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Abstract
This work introduces InJecteD, a framework for interpreting Denoising Diffusion Probabilistic Models (DDPMs)
by analyzing sample trajectories during the denoising process of 2D point cloud generation. We apply this
framework to three datasets from the Datasaurus Dozen — bullseye, dino, and circle — using a simplified DDPM
architecture with customizable input and time embeddings. Our approach quantifies trajectory properties,
including displacement, velocity, clustering, and drift field dynamics, using statistical metrics such as Wasserstein
distance and cosine similarity. By enhancing model transparency, InJecteD supports human-AI collaboration by
enabling practitioners to debug and refine generative models. Experiments reveal distinct denoising phases: initial
noise exploration, rapid shape formation, and final refinement, with dataset-specific behaviors (e.g., bullseye’s
concentric convergence vs. dino’s complex contour formation). We evaluate four model configurations, varying
embeddings and noise schedules, demonstrating that Fourier-based embeddings improve trajectory stability and
reconstruction quality. The code and dataset are available at https://github.com/s4nyam/InJecteD.
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1. Introduction

Denoising Diffusion Probabilistic Models (DDPMs) [1, 2] have become a leading approach in generative
modeling owing to their ability to generate high-quality samples, such as images and point clouds.
Their stability and performance make them a compelling alternative to other generative models, such as
GANs [3] and VAEs [4], particularly in applications such as data synthesis and scientific visualization [1].
However, the iterative denoising process, often spanning numerous steps, makes DDPMs complex and
difficult to interpret (in terms of how features emerge from pure noise), obscuring how samples evolve
from noise to structured data. This lack of transparency poses challenges for understanding model
behavior, debugging performance issues, and ensuring reliability in applications where interpretability
is crucial, such as scientific data analysis.

To address this challenge, we introduce a framework for Interpreting traJectories in Denoising
Diffusion (InJecteD) that is designed to analyze the trajectories of samples during the denoising process
of DDPMs [1, 5]. Unlike prior work [5], which focuses on applying DDPMs to point clouds with Fourier
encodings, InJecteD works on a set of quantitative metrics to systematically assess the denoising process.
Specifically, we employ a simplified DDPM architecture with flexible input and time embeddings to
enable explicit tracking of sample evolution. By introducing quantitative metrics, including trajectory
displacement, velocity, clustering, and drift field dynamics, we uncover the underlying patterns of the
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denoising process. We showcase our approach in 2D point cloud generation process through three
publicly available datasets from the Datasaurus Dozen [6] namely: bullseye, dino, and circle. These
datasets share identical statistical properties but differ in their geometric structures, providing an
opportunity to study how DDPMs capture diverse shapes. Our experiments reveal dataset-specific
behaviors, such as concentric convergence in the bullseye dataset and complex contour formation
in the dino dataset, and identify three distinct phases of denoising: initial noise exploration, rapid
shape formation, and final refinement. We employ four model configurations with varying input and
time embeddings and noise schedules to assess their impact on trajectory stability and reconstruction
quality. While limited to 2D synthetic datasets, the insights gained lay the groundwork for extending
interpretability to more complex data. Our contributions include:

• Customizing an existing lightweight DDPM architecture for interpretability of 2D point cloud
generation.

• Use of relevant statistical and geometric distance metrics for analyzing trajectory properties,
including displacement, velocity, clustering, and drift direction alignment.

• Experimental validation of the proposed InJecteD framework on the bullseye, dino, and circle
datasets, highlighting unique dynamics of the reverse diffusion process.

The core contribution of this work involves new insights into the behavior of DDPMs, laying the
groundwork for more interpretable and reliable generative models.

2. Related Work

Interpretability in generative models has been explored through various techniques aimed at under-
standing model behavior [7]. Feature importance analysis assesses the relative contribution of input
features to the model’s output, while attention mechanisms highlight regions of focus during data
generation [7]. Interactive reconstruction approaches allow users to manipulate latent representations
to reconstruct target instances, providing insights into the model’s internal representations [8, 9, 10].
These methods are particularly relevant to our work, as they offer ways to probe the evolution of
samples during the denoising process, similar to our focus on analyzing trajectories in DDPMs; however,
they often rely on manual interaction, and by analyzing trajectories more systematically, we aim to
complement these approaches with a more principled understanding of the generative dynamics

Trajectory analysis, while well-established in fields such as reinforcement learning [11], biology [12],
and epidemiology [13], is underexplored in the context of DDPMs. In reinforcement learning, trajectory
analysis predicts agents’ paths [11], while in biology, it tracks cell differentiation or molecular motion
[12]. In epidemiology, it models health outcome patterns over time [11]. These approaches often use
metrics like mean squared displacement or Hidden Markov Models to characterize state transitions
and dynamics. Applying trajectory analysis to DDPMs involves studying how samples evolve through
denoising steps, offering a novel perspective on the model’s decision-making process and its ability to
capture complex patterns.

The Datasaurus Dozen datasets [6] provide a testbed for analyzing properties of complex models
in a simplified and controlled setting [14? , 15, 16, 17, 18, 19]. These datasets, consisting of data
points forming shapes such as a bullseye, dinosaur, and circle, are designed to have identical statistical
properties (e.g., mean, variance, correlation) but distinct visual structures when plotted as 2D point
clouds.

Chan [5] investigates DDPMs, detailing their denoising mechanics and applying them to 2D point
cloud generation with the Datasaurus dataset, using Fourier encoding to enhance performance. This
work provides a foundational framework for our InJecteD approach, validating our use of similar datasets
and embeddings to analyze trajectory dynamics. Beyond point clouds, interpretability in DDPMs is
advanced through techniques like saliency maps in image generation and latent space analysis in
text-to-image synthesis, revealing feature prioritization and semantic evolution [9, 10]. These methods
inform our trajectory analysis by offering complementary perspectives on DDPM dynamics across



diverse domains. By building on these foundations, our work enhances the transparency of DDPMs,
particularly for 2D point cloud generation, with potential applications in broader generative modeling
contexts.

Our research builds on these foundations by developing a framework to analyze sample trajectories
in DDPMs, specifically for 2D point cloud generation. By combining insights from interpretability
techniques and trajectory analysis, and using the unique properties of the Datasaurus Dozen, we aim
to enhance the transparency of DDPMs and provide a deeper understanding of their data generation
process.

2.1. Dataset Description

The bullseye, dino, and circle datasets from the Datasaurus Dozen [6] consist of 2D point clouds, each
with approximately 142 points represented as coordinates (𝑥, 𝑦) ∈ ℝ2. These datasets share identical
statistical properties (mean, variance, correlation) but exhibit distinct geometric structures, making
them ideal for studying structural diversity in DDPMs. Preprocessing normalizes the data to zero mean
and unit variance:

𝑥norm =
𝑥 − 𝜇𝑥
𝜎𝑥

, 𝑦norm =
𝑦 − 𝜇𝑦
𝜎𝑦

, (1)

where 𝜇𝑥, 𝜇𝑦 are the means and 𝜎𝑥, 𝜎𝑦 are the standard deviations of the 𝑥 and 𝑦 coordinates. To increase
sample size, each dataset is replicated six times, yielding 852 points per dataset. The data is split into
90% training (766 points) and 10% testing (86 points) sets, with a batch size of 32 for training.

The Datasaurus Dozen is uniquely suited for this study due to its ability to challenge DDPMs to
capture diverse geometric patterns despite statistical uniformity. Alternative datasets, such as MNIST
[20] or ShapeNet [21], are less effective: MNIST focuses on class-based patterns (digits), missing
geometric nuances, while ShapeNet for its size (approximately 300 Million). The Datasaurus datasets
provide a controlled, structurally diverse testbed for evaluating trajectory dynamics.

3. Proposed Method

Originally developed to underscore the importance of data visualization over reliance on summary
statistics, Datasaurus datasets are ideal for evaluating how well DDPMs capture diverse geometric
patterns and whether trajectory analysis can differentiate their denoising behaviors. By applying
DDPMs to these datasets, we dissect the statistical similarity and structural diversity in generative
modeling.

3.1. Diffusion Algorithm

The DDPM architecture comprises a forward noising process and a learned reverse denoising process,
implemented using a multilayer perceptron (MLP). The algorithm is specifically designed to handle the
2D point clouds of the Datasaurus Dozen datasets (bullseye, dino, and circle), treating each point as an
independent 2D coordinate, since the data lacks the spatial regularity of the structured grid found in
images.

The standard forward process adds Gaussian noise over 𝑇 = 50 timesteps using a linear noise schedule.
For a point cloud 𝑥0 ∈ ℝ𝑁×2 from a Datasaurus dataset (e.g., circle with 𝑁 = 852 points after replication),
each point 𝑛 = (𝑛𝑥, 𝑛𝑦) represents a 2D coordinate. The state at timestep 𝑡 is:

𝑥𝑛𝑡 = √ ̄𝛼𝑡𝑥0 + √1 − ̄𝛼𝑡𝜖, 𝜖 ∼ 𝒩 (0, 𝐼 ), (2)

where ̄𝛼𝑡 = ∏𝑡
𝑠=1 𝛼𝑠, 𝛼𝑠 = 1 − 𝛽𝑠, and 𝛽𝑠 ranges linearly from 𝛽min = 1 − 0.9999 to 𝛽max = 1 − 0.95.

The cumulative product ̄𝛼𝑡 transitions from ≈ 1 (original data) at 𝑡 = 0 to ≈ 0 (near-pure noise)
at 𝑡 = 𝑇. This process is implemented as a function that generates a series {𝑥𝑡}𝑇𝑡=0 for each point
independently, preserving the unstructured nature of the point cloud. Unlike image pixels, which have



spatial correlations in a grid, the Datasaurus points are treated as a collection of independent 2D vectors,
with noise applied to each (𝑚, 𝑛) coordinate pair. This results in a trajectory {𝑥(𝑖)𝑡 }𝑇𝑡=0 for each point 𝑖,
visualized as scatter plots to capture the evolving geometry (e.g., circle’s uniform ring or dino’s complex
contours).

The reverse process denoises 𝑥𝑇 ∼ 𝒩 (0, 𝐼 ) to reconstruct 𝑥0 using:

𝑥𝑡−1 =
1
√𝛼𝑡

(𝑥𝑡 −
1 − 𝛼𝑡

√1 − ̄𝛼𝑡
𝜖𝜃(𝑥𝑡, 𝑡)) + 𝜎𝑡𝑧, 𝑧 ∼ 𝒩 (0, 𝐼 ), (3)

where 𝜖𝜃(𝑥𝑡, 𝑡) is the noise predicted by the MLP, and 𝜎𝑡 = √1 − 𝛼𝑡. The input to the MLP can be a single
point or a batch of points at timestep 𝑡; to optimize this, 𝑥𝑡 ∈ ℝ𝐵×2 (where 𝐵 = 32 is the batch size),
and the output is the predicted noise 𝜖𝜃 ∈ ℝ𝐵×2, representing the 2D noise vector for each point. The
implemented MLP consists of five layers: four hidden layers (64 units, ReLU activations) and one output
layer predicting a 2D noise vector. This allows the model to learn the distribution of points that form
shapes such as the dino’s arms or bullseye’s concentric rings. Input embeddings are:

• Identity: Uses 𝑥𝑡 ∈ ℝ2 directly (2D), feeding the raw (𝑚, 𝑛) coordinates of each point.
• Fourier: Projects 𝑥𝑡 to a 64-dimensional space:

𝑥emb = [sin(𝐵𝑥⊤𝑡 ), cos(𝐵𝑥⊤𝑡 )], 𝐵 ∈ ℝ32×2, 𝐵 ∼ 𝒩 (0, 𝐼 ). (4)

Time embeddings are:

• Zero: No time input (no dimension).
• Linear: Normalized timestep 𝑡/𝑇 − 0.5 (1D).
• Fourier: Projects 𝑡/𝑇 − 0.5 to a 32-dimensional space:

𝑡emb = [sin(𝐵𝑡𝑡⊤), cos(𝐵𝑡𝑡⊤)], 𝐵𝑡 ∈ ℝ16×1, 𝐵𝑡 ∼ 𝒩 (0, 𝐼 ). (5)

The working procedure involves: (1) sampling a batch of points 𝑥0 from the dataset, (2) applying the
forward process to generate noisy points 𝑥𝑡 at a random timestep 𝑡, (3) predicting the noise 𝜖𝜃(𝑥𝑡, 𝑡),
and (4) computing the MSE loss to optimize the MLP. The sampling process iteratively denoises 𝑥𝑇
to 𝑥0, generating new point clouds that match the target distribution (e.g., reconstructing the circle’s
ring structure). Four model configurations are trained as follows (read as input-time embedding): (1)
identity-zero, 𝛼min = 0.95, (2) Fourier-linear, 𝛼min = 0.95, (3) Fourier-Fourier, 𝛼min = 0.95, and (4)
Fourier-Fourier, 𝛼min = 0.98. Training uses Adam optimization (learning rate 4 × 10−4, gradient clipping
norm 1.0) for 2000 epochs, minimizing the mean squared error (MSE):

𝐿 = 𝔼𝑥0,𝜖,𝑡 [‖𝜖 − 𝜖𝜃(𝑥𝑡, 𝑡)‖22] . (6)

The MLP-based DDPM is chosen for its simplicity and efficiency in 2D spaces. For the Datasaurus
datasets, the algorithm’s ability to treat points as independent 2D coordinates allows it to capture diverse
geometric patterns (e.g., dino’s complex contours) without relying on spatial correlations, ensuring
flexibility and robustness in modeling unstructured point clouds.

3.2. InJecteD Framework

We present set of metrics to quantify trajectory and drift dynamics and critical for understanding the
denoising process.

1. Trajectory Displacement: Measures the total Euclidean distance traveled by each point:

𝐷𝑖 =
𝑇−1
∑
𝑡=1

√‖𝑥
(𝑖)
𝑡+1 − 𝑥(𝑖)𝑡 ‖22, 𝑖 = 1, … , 𝑁 , (7)

where 𝑥(𝑖)𝑡 is the position of the 𝑖-th point at timestep 𝑡. The distribution of 𝐷𝑖 is visualized as a
histogram, revealing the extent of movement. High displacement, as expected in complex datasets
like dino, indicates intricate trajectory patterns.



2. Trajectory Velocity: Computes the average displacement per timestep:

𝑉 (𝑡) = 1
𝑁

𝑁
∑
𝑖=1

‖𝑥(𝑖)𝑡+1 − 𝑥(𝑖)𝑡 ‖2 (8)

Plotted over timesteps, 𝑉 (𝑡) identifies denoising phases: high values indicate rapid shape forma-
tion, while low values indicate refinement. This metric is essential for detecting transitions in the
generative process.

3. Trajectory Clustering: Applies K-means clustering (with 𝐾 = 5) to flattened trajectories
{𝑥(𝑖)𝑡 }𝑇𝑡=0 ∈ ℝ𝑇×2, reshaped to ℝ2𝑇. The resulting labels are visualized on the final point cloud (𝑥0),
highlighting spatial patterns in trajectory behavior. This reveals whether points in similar regions
follow consistent paths, critical for datasets like bullseye with radial structures. The choice of
𝐾 = 5 was made after testing for 𝐾 = 2, 3, 4, 5, 6, as higher 𝐾 values yielded diminishing returns.

4. Wasserstein Distance: Quantifies similarity between original and generated point clouds
(collection of all points):

𝑊 = 1
2
(𝑊1(𝑥orig, 𝑥gen) + 𝑊1(𝑦orig, 𝑦gen)) , (9)

where 𝑊1 is the 1D Wasserstein distance for 𝑥 and 𝑦 coordinates. Lower values indicate higher
fidelity, essential for evaluating generative performance.

5. Drift Magnitude: For the forward process, the drift at timestep 𝑡 on a grid point 𝑥𝑡 is:

𝜇𝑡 =
√𝛼𝑡(1 − ̄𝛼𝑡−1)𝑥𝑡 + √ ̄𝛼𝑡−1(1 − 𝛼𝑡)𝑥0

1 − ̄𝛼𝑡
, (10)

with magnitude ‖𝜇𝑡 − 𝑥𝑡‖2, weighted by:

𝑤 =
exp (−

‖𝑥𝑡−√ ̄𝛼𝑡𝑥0‖2
1− ̄𝛼𝑡

/2)

∑𝑥0 exp (−
‖𝑥𝑡−√ ̄𝛼𝑡𝑥0‖2

1− ̄𝛼𝑡
/2)

. (11)

For the backward process, the drift is:

𝜇̂𝑡 =
1
√𝛼𝑡

(𝑥𝑡 −
1 − 𝛼𝑡

√1 − ̄𝛼𝑡
𝜖𝜃(𝑥𝑡, 𝑡)) , (12)

with magnitude ‖𝜇̂𝑡 − 𝑥𝑡‖2. Magnitudes are visualized as heatmaps, showing the strength of
movement across a grid, crucial for understanding denoising dynamics.

6. Drift Direction: Measures alignment between backward drift vectors and the direction to the
final point cloud using cosine similarity:

CS(𝑡) = 1
𝑁

𝑁
∑
𝑖=1

(𝜇̂(𝑖)𝑡 − 𝑥(𝑖)𝑡 ) ⋅ (𝑥(𝑖)0 − 𝑥(𝑖)𝑡 )

‖𝜇̂(𝑖)𝑡 − 𝑥(𝑖)𝑡 ‖2‖𝑥
(𝑖)
0 − 𝑥(𝑖)𝑡 ‖2

, (13)

where 𝜇̂(𝑖)𝑡 is interpolated at 𝑥(𝑖)𝑡 using linear interpolation. High CS(𝑡) indicates effective guidance
toward final positions, critical for assessing model accuracy.

As will be shown in the following, these metrics collectively provide a detailed understanding of the
denoising process. Displacement and velocity quantify movement scale and speed, clustering reveals
spatial patterns, Wasserstein distance evaluates generative fidelity, and drift metrics analyze movement
direction and strength, essential for interpreting DDPM behavior.



