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Abstract

Emotion plays a vital role in human communication, shaping not only language but also vocal tone, facial
expression, and body posture. In the context of emotionally expressive text generation, the lack of reliable
evaluation metrics still remains a key challenge. This paper introduces a two-step evaluation framework using
embedding analogy-based metrics to assess the emotional expressiveness of large language models (LLMs). In
the first step, we evaluate the model’s ability to neutralize emotional content from a given text while preserving
its semantic meaning. In the second step, we test the model’s capacity to reinject the intended emotion back
into the neutralized text. Our experiments demonstrate that GPT-4.1 outperforms other models in both semantic
retention and emotional reconstruction, while llama-3.3-70b-instruct performs best among open-source models.
This work lays the foundation for future research on cross-modal affective computing, aiming to build emotionally
intelligent agents capable of nuanced and empathetic communication across text, speech, and video.
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1. Introduction

Understanding and responding to human emotions is critical for Al systems operating in professional
settings, particularly in education, where teachers and students engage in complex emotional interac-
tions. In second language (L2) learning environments, emotionally supportive conversational agents
can help teachers foster a safe and motivating atmosphere, alleviating workload and enhancing the
student learning experience. Such systems require robust emotional understanding and generation
capabilities, which are still underdeveloped due to fundamental challenges in emotion evaluation.

To function effectively in such roles, these systems must be capable of detecting and generating
emotional content in real-life, unscripted scenarios. This ability is especially important in high-stakes
domains such as healthcare, education, and crisis management. In such contexts, the ability to recognize
and respond to genuine human emotions, rather than acted or exaggerated affect, is crucial for building
trust, ensuring user well-being, and improving decision-making [1]. Recent efforts to build empathically
aware Al systems rely heavily on the generation and interpretation of affective content [2, 3, 4]. However,
evaluating the emotional quality of text generated by LLMs remains a fundamental challenge. Current
evaluation methods for emotionally expressive text are either expensive, when relying on human
annotations, or inadequate in quality and generalization when using existing automatic metrics [5, 6, 7].
This limits their usefulness for scalable and robust assessment of emotion generation models.

In this paper, we address the gap in effective and efficient evaluation of emotional text generation.
We propose an embedding-based evaluation pipeline that measures emotional alignment in LLM-
generated text without requiring human labels. Our method builds on analogical reasoning in emotion
embedding spaces, incorporating steps of emotion neutralization and re-injection to isolate and assess
the emotional expressiveness of different LLMs. We apply our evaluation framework to a range of state-
of-the-art LLMs and find that GPT-4.1 [8] consistently produces the most emotionally aligned outputs.
Among open-source models, LLaMA-3.3-70B-Instruct [9] performs best. Our results demonstrate
that embedding-based emotion evaluation is a practical and scalable alternative to existing methods,
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providing a reliable benchmark for future emotion generation tasks.

2. Related Works

Recent research has explored emotional text generation using LLMs, with a growing interest in evalu-
ating their ability to generate affectively aligned content. In this section, we review state-of-the-art
models and evaluation strategies for emotional control in LLMs. Dong et al. [5] introduced continuous
emotion vectors to steer LLM outputs toward target affective states. For evaluation, they generated two
synthetic datasets using GPT-40-mini [10] and assessed performance using perplexity, topic adherence
(via prompt engineering), emotion probability score (using the zero-shot classifier facebook/bart-
large-mnli [11]), and an emotion absolute score derived from prompt-based heuristics. However, the
prompt-based scores were not evaluated or validated, as they simply relied on the LLM’s own response
to a scoring prompt. Ishikawa and Yoshino [6] explored emotional expression in LLMs using the
circumplex model of affect. They fine-tuned a model on the GoEmotions dataset [12], but the resulting
classifier, sentimentmodel-sample-27go-emotion [13], achieved 58.9% accuracy, which was deemed
insufficient for further use in evaluation. To circumvent the limitations of discrete emotion classification,
they instead projected the generated outputs into the arousal-valence space. This alternative approach
was implemented to simplify the evaluation task, though it did not aim primarily at improving reliability.

To improve emotional appropriateness in generation, Li et al. [14] proposed emotional chain-of-
thought prompting, grounded in Goleman’s emotional intelligence framework [15]. They argued that
current emotion recognizers are inadequate for evaluation and introduced the Emotional Generation
Score (EGS), a prompt-based metric evaluated via GPT-3.5 [16], supplemented by a small-scale human
study with three annotators. Wang et al. [7] incorporated commonsense reasoning to enhance em-
pathetic dialogue generation in LLMs. Using the EmpatheticDialogues [17] and Emotional Support
Conversation datasets [18], they employed traditional metrics, BLEU [19], ROUGE-L [20], METEOR [21],
Distinct-n [22], and CIDEr [23], along with cosine similarity and human evaluation. Human evaluation
is valuable but costly and lacks repeatability. A disadvantage of existing automatic metrics is that they
often fall short, as lexical overlap between gold-standard and generated emotional expressions remains
high regardless of the actual emotional effectiveness. Janssens et al. [24] show that even advanced
models struggle to detect miscommunications from facial expressions in natural human-robot dialogue,
performing no better than chance. Their findings reveal that users often do not express confusion
in visibly detectable ways, highlighting the limitations of current affect recognition tools, which are
predominantly trained or fine-tuned on corpora of acted, non-naturalistic emotions and reinforcing the
need for more robust, context-aware emotion evaluation strategies.

