Intuitively, this happens because no schedule
can complete the two tasks—totalling ten hours of work—in less than eight hours. Knowing that the two
tasks cannot both be completed in the time available, we may wish to optimize their partial completion
instead. One way to do this is to replace false and true with values in [0, 1] (where 1 represents complete
truth and 0 complete falsity), replace or with max, replace and with min, and replace HoursRequired
≤ HoursScheduled with HoursScheduled / HoursRequired.

Our example demonstrated that CLP is limited to strict satisfaction or violation of constraints, and
that we require an alteration of this framework to solve problems of constraint optimization. The same
holds—for example—for problems involving fuzziness, uncertainty, or probability.

Bistarelli et al. [3, 4, 5] proposed Semiring-based Constraint Logic Programming, a generalization of
CLP replacing the Boolean evaluation domain and the associated logical and and or connectives with
semirings—algebraic structures consisting of a set equipped with an additive operator for disjunction
and a multiplicative operator for conjunction—much like we did in our example. Since, many related
formalisms have likewise been extended to the semiring setting [6, 7, 8, 9, 10, 11, 12] to certain success.
Each of these works makes some assumptions about the semirings used, but what exactly those
assumptions are and how they relate is left implicit or has not been studied. Herein lies the first major
contribution of this work; we perform an analysis of the various families of semirings in relation to
semiring-based semantics for CLP, paying special attention to the orderings each family gives rise to.

While some of the above-mentioned works permit negation, most do not, and a general analysis
of negation in the semiring setting is so far absent from the literature. Herein lies the second major
contribution of this work; a semiring-agnostic form of negation—based on negation in Gödel logics [13],
and also used in the semiring-based formalism of Eiter and Kiesel [8]—is proposed and the effects of its
addition on the semantics of semiring-based constraint logic programming are studied. The addition of
negation gives us the expressive power to, for example, make the completion of a task in our scheduling
problem contingent on the absence of blocking factors by replacing lines 5 through 8 of our example
program with the following.

% A task is completed if enough time is scheduled
% and its completion is not blocked.
completed(Task, HoursScheduled) :-

task(Task, HoursRequired),
HoursRequired ≤ HoursScheduled,
not blocked(Task).

Notably, and as is to be expected, the addition of negation leads to nonmonotonicity of the immediate
consequence operator. To work around this problem we capture the new negation-permitting formalism
in Approximation Fixpoint Theory (ADT) [14], endowing it with AFT’s various semantics like Kripke-
Kleene, Well-founded, and Stable, which generalize the semantics of normal logic programs.

Concretely, the contributions of this work come in five parts:
1. A novel notion of model—considering all contributing clauses at once, and specific to the semiring-

based setting—is introduced and compared to the traditional notion of model which considers
each clause’s satisfaction separately.

2. The minimal model semantics based on these notions of model are then compared with the least
fixpoint semantics based on an immediate consequence operator.

3. A generalized method for deriving orderings of semiring elements needed to define models and
least fixpoints—but also needed in the later application of approximation fixpoint theory—is
investigated and found to be a generalization of the method studied by Bistarelli et al. [5].

4. The application of a generalized notion of negation appearing at various points in the literature
to our semiring-based framework is studied.

5. Approximation fixpoint theory is applied to our immediate consequence operator—made non-
monotonic by the addition of negation—to define Kripke-Kleene, and well-founded and other
stable semantics, studying both ultimate approximation and a novel approximator.



This work studies semiring-based semantics for constraint logic programming with negation, gen-
eralizing the approaches of [5] and [15]. Computational complexity, implementations, and applying
AFT-based notions such as stratification [16], conditional independence [17] and non-determinism [18]
are left as future work.
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