CEUR-WS.org/Vol-4072/paperl.pdf

C

CEUR

Workshop
Proceedings

Impact of LLM-Assisted Coding in Creativity and
Robustness of Robot Controllers

Paolo Baldini®*, Michele Braccini’ and Andrea Roli*?

! Department of Computer Science and Engineering (DISI), Alma Mater Studiorum — Universita di Bologna, Campus of Cesena,
Cesena, 47521, Italy

?European Centre for Living Technology, Venice, 30123, Italy

Abstract

The use of Large Language Models (LLMs) in work environments has recently started to gain attention in the
research community, with many works reporting increased productivity and others reporting homogenization
of the output products. Nevertheless, their use as coding assistants in robotics has been mostly overlooked,
especially from the point of view of their effects compared to not-assisted programming. We claim that peculiar
characteristics of robotics programming deserve special attentions, such as the robustness of the produced
solution. Here we analyze the effects of using LLMs as coding assistants in robotics. We analyze their effects
on the performance, in a pseudo-reality gap, and on the similarity of the produced controllers. We also briefly
discuss the feedback of some participants of the experiment. The results suggest that the codes produced with
the assistance of LLMs are less robust to unseen conditions, and overall more homogeneous. Additionally, we
report a shorter development time when using LLMs, but a poorer coding experience.

Keywords
LLM, Robotics, Development, Creativity, Robustness, Pseudo-Reality Gap, High-Level Education

1. Introduction

The release of ChatGPT 3.5 in 2022 quickly revolutionized the world by showing how human work
could be replaced or made more efficient. Among the many areas affected, software development
experienced a major change. The incredible ability of Large Language Models (LLMs) to predict the code
to be written and their seemingly immediate access to a huge amount of information led to massive
speed-ups in code production [1]. This improvement led to the adoption of LLMs as coding assistant in
many development environments.

The sudden interest in this technology captured also the curiosity of researches, who tried to assess
how their specific area of knowledge could be affected by these tools. This led to the proliferation
of works highlighting the positive effect of LLMs in making more effective the work of professionals.
Nevertheless, also some limitation of these systems started to emerge. Specifically, it is of our interest
the perceived homogenization of the output produced with the assistance of LLMs [2, 3]. Many works
reported that LLMs reduce the creativity of humans, leading to the production of similar outputs. Some
works argue that this can lead to a decrease in the novelty of human creations.

One field in which the impact of LLMs in development has been less considered is robotics. Specifically,
to the best of the author knowledge, no work assessed their effects on the performance of the produced
solution against the reality gap and their effect on the creativity of the produced solution. In this work
we perform a preliminary analysis on the effects of using LLMs as coding assistants while programming
robot controllers. We do so by comparing results obtained by the students of a university course in
the creation of controllers for a specific task. Specifically, we explore the effects on the creativity
of the produced solutions (i.e., their structural diversity), their performance, and the robustness to a

HAIC 2025 - First International Workshop on Human-AI Collaborative Systems, editors Michele Braccini, Allegra De Filippo,
Michela Milano, Alessandro Saffiotti, Mauro Vallati; October 25, 2025, Bologna, Italy.

*Corresponding author.

& p.baldini@unibo.it (P. Baldini); m.braccini@unibo.it (M. Braccini); andrea.roli@unibo.it (A. Roli)

@ 0000-0002-3625-5414 (P. Baldini); 0000-0002-2335-2514 (M. Braccini); 0000-0001-9891-5441 (A. Roli)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
B

mailto:p.baldini@unibo.it
mailto:m.braccini@unibo.it
mailto:andrea.roli@unibo.it
https://orcid.org/0000-0002-3625-5414
https://orcid.org/0000-0002-2335-2514
https://orcid.org/0000-0001-9891-5441
https://creativecommons.org/licenses/by/4.0/deed.en

pseudo-reality gap'.