While these studies propose creative methods for controlling and evaluating emotional content, their
reliance on unstable, non-repeatable, or costly approaches leaves the quality assessment of generated
emotions an open challenge. Popular metrics like BLEU and ROUGE-L are often inadequate, as lexical
overlap between gold-standard and generated emotion expressions remains high regardless of emotional
success, rendering these metrics non-discriminative. Prompt-based LLM evaluation (e.g., using GPT-
4 to judge GPT-3) also suffers from bias and circularity, especially when assessing commercial or
closed-source systems. Lastly, human evaluation, while insightful, is costly and non-repeatable.

Our study addresses these gaps by highlighting the urgent need for robust, repeatable, and model-
agnostic emotion evaluation strategies that can generalize across diverse generation setups. Unlike
prior works, we initiate a neutralization-reinjection process: first stripping emotions from the original
dataset, then prompting models to regenerate emotional variants. This setup enables us to evaluate
models based on their capacity to reintroduce appropriate emotions while preserving semantic content.

3. Dataset

In recent years, a growing number of multimodal emotion recognition datasets have been introduced to
support research in affective computing and emotionally intelligent systems. Notable among these is



but like, in a good way, not shockingly bad, shockingly absurd.
I experienced a really visceral and physical response to it. Like,
it was making my whole body tense and cringe by how wild it
is, and also quite disgusting at times.

Figure 1: A video clip example from the UniC dataset

the MELD dataset [25], which comprises multi-party conversations extracted from the Friends TV show.
Although MELD provides valuable dialogic emotion labels, it is based on acted and scripted television
content, which may not generalize well to spontaneous emotional behaviors. Similarly, the IEMOCAP
dataset [26] features dyadic interactions between professional actors performing scripted and semi-
scripted scenarios, offering rich annotations across modalities, but again lacks true spontaneity. Similar
corpora for Chinese include EmotionTalk [27] and M3ED [28], introducing large-scale, multimodal
emotion data from Chinese TV dramas and controlled dialogues. To address the lack of spontaneous
emotion data, the K-EmoCon dataset [29] captured natural interactions during real-time debates and
provided multi-perspective annotations, including physiological signals, but is limited in scale and does
not cover monologue settings. While these datasets advance the field significantly, they still reflect
contextual and cultural biases, often rely on acted emotions, and typically do not isolate modalities
during annotation, which limits their utility for fine-grained unimodal vs. multimodal analysis.

These limitations, namely, the lack of spontaneous, non-acted emotional expressions, limited diversity
of monologue data, and insufficient attention to isolated modality annotations, motivates the use of
new datasets designed to better reflect natural emotional communication. The UniC [30] dataset is
a multimodal emotion dataset comprising 965 video clips sourced from YouTube, selected to capture
natural, spontaneous emotional expressions rather than acted performances. The videos primarily
include monologues such as book and movie reviews, where a single visible speaker expresses emotions
clearly in both speech and facial expressions. The dataset was constructed through a multi-step filtering
process using keyword searches, sentiment-based subtitle filtering, and manual validation. Each clip,
approximately 10 seconds long, was annotated independently across four modalities: text, audio,
silent video, and all modalities combined. Emotion annotations use both categorical and dimensional
frameworks. Initially based on 26 categorical emotion labels from Shaver et al. [31], these were reduced
to seven emotion clusters (joy, contentment, surprise, confusion, neutral, disappointment, and disgust)
via clustering analysis, alongside valence and arousal scores. Figure 1 shows a sample from the UniC
dataset.

For our experiments, we focused on the text modality as a stepping stone to multimodal emotion
expression generation in follow-up research. Noteworthy to mention is that for this text modality, the
inter-annotator agreement (IAA) was highest, reaching a Fleiss’ kappa of 0.47 after annotator training
and emotion clustering. Among the different labeled emotions, emotions such as confusion and surprise
were less reliably detected from text alone, highlighting the added value of multimodal signals. We
evaluated the text modality of the UniC dataset using several baseline models, for which we used 100%
of the dataset for testing. Due to the limited size of the dataset, we employed 5-fold cross-validation for
training and evaluating our custom model.



Table 1

Evaluation results of various models for emotion recognition on the UniC dataset. Emotion recognition on
real conversational data is inherently challenging; for instance, the best model here (gpt-40-mini) achieves an
F1-score of only 35.79%, substantially lower than the 60.25% commonly seen on acted datasets like MELD.