3.3. Experimental Setup

The MLP is trained on a CPU with 𝑇 = 50 timesteps, a batch size of 32, and 2000 epochs. Visualizations
(scatter plots, quiver plots, heatmaps) are saved as SVG files in dataset-specific directories. The sampling
generates 1000 samples per configuration, tracking trajectories for analysis. Noise prediction error is
computed as the MSE per timestep, visualized to assess model performance.

4. Results

Our analysis reveals distinct denoising behaviors across the three datasets, with each figure compre-
hensively presenting the results for one dataset. We examine the original structure, generation quality,
trajectory dynamics, and denoising metrics for each case. We report evaluation metrics for three datasets
- Bullseye, Circle and Dinosaurs. Figure 1 presents the complete analysis for the bullseye dataset. Key
findings include (1) Drift Alignment: Near-perfect radial alignment (cosine similarity >0.9) in later
steps (a). Curve (b) helps to assess whether the learned drift aligns with intended denoising behavior.
The diagnosis in (b) can be divided into three phases: early, middle, and late timesteps. In the early
timesteps (t=0-15) (high noise), the mean cosine similarity is around 0.2, indicating weak alignment
between drift and the final direction. The system is still noisy, but there is a faint guiding signal. During
the middle timesteps (t=15-30), the similarity peaks around 0.4, showing strong alignment. This is
likely the most effective phase, where the drift actively pulls samples toward the final state of denoising.
In the late timesteps (t=30-50) (low noise), similarity drops to 0. The sample is already close to the
target, so the drift mostly fine-tunes details and is no longer directionally aligned, (2) Trajectories: Clear
concentric patterns in clustering (d-e) with 82% of points following class-specific paths, (3) Velocity:
Two-phase velocity curve (f) - sharp drop (t=0-30), final refinement (t=31-50), and (4) Model Comparison:
Fourier-Fourier (𝛼min = 0.98) shows the best-fit displacement distribution (c). We discuss the Drift
Alignment metric more in Appendix 5.

Similar observations done for Circle in Figure 2 and Dinosaurs in Figure 3. We also illustrate the
formation of Dinosaurs point cloud from pure noise in Figure 4.

5. Conclusion

InJecteD addresses the critical need for interpretability in DDPMs, which are increasingly vital for
data synthesis in scientific visualization and computational biology. By quantifying trajectory and
drift dynamics, InJecteD reveals how DDPMs capture geometric structures, enabling improved model
design, debugging, and application in domains requiring transparency. We showcased its applicability
by conducting experiments for 2D point cloud generation on the Datasaurus Dozen datasets, which
revealed three consistent denoising phases and showed that Fourier embeddings significantly improve
trajectory stability. The metrics provide insights into model behavior with minimal computational
overhead, with the Fourier-Fourier configuration emerging as the most effective approach. Future work
could extend to higher dimensions and explore trajectory steering methods. Another future work can
be designing processes analyzing the trajectory dynamics of the data generation learning processes in
other families of generative models.

Declaration on Generative AI

During the preparation of this work, the author(s) used ChatGPT from OpenAI in order to: grammar
and spelling check, paraphrase, and reword. After using this tool/service, the author(s) reviewed and
edited the content as needed and take(s) full responsibility for the publication’s content.
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Figure 1: Comparison of different dynamics-related outputs for Bullseye dataset.
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Figure 2: Comparison of different dynamics-related outputs for Circle dataset.
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Figure 3: Comparison of different dynamics-related outputs for Dinosaurs dataset.

Figure 4: Dinosaurs formation from pure noise with t=10, 20, 30, 40, 50
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A. Drift Direction Explained

The evaluation of drift direction in Figure 1 (b) (for example) is divided into three phases based on the
mean cosine similarity between the drift vector and the direction to the final point: in early timesteps
with high noise, the similarity is around 0.2, indicating a weak but noticeable alignment and faint pull
toward the final state amid chaos; in middle timesteps, it peaks at about 0.4, showing the strongest
alignment and effectiveness in guiding samples along the true trajectory as the ”sweet spot” of denoising;
and in late timesteps with minimal noise, it drops to near 0, becoming nearly orthogonal as the drift
shifts to fine-tuning local details rather than directional guidance.

https://github.com/jumpingrivers/datasauRus

	1 Introduction
	2 Related Work
	2.1 Dataset Description

	3 Proposed Method
	3.1 Diffusion Algorithm
	3.2 InJecteD Framework
	3.3 Experimental Setup

	4 Results
	5 Conclusion
	A Drift Direction Explained