The article is organized as follows. In Section 2 we discuss works analyzing the use of LLMs for
coding, and specifically its use in robotics. Section 3 presents our experiment and the experimental
settings. Section 4 presents and explains the results obtained. In Section 5 we discuss the outcomes of
the experiment and discuss how and why those should be considered when deciding to use LLMs to
develop robot controllers. Finally, Section 6 summarizes the work done and proposes future works.

2. Related works

The use of LLMs in code production have recently started to increase [4, 5]. This widespread interest
caught the attentions of researchers, who started to question how these tools really affect development.
Some works concentrated solely on the performance of LLMs with respect to humans [6]. Nevertheless,
here we are interested in their effect as coding assistants. Preliminary experiments considered small
groups in context limited in time [7]. Subsequent works reported the findings in large business and
companies [8, 9]. The results suggest that LLMs improve the work efficiency and quality of developers.
However, the supervision of humans remains an important aspect for the effective use of these tools.
One limitation of these works is that they mostly focus on the reported perception of the participants,
and not on technical metrics. This could hide important flaws behind the perceived utility. He [10]
analyzes the presence of vulnerabilities in produced code, with and without using LLMs. Their results
suggest that the code produced with the support of LLMs presents more security issues than that
produced without. This affects also the trust that humans have towards LLMs [11]. Indeed, most
developers trust LLMs mostly for simple tasks such as test generation, trusting it less for what concerns
code development and fix.

Multiple works considered LLMs for assisted development, but few investigated their use in robotics.
We notice that the most common approach to the problem of generating code for robots consists in the
generation of high-level plans (i.e., sequences of action commands) [12, 13, 14, 15]. The motivation is
that most works leverage on existing (or assume the existence of) sets of basic skills. Therefore, the LLM
just need to combine them, allowing the automatic generation of control plans. This approach comes
to face various limitation of the LLMs themselves. For instance, the performance of LLMs tends to
decrease for long texts due to difficulties in effectively using the whole context [16]. When considering
the generation of complex code, this obviously becomes a problem. The generation of high-level plans
mitigates this issue by reducing the length of the output required to the LLM. Nevertheless, this approach
just seems to be a workaround, with complex tasks requiring long high-level plans still showing a
decrease in performance [17]. Another problem that this approach solve is the generation of functioning
code for specific platforms. Indeed, different robots perceive and act through devices that produce, and
are controlled, by specific type of signals. LLMs do not often know how to interpret them, and therefore
cannot produce the required code targeting a specific robot. Finally, combining pre-built blocks is a
common approach in robotics to face the so called reality gap [18, 19]. Overall, this approach reduces
the need of human developers supervising the code production. This can lead to a speed-up in code
production of up to 90%2, with a consequent reduce in costs [17].

One of the few works trying to generate robot code at a level lower than a plan is Liang et al.
[20]. The authors create a system that converts human goals to an LLM-generated plan. The plan is
then translated to code, iteratively implementing undefined functions. Also in this case the system
assumes the existence of control primitives, but it has more control over the execution flow and the
code organization. The authors report that the system struggles with commands or goals longer and
more complex than those given as example, highlighting an important weakness of the system.

Recently, novel approaches started to emerge as a step forward to classical plan generation for robots.
Antero et al. [17] proposes using LLMs not only as code or plan generator, but also as code evaluator.
This methodology sees the contraposition of two different LLMs, one for the generation of Finite States

'A pseudo-reality gap simulates passing from simulation to the real robot, without actually using this latter one.
*This assumes that the low-level skills already exists.

. -
7
M
. 9.0
material - code
N A
documentation documentation

Figure 1: Representation of the artifacts used and produced during the experiment by each group: the one using
Copilot (blue), and the one not using it (orange).

Machines controllers, and one for their evaluation. The controller is iteratively refined until no error
is detected. This aims at removing completely the burden of code or plan generation from human
developers. Differently, Schlesinger et al. [21] proposes a system that employs LLMs for the automatic
generation of robot plans and the recovery from errors. The plan produced by the LLM runs until
an error occurs or a human blocks the execution. The LLM then subsequently updates the code to
overcome the detected problem. Also Vemprala et al. [15] proposes the real-time generation of control
plans. However, rather than performing an automatic adaptation of the plan, they convert human
commands to code to be immediately executed by the robot.

Most of the aforementioned works combining LLMs and robotics aims at generating high-level plans.
Additionally, they see the LLMs more as a replacement for human developer rather than assistants. If
the human remains part of the loop, it is mostly not expected to code, but rather to supervise. Here we
argue that humans are still often the core of the robotic development, and thus we see LLMs more like
assistants rather than replacements. Our approach imagines therefore a collaboration of generative
systems and developers through assisted development. In this context, the code is still often produced
from scratch, starting from the implementation of the low-level behaviors (that we argue requiring
a great deal of effort) up to the complete control logic. Therefore, differently from other works, we
examine a case of full code development, and not just planning.

3. Methods

This work aims at assessing the effect of LLMs on the development of robot controllers. As multiple
solutions and approaches exist, we need to collect a set of solutions to compare. Therefore, we ask
students of the University of Bologna to implement a controller for a specific task. No student reported
having working experience in robotics, but all attended the course of Intelligent Robotic Systems, which
gives them a wide perspective of development approaches and strategies in robotics. They are thus aware
of the issues that could arise while programming robots, such as noise and the reality gap. However, the
participants of the experiment are not aware of the analyses we perform on the controllers they create.
The experiment involved thirteen male students, which we divided in two groups. Seven participants
program with the assistance of LLMs, while the remaining six program without (see Figure 1). All the
students are allowed to access the course material and codes of laboratories, plus the documentation of
the simulation environment and programming language. Nevertheless, they are not allowed to access
internet except for the aforementioned resources.

The task considered in this experiment is path-following. A robot deployed randomly on an arena
must search for a black path, and then follow it. The robot must keep moving as fast as possible,
avoiding turning on itself. This is a classical robotic task that does not constraints the use of a specific

Y Do R

(a) (©)

Figure 2: The paths used in the experiment. The students have had access only to arenas with the (a) eight, (b)
heart, and (c) hexagon paths during development. The (d) train and (e) freehand paths are used in the test arenas.

control architecture. To drive the development, we present the students the evaluation function we use
for assessing the performance of the controller in the experimental analysis section (see Equation 1).
This computes the performance at a specific step, and thus needs to be accumulated through the entire
duration of the experiment to obtain an overall evaluation. The function considers the average color
of the ground, i.e., how often the robot remains on the line, and its direction and average speed. All
these metrics should be maximized, as having just one of those to zero consequently zeroes the step
performance. The step evaluation function is the following:

L1 ground(i) (1= PG s (0, 2 2) o

where:

« 1 is the number of ground sensors,

« ground(i) is the perception of the ground color from sensor 7 in [0, 1], where 0 indicates black
and 1 indicates white,

« M;, M, are respectively the speed of the left and right wheels, transformed in [—1, 1].

The students program a controller for the Foot-Bot robot [22, 23]. We simulate the robot and its
behavior in the ARGoS3 simulator [24]. To simplify and accelerate the development, the controller
is implemented in the Lua language [25], which however cannot be directly ported to the physical
robots. This decision is due to the length of the experiment (i.e., three hours) which requires a fast
development of the solution. Additionally, it should simplify the LLM generation, as Lua is a very
permissive language similar to pseudocode.

The language model we consider in this experiment is Copilot, on its version at May 2025 [26].
Specifically, we permit its use through its online interface. This means that it has access only to the
code uploaded by the students. We chose this LLM and this interaction mode for multiple reasons. First,
it is a widespread tool in development. Second, it can be used remotely and without login, avoiding
biases due to previous interactions or the presence of local files. Third, it can provide fast answers (i.e.,
Quick Response) and longer reasoned ones (i.e., Think Deeper), allowing each student to use what they
prefer. Finally, it works even in incognito mode, which we require as an additional measure to avoid
biases in the generated responses. We require the students belonging to the group using LLMs to query
Copilot at least three times during the development.

Before performing the experiments, we require the students to take a four minutes Divergent
Association Task (DAT) [27]. This aims to measure the verbal creativity and the ability to generate
diverse solutions to open-ended problems [28]. We use the test to divide the students in the two groups,
maintaining as balanced as possible the distribution of the DAT score (see Figure 6). The students are
not aware of the test results and of the logic behind the group subdivision.

4. Results

The first metric we use to analyze the results is the performance of the produced controllers (see
Figure 3). We consider the performance on the three arenas presented to the students, and on two

1 x noise arenas 5 x noise arenas

30001["g with LLM 30001["g with LLM
©® without LLM ©® without LLM |

» 2000 » 2000 I . l
o o
C C
© ©
€ £ .
S 1< .
T T .
& & .

1000 1000 1]

0 | 0 -
eight heart hexagon train freehand eight heart hexagon train freehand
Arena Arena

Figure 3: Performance distribution in the different arenas. The left plot shows the performance in arenas with
relatively low noise. The right plot shows the performance in arenas with relatively high noise. Performances
obtained with high noise simulate a reality gap between the development and production environment. The
students had access to only the eight, heart, and hexagon arenas during the development, all with low noise. The
train and freehand arenas represent a test set.

additional arenas (see Figure 2). For each controller, we perform 100 runs per arena, with a limit of 5
minutes of simulation. The group coding without the assistance of the LLM obtained averagely better
results in all the arenas. However, the group using Copilot attained the highest performance in the
arenas presented to the students (i.e., eight, heart, hexagon). This difference in the highest performance
disappears when considering the two test arenas (i.e., the arenas not presented to the students: train
and freehand). Even more interesting are the results obtained in the pseudo-reality gap, that in this
case is, experimenting with much higher noise [29, 30, 31]. In this scenario the performances attained
by the group using Copilot drop, while the performances obtained by the other group remain overall
stable. This indicates a that the controllers produced with the assistance of LLM are less robust than
the controllers produced by students alone.

The second metric we use to analyze the results is the code similarity. This considers the similarity
between pairs of codes produced by the students of each group. For the analysis we use a software
named Dolos, which aims to identify plagiarism in code [32]. This considers the similarity of codes
ignoring comments, variable names and text position. Indeed, these factors concur in obscuring the
results when using different metrics, such as the Normalized Compression Distance (NCD) (see Figure 7).
The results show that the code produced with the assistance of Copilot is significantly more similar that
the one produced by the students alone (see Figure 4). This seems to indicate a decrease in creativity
and an overall homogenization of the results, as discovered by previous studies [3].

Both the performance and the code similarity seem to be affected by the use of an LLM as a coding
assistant. However, it is important to avoid biases due to the creativity and expertise of the participants
of the experiment. Our two groups are composed of students from the same university course, divided
according to their DAT score. The aim is indeed to minimize differences between the two test groups.
However, as additional check, we assess how the performance of the produced controllers correlates
with the DAT score. Specifically, for each student, we take the average performance per arena over 100
runs and plot it in a scatter-plot according to the DAT score of the author (see Figure 5). This shows two
interesting aspects. First, the performance seems to increase with the increase in the DAT score. Second,
both groups present few students failing to produce satisfactory solutions, cancelling each other bias.

5. Discussion

This works shows the effect of LLMs in programming controllers for robots. Specifically, it highlights
how using Copilot leads to less robust and more specialized code, which performs worse when some

Code similarity

0.5 - *

0.4 -
=
3
E
? 03-

0.2 *

L]
with LLM without LLM
Group

Figure 4: Pair-wise similarity of codes inside each group as calculated by Dolos.

1 x noise arenas 5 x noise arenas
800071y it LLM 80007y with LLM
® without LLM . ® without LLM .
o . : : :
o 2000+ s . o 2000+ s .
o ° . . o
c L[] c L[]
[[
€ ° ° €
kS . o 5 .
& . & P J
1000 s 1000 .
]
' ’ : ' : '
0 § o U s ' 04 § o, . J s L
70 75 80 85 90 70 75 80 85 90
DAT DAT

Figure 5: Average performance according to the DAT score in the five arenas, with the two levels of noise. If we
ignore students which did not succeed in producing an effective controller (i.e., with performances near to 0), the
performance seems to increase according to presumed creativity.

conditions change. This result is significant, as a well known issue in robotics is maintaining the perfor-
mance while porting the code to different environments or platforms. Specifically, when this happens
from simulation to real-world, it usually takes the name of reality gap. One of the major challenges has
often been creating control systems robust to conditions different from those of development or training,.
To this goal, researchers proposed many strategies and architectures [29, 33, 34, 35, 36, 37, 38, 39, 40].
Nevertheless, the poor results obtained while using LLMs seem to indicate that those are not inherently
able to exploit them. This could be due to the reduced availability of state-of-the-art examples present
online. Indeed, most of the code available online is from examples of simulators, while the use of these
architectures and strategies is often limited to minimal illustrations in papers.

Another difference detected is that using Copilot seems to produce more similar code. This could
be again due to the problem presented in the previous paragraph, i.e. that the LLM does not have a
broad enough knowledge of robotic systems. Alternatively, it could be related to the generally reduced
variability in LLMs responses when compared to humans [41]. On its own, this is not necessarily a
problem. However, the limited variability in answers can lead to fewer options presented to developers
aiming to produce effective controllers.

Despite limitations, we highlight also that the use of Copilot allowed obtaining working controllers

faster that by humans alone (see Figure 9). Nevertheless, this was not true in all the cases. Some students
reported that asking Copilot directly for a solution led to a long process of fixes that instead elongated
the development time. This led a discrepancy in the students’ feedback on the quality of coding with
LLM, with some students that enjoyed the process and others that did not (see Figure 8). At the end of
the experiment, students reported that the best use they found for Copilot was to ask for a pseudocode
or to brainstorming, but not for the code generation itself (see Table 1).

6. Conclusion

The effect of Large Language Models as coding assistants to program entire robot controllers has been
until now overlooked. In this work we shed a light on the impact they have on the technical and
personal perspectives of a group of developers. Specifically, we find that LLMs affect the performance of
the produced controllers, making them less robust to environmental changes and thus to the reality gap.
Additionally, they tend to constrain the creativity of the developers, leading to the employment of very
similar strategies. Finally, although speeding up the development, the participants of the experiment
reported frustration and overall less enjoyment during coding. We believe these results to be important
for the creation of healthy and effective workplaces in a changing robot industry. Additionally, we
notice that, in order to be effective tackling cutting-edge research problems and development in robotics,
technological advancements of LLMs are still needed.

One limitation of the current work is the small number of human participants. We plan to perform
additional experiments with a larger group of developers, so to get more statistically robust results.
The next work could also consider multiple tasks and the comparison with a third group of developers
performing pair-programming.

Acknowledgments

The authors thank the students of the Intelligent Robotic Systems course of the University of Bologna
who participated in this experiment. Specifically, we thank Emanuele Artegiani, Samuele De Tuglie,
Marco Fontana, Lorenzo Guerrini, Pablo Sebastian Vargas Grateron, and all the other participants who
preferred to remain anonymous.

Declaration on generative Al

During the preparation of this work, the author(s) used Grammarly in order to: grammar and spelling
check, paraphrase, and reword. After using this tool, the author(s) reviewed and edited the content as
needed and take(s) full responsibility for the publication’s content.

References

[1] C. Ziftci, S. Nikolov, A. Sjévall, B. Kim, D. Codecasa, M. Kim, Migrating code at scale with LLMs at
Google, 2025. arxiv:2504.09691.

[2] A. Doshi, O. Hauser, Generative Al enhances individual creativity but reduces the collective
diversity of novel content, Science Advances 10 (2024) eadn5290.

[3] B. Anderson, J. Shah, M. Kreminski, Homogenization effects of Large Language Models on human
creative ideation, in: C&C’24: Proceedings of the 16th Conference on Creativity & Cognition,
Association for Computing Machinery, 2024, pp. 413-425.

[4] U. Arora, A. Garg, A. Gupta, S. Jain, R. Mehta, R. Oberoi, Prachi, A. Raina, M. Saini, S. Sharma,
J. Singh, S. Tyagi, D. Kumar, Analyzing LLM usage in an advanced computing class in India, in:
ACE ’25: Proceedings of the 27th Australasian Computing Education Conference, Association for
Computing Machinery, 2025, pp. 154-163.

https://app.grammarly.com
http://arxiv.org/abs/2504.09691

(5]

D. Nam, A. Macvean, V. Hellendoorn, B. Vasilescu, B. Myers, Using an LLM to help with code
understanding, in: ICSE ’24: Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering, Association for Computing Machinery, 2024, pp. 97, 1-13.

S. Licorish, A. Bajpai, C. Arora, F. Wang, K. Tantithamthavorn, Comparing human and LLM
generated code: The jury is still out!, 2025. arxiv:2501.16857.

M. Hamza, D. Siemon, M. Akbar, T. Rahman, Human Al collaboration in software engineering:
Lessons learned from a hands-on workshop, 2023. arxiv:2312.10620.

Y. Gao, Research: Quantifying GitHub Copilot’s impact in the en-
terprise with Accenture, https://github.blog/news-insights/research/

research-quantifying-github-copilots-impact-in-the-enterprise-with-accenture, 2024. Ac-
cessed on May 2025.

G. Bakal, A. Dasdan, Y. Katz, M. Kaufman, G. Levin, Experience with GitHub Copilot for developer
productivity at Zoominfo, 2025. arXiv:2501.13282v1.

X. He, Large Language Models for code writing: Security assessment, https://medium.com/
@researchgraph/large-language-models-for-code-writing-security-assessment-{£305f9f01ce9,
2024. Accessed on May 2025.

D. Khati, Y. Liu, D. Palacio, Y. Zhang, Mapping the trust terrain: LLMs in software engineering -
insights and perspectives, 2025. arXiv:2503.13793v1.

R. Wiemann, N. Terei, A. Raatz, Large Language Model for assisted robot programming in micro-
assembly, in: Procedia CIRP: 57th CIRP Conference on Manufacturing Systems 2024 (CMS 2024),
volume 130, Elsevier, 2024, pp. 244-249.

H. Luo, J. Wu, J. Liu, M. Antwi-Afari, Large language model-based code generation for the control
of construction assembly robots: A hierarchical generation approach, Developments in the Built
Environment 19 (2024) 100488.

Z.Hu, F. Lucchetti, C. Schlesinger, Y. Saxena, A. Freeman, S. Modak, A. Guha, J. Biswas, Deploying
and evaluating LLMs to program service mobile robots, IEEE Robotics and Automation Letters 9
(2024) 2853-2860.

S. Vemprala, R. Bonatti, A. Bucker, A. Kapoor, ChatGPT for robotics: Design principles and model
abilities, IEEE Access 12 (2024) 55682-55696.

T. Li, G. Zhang, Q. Do, X. Yue, W. Chen, Long-context LLMs struggle with long in-context learning,
2024. arXiv:2404.02060.

U. Antero, F. Blanco, J. Oriativia, D. Sallé, B. Sierra, Harnessing the power of Large Language
Models for automated code generation and verification, Robotics 13 (2024) 137.

R. Brooks, Artificial life and real robots, in: Toward a Practice of Autonomous Systems: Proceedings
of the First European Conference on Artificial Life, The MIT Press, 1992, pp. 3—-10.

M. Birattari, A. Ligot, G. Francesca, AutoMoDe: A Modular Approach to the Automatic Off-Line
Design and Fine-Tuning of Control Software for Robot Swarms, Springer International Publishing,
2021, pp. 73-90.

[20] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, A. Zeng, Code as policies:

[21]

[22]

Language model programs for embodied control, in: 2023 IEEE International Conference on
Robotics and Automation (ICRA), Institute of Electrical and Electronics Engineers, 2023, pp.
9493-9500.

C. Schlesinger, A. Guha, J. Biswas, Creating and repairing robot programs in open-world domains,
2024. arXiv:2410.18893.

M. Bonani, V. Longchamp, S. Magnenat, P. Rétornaz, D. Burnier, G. Roulet, F. Vaussard, H. Bleuler,
F. Mondada, The marXbot, a miniature mobile robot opening new perspectives for the collective-
robotic research, in: 2010 IEEE/RS]J International Conference on Intelligent Robots and Systems
(IROS), Institute of Electrical and Electronics Engineers, 2010, pp. 4187-4193.

M. Bonani, P. Rétornaz, S. Magnenat, H. Bleuler, F. Mondada, Physical Interactions in Swarm
Robotics: The Hand-Bot Case Study, Springer Berlin Heidelberg, 2013, pp. 585-595.

C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla, N. Mathews, E. Ferrante,
G. Di Caro, F. Ducatelle, M. Birattari, L. Gambardella, M. Dorigo, ARGoS: a modular, parallel,

http://arxiv.org/abs/2501.16857
http://arxiv.org/abs/2312.10620
https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-in-the-enterprise-with-accenture
https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-in-the-enterprise-with-accenture
http://arxiv.org/abs/2501.13282v1
https://medium.com/@researchgraph/large-language-models-for-code-writing-security-assessment-f305f9f01ce9
https://medium.com/@researchgraph/large-language-models-for-code-writing-security-assessment-f305f9f01ce9
http://arxiv.org/abs/2503.13793v1
http://arxiv.org/abs/2404.02060
http://arxiv.org/abs/2410.18893

[33]
[34]

[35]

[38]

[39]

[40]

[41]

multi-engine simulator for multi-robot systems, Swarm Intelligence 6 (2012) 271-295.

R. Ierusalimschy, L. de Figueiredo, W. Filho, Lua-an extensible extension language, Software:
Practice and Experience 26 (1996) 635-652.

Microsoft, Copilot, https://copilot.microsoft.com, 2023. Accessed 09 May 2025.

J. Olson, M. Webb, S. Cropper, E. Langer, J. Nahas, D. Chmoulevitch, The divergent association
task measures verbal creativity in under 4 minutes, https://www.datcreativity.com, 2019. Accessed
09 May 2025.

J. Olson, J. Nahas, D. Chmoulevitch, S. Cropper, M. Webb, Naming unrelated words predicts
creativity, Proceedings of the National Academy of Sciences: Psychological and Cognitive Sciences
118 (2021) 2022340118.

N. Jakobi, P. Husbands, I. Harvey, Noise and the reality gap: The use of simulation in evolutionary
robotics, in: Advances in Artificial Life, Springer Berlin Heidelberg, 1995, pp. 704-720.

A.Ligot, M. Birattari, On mimicking the effects of the reality gap with simulation-only experiments,
in: Swarm Intelligence, volume 11172, Springer International Publishing, 2018, pp. 109-122.

A. Ligot, M. Birattari, Simulation-only experiments to mimic the effects of the reality gap in the
automatic design of robot swarms, Swarm Intelligence 14 (2020) 1-24.

R. Maertens, C. Van Petegem, N. Strijbol, T. Baeyens, A. Jacobs, P. Dawyndt, B. Mesuere, Dolos:
Language-agnostic plagiarism detection in source code, Journal of Computer Assisted Learning
38 (2022) 1046-1061.

S. Koos, J. Mouret, S. Doncieux, The transferability approach: Crossing the reality gap in evolu-
tionary robotics, IEEE Transactions on Evolutionary Computation 17 (2013) 122-145.

G. Francesca, M. Brambilla, A. Brutschy, V. Trianni, M. Birattari, AutoMoDe: A novel approach to
the automatic design of control software for robot swarms, Swarm Intelligence 8 (2014) 89-112.

X. Peng, M. Andrychowicz, W. Zaremba, P. Abbeel, Sim-to-real transfer of robotic control with
dynamics randomization, in: 2018 IEEE International Conference on Robotics and Automation
(ICRA), Institute of Electrical and Electronics Engineers, 2018, pp. 3803-3810.

E. Salvato, G. Fenu, E. Medvet, F. Pellegrino, Crossing the reality gap: A survey on sim-to-real
transferability of robot controllers in reinforcement learning, IEEE Access 9 (2021) 153171-153187.
P. Baldini, M. Braccini, A. Roli, Online adaptation of robots controlled by nanowire networks:
A preliminary study, in: Artificial Life and Evolutionary Computation: 16th Italian Workshop,
WIVACE 2022, Gaeta, Italy, September 14-16, 2022, Revised Selected Papers, volume 1780, Springer
Nature Switzerland, 2023, pp. 171-182.

P. Baldini, A. Roli, M. Braccini, On the performance of online adaptation of robots controlled by
nanowire networks, IEEE Access 11 (2023) 144408-144420.

M. Braccini, P. Baldini, , A. Roli, An investigation of graceful degradation in boolean network
robots subject to online adaptation, in: Artificial Life and Evolutionary Computation: 17th Italian
Workshop, WIVACE 2023, Venice, Italy, September 6-8, 2023, Revised Selected Papers, volume
1977, Springer Nature Switzerland, 2024, pp. 202-213.

P. Baldini, M. Braccini, A. Roli, Fault recovery through online adaptation of boolean network
robots, Sensors 25 (2025) 5849.

M. Braccini, G. Aguzzi, P. Baldini, Unraveling creativity through variability: A comparison of
LLMs and humans in an educational Q&A scenario, Submitted (2025).

https://copilot.microsoft.com
https://www.datcreativity.com

Appendix

DAT distribution
100 1
90 1
Q
3
@ 80
'_
<
[m}
70 1
60 -
with LLM without LLM
Group
Figure 6: Distribution of the DAT scores per group.
Normalized Compression Distance - Text Normalized Compression Distance - AST
0.85 0.6
0.80
3 8 05
§ 0754 8
2 @
a a
0.70
0.44
0.65
with LLM without LLM with LLM without LLM
Group Group
(a) (b)

Figure 7: Normalized Compression Distance (NCD) on pairs of students code (a) and corresponding Abstract
Syntax Tree (AST) (b). We begin by taking the all combinations of two students in each group. For each
combination, we compute the NCD on the codes comprehensive of comments and spaces, and on their ASTs.
These two measures indicate the distance of the raw codes and the codes logic. All the codes contain a common
part used for the evaluation of the controllers performance.

Coding experience

-

with LLM without LLM

Experience
the higher the better
w

Group

Figure 8: Coding experience as reported by the students. Each student could select a value from 0 to 5.
Time to working result

L]
150 ~
50 -
L]

with LLM without LLM

Minutes

Group

Figure 9: Time to produce a working controller as reported by the students.

Comment

1 Students complain that code produced by Copilot needs many adjustments.

Students complain that asking Copilot for different solutions and/or fixes always produce similar outputs.
Students complain that asking Copilot for different solutions and/or fixes often breaks (or does not work
with) previously generated code, thus requiring manual intervention.

The Quick-Answer mode of Copilot appears quite ineffective in any case, thus resulting useless.

The Think-Deeper mode of Copilot appears quite effective in all the cases.

Students using Copilot experienced overall less enjoyment during coding.

Students not using Copilot complain that more effort was needed to produce a working solution, and
therefore they could hardly explore different strategies.

8 | Students state that the code produced by Copilot was often obscure and hard to understand, limiting
possible improvements.

9 | Students state that Copilot was more useful during the beginning of the development. They state it is
mostly useful to analyze the task characteristics, giving examples, brainstorming, producing pseudocode,
producing sub-tasks, in order to start tackling the problem effectively.

10 | Some students state that Copilot is useful to improve code produced autonomously; others state that its
suggestions are quite ineffective.

w N

~N o oA

Table 1
Summary of students’ comments at the end of the experiment.

	1 Introduction
	2 Related works
	3 Methods
	4 Results
	5 Discussion
	6 Conclusion