Method Accuracy Precision Recall F1

gpt-4o-mini [10] 0.4046 0.3765 0.4496 0.3579
michellejieli [32] 0.4492 0.4205  0.3095  0.3301
j-hartmann [33] 0.3880 0.4098 0.3724  0.3268
bart-large-mnli [11] 0.1639 0.3084 0.3470  0.1585
Our model 0.3885 0.3204 0.3068  0.3134

As shown in Table 1, our model does not achieve the highest performance across any metric. Among
the evaluated models, michellejieli and j-hartmann are fine-tuned emotion classifiers based on the
DistilRoBERTa-base [34] architecture. The bart-large-mnli model, a zero-shot classifier built on the
BART-large [35] transformer, is used without fine-tuning. The gpt-4o-mini model, on the other hand, is
an LLM that predicts emotions through prompt-based reasoning. Notably, michellejieli achieves the
highest accuracy (0.4492) and precision (0.4205), while gpt-4o-mini performs best in recall (0.4496) and
F1 score (0.3579). Our approach, which combines BAAI-bge-m3 embeddings [36] with a tuned Random
Forest classifier [37], yields moderate but consistent results across all metrics because it just trained
on UniC dataset(772 training samples). The classifier’s hyperparameters are shown in Table 2. It is
important to highlight that these relatively low performance scores are primarily due to the nature of
the dataset, which consists of natural, non-acted emotional expressions.

Table 2
Hyperparameters used for the Random Forest classifier with BAAI-bge-m3 embeddings.
Hyperparameter Value
n_estimators 316
max_depth 488
min_samples_split 50
criterion gini
class_weight balanced_subsample

4. Methodology

Emotional text generation and its evaluation have been less explored through analogical methods,
despite their proven utility in measuring structured semantic relations. Chen et al. [38] systematically
analyzed vector-based analogies, confirming their reliability in capturing such relations, and Zhu and
De Melo [39] extended analogical reasoning to contextualized sentence embeddings, showing that
some models preserve analogical structures at the sentence level. To our knowledge, no prior work
has applied analogy-based evaluation specifically to the assessment of emotional expressiveness in
generated text.

Building on these insights, our methodology employs analogy-based evaluation to quantify the
emotional expressiveness of LLMs. To rigorously isolate the model’s generative capabilities, we begin
by neutralizing the emotional content of each ground-truth (GS) text in our dataset using an LLM.
Following neutralization, the model is prompted to regenerate the emotional version of each text. The
neutralization step is crucial: by comparing the regenerated emotional outputs with the original GS
emotions, we ensure that any observed affective content arises from the model’s learned patterns rather
than residual cues in the input. Finally, we compute embedding-based similarity and analogy metrics
between the GS and regenerated texts, enabling quantification of both semantic fidelity and emotional
alignment.
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Figure 2: A hand-drawn illustrative example of the ’King and Queen’ analogy in an ideal embedding space.
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Figure 3: 2D visualization of word embeddings using t-SNE. The vector W(king) — W(man) + W(woman) lies
near W(queen), illustrating a plausible semantic relationship in the reduced space.

4.1. Embedding Evaluation Metric

Before focusing on the embedding evaluation metric, we should mention that all embeddings were
calculated using the BGE-M3 [36] language model, and the 2D space was generated using the t-SNE
[40] method applied to the BGE-M3 embedding space.

In our embedding evaluation metric, we draw inspiration from the well-known linguistic analogy:
“king - man + woman ~ queen”. This example illustrates how word embeddings can capture semantic
relationships through vector arithmetic [41]. By representing words as vectors in a high-dimensional
space, operations such as subtraction and addition can reveal underlying relationships, such as gender
or emotional tone. This property enables the assessment of emotional quality in generated text by
analyzing geometric relationships between word vectors, offering a quantitative measure of emotional
expressiveness in language models. Figure 2 visually demonstrates this concept, showing how vector
operations can encode semantic relationships in the embedding space.

In Figure 2, the length and direction of the vectors W(king) — W(queen) and W(man) — W(woman)
appear to be the same. However, this does not reflect reality. In a realistic scenario, we would expect
the vector W(king) — W(man) + W(woman) to be close to W(queen). Using BGE-M3, we calculated
the embeddings for queen, king, man, and woman. As shown in Figure 3, the expression W(king) —
W(man) + W(woman) is not exactly equal to W(queen), but it is close.



4.1.1. Cosine Similarity vs. Manhattan Distance

A common method for measuring similarity between two vectors is the cosine similarity metric. However,
in analogy tasks, this method has a major limitation: the results can vary based on the operation order.
Consider the analogy: king is to queen as man is to woman. The similarity and distance scores for
various formulations are summarized in Table 3.

Table 3
Comparison of cosine similarity and Manhattan distance for different analogy vector operations.
Pair Cosine Similarity Manhattan Distance
(king, queen) 0.7119 19.2969
(man, woman) 0.6343 21.7031
(man, woman — queen + king) 0.7188 19.5469
(woman, man — king + queen) 0.7461 19.5469
(king, queen — woman + man) 0.7368 19.5469
(queen, king — man + woman) 0.7759 19.5469

As shown in Table 3, different operation orders produce varying cosine similarity scores, revealing
inconsistency in the evaluation of the cosine-based analogy. In contrast, the Manhattan distance
produces stable results across all permutations, indicating its robustness for analogy reasoning tasks.
Due to its consistent behavior, we further used the Manhattan distance for the analogy evaluