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Abstract
Artificial intelligence (AI) is increasingly integrated into clinical practice through Clinical Decision Support
Systems (CDSSs). While such systems can approach or even surpass human expert performance, their true value
lies in how they enhance human–AI teams. This study investigates whether structured interaction protocols
can improve diagnostic accuracy in a simulated radiology double-reading task. Sixteen radiologists collaborated
with an AI system under eight different coordination strategies. Results demonstrate that protocols such as
Accuracy-Oriented, Confidence-Oriented, and Presumptuous produced the highest overall accuracy (up to 97%
among strong clinicians and 92% among weak ones), outperforming majority voting and single-metric-optimized
approaches. Critically, weaker clinicians with superior protocols outperformed stronger clinicians with inferior
ones, validating Kasparov’s Law: Weak Human + Machine + Better Process > Strong Human + Machine + Inferior
Process. These findings highlight process design as central to effective CDSS deployment, advocating for a
paradigm shift toward process-centric evaluation and design.
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1. Introduction

AI-based CDSSs are increasingly deployed in healthcare, achieving expert-level accuracy in diagnostic
tasks [1]. However, algorithmic performance alone does not determine clinical impact. As Friedman’s
Fundamental Theorem of Biomedical Informatics notes, the true unit of evaluation is the human–AI
partnership [2]. This principle urges a shift from evaluating standalone AI to assessing how it integrates
with human workflows.

Despite progress, many studies treat AI as an autonomous Greek oracle rather than a decision support
tool [3]. In contrast, the reorientation towards hybrid intelligence has spurred interest in human–AI
interaction protocols—structured mechanisms for exchanging information, managing disagreement,
and coordinating decisions. These range from parallel schemes, where human and AI independently
produce full decisions later integrated in either human-first or AI-first orderings, to collaborative models
that decompose complex tasks, assigning subtasks to humans and AI according to their respective
strengths [4, 5].

Kasparov’s Law, articulated by Brynjolfsson and McAfee [6], formalizes that process quality can be a
decisive determinant of human–AI team effectiveness:

Weak Human + Machine + Better Process > Strong Human + Machine + Inferior Process

Kasparov’s Law offers a compelling conceptual anchor for advancing process-centered evaluation frame-
works, emphasizing that synergy emerges not from the mere aggregation of individual competencies,
but from the quality of their orchestration within the interactional system.
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The study empirically examines this principle in radiological diagnosis, testing whether superior
coordination protocols can enable weaker clinicians to outperform stronger peers operating under
inferior processes.

2. Background and Related Works

CDSSs have evolved from early rule-based systems like MYCIN [7] to contemporary machine learning
models able to detect complex patterns in large-scale data [1, 8, 9, 10]. However, adoption remains
limited due to barriers such as automation bias [11, 12], trust deficits, interpretability challenges [13],
and risks of professional deskilling [14].
Recent research emphasizes the paradigm of hybrid intelligence [15, 16, 17], where AI contributes

computational precision, scalability, and pattern recognition, while humans contribute contextual
reasoning and ethical judgment [18, 19]. Still, systematic evidence on structured coordination is
scarce. Meta-analyses indicate that genuine human–AI synergy, where the joint performance surpasses
that of both the human and the AI individually, remains relatively rare, whereas instances of human
augmentation, in which the combined performance merely exceeds that of the human alone, are
considerably more frequent [20].
Few studies have tested structured interaction protocols as key determinants of performance [21].

This gap motivates our empirical focus.

3. Methods

3.1. Participants and Data

We recruited 16 board-certified radiologists, each evaluating 18 orthopedic X-rays for fracture presence
and confidence. Accuracy divided participants into “strong” (above-median accuracy) and “weak”
(below-median accuracy) raters, confirmed by Intraclass Correlation Coefficients [22]. AI advice was
simulated with fixed accuracy (0.89) and calibrated confidence.

3.2. Interaction Protocols

Oncewe collected the responses and performancemetrics for both the human raters and the simulated AI-
based DSS, we implemented eight coordination strategies inspired by double-reading frameworks [23]:

• Simple-Majority: Two observers judge; if they disagree, a third intervenes. Final decision by
majority vote.

• Accuracy-Oriented: Three observers judge. Agreement is final; disagreement resolved by higher
average accuracy (pair vs. dissenter).

• Confidence-Oriented: Three observers judge. Agreement is final; disagreement resolved by
higher average confidence (pair vs. dissenter).

• Specificity-Oriented: Second judges only if the first flags the case as abnormal; third intervenes
if disagreement. Final decision by higher confidence-weighted specificity (pair vs. dissenter).

• Sensitivity-Oriented: Second judges only if the first flags the case as normal; third intervenes if
disagreement. Final decision by higher confidence-weighted sensitivity (pair vs. dissenter).

• Cautious: Two observers judge. Agreement accepted only if both exceed accuracy and confidence
thresholds; else third intervenes. Final decision by higher confidence-weighted accuracy (pair vs.
dissenter).

• Presumptuous: Two observers judge. If both exceed accuracy threshold, final decision is from
the more confident; otherwise from the more accurate.

• AND_rule: Second observer judges only if first flags the case as abnormal; final decision is
second’s judgment.



• OR_rule: Second observer judges only if first flags the case as normal; final decision is second’s
judgment.

Through these simulations, we investigated how alternative cooperation models affect diagnostic
accuracy, sensitivity, and specificity, and how the design of interaction protocols shapes clinician
performance across different levels of expertise.

3.3. Testing Kasparov’s Law

Protocols were classified as superior or inferior based on diagnostic performance (accuracy, sensitivity,
and specificity), considering if they exhibited at least two metrics higher or lower than the baseline
performance of human clinicians.
We compared outcomes of weak clinicians using superior protocols against strong clinicians using

inferior protocols, testing the hypothesis that process quality outweighs individual skill.

4. Results

4.1. Overall Performance

Accuracy-Oriented, Confidence-Oriented, and Presumptuous protocols achieved the highest accuracy
(0.91–0.92), significantly outperforming Simple-Majority (0.82). Single-metric strategies achieved
extreme sensitivity or specificity but at the cost of balanced performance. AND/OR rules also performed
well in their targeted dimensions.

4.2. Strong vs. Weak Clinicians

Strong clinicians outperformed their weaker counterparts, but showed limited gains, with occasional
declines under Sensitivity- and Specificity-Oriented strategies. In contrast, weak clinicians exhibited
consistent improvements.

4.3. Kasparov’s Law

As illustrated in Figure 1, low-performing clinicians using better-designed interaction protocols achieved
significantly superior outcomes compared to high-performing clinicians using less effective protocols.

5. Discussion

Findings highlight that coordination design decisively shapes human–AI team outcomes. While strong
clinicians show ceiling effect [24], weaker clinicians benefit significantly from structured protocols,
narrowing expertise gaps. This suggests that CDSS design should focus not only on predictive accuracy
but also on process optimization.
Our results align with prior findings on augmentation [20], showing that process design elevates

weaker performers and ensures more equitable outcomes. This has implications for medical training,
regulation, and the allocation of responsibility in AI-assisted care.

Limitations include reliance on simulations, simplified protocols, and a limited dataset. Nevertheless,
results provide strong conceptual and empirical grounding for process-centered evaluation. Future
research should validate these findings in real-world clinical settings, extend protocols to diverse
domains and multi-label tasks, and integrate richer interaction designs. Broader ethical and regulatory
implications also warrant attention.



Figure 1: Accuracy, sensitivity, and specificity scores of the group of “weak” people evaluated with strong
protocols and the group of “strong” people valuated with weak protocols, along with their 95% confidence
intervals represented as error bars. Dashed lines represent the baseline performance of the AI and the average
baseline performance of human clinicians when operating independently. The lighter-colored bands surrounding
the lines indicate the corresponding confidence intervals (95%).

6. Conclusions

This study demonstrates that structured interaction protocols significantly influence human–AI diag-
nostic performance. Superior processes enabled weaker clinicians to outperform stronger ones using
inferior strategies, providing direct empirical support for Kasparov’s Law. These findings advocate for
a paradigm shift in CDSS design: from model-centric approaches to process-centric frameworks, where
structured collaboration is treated as a core determinant of clinical effectiveness.
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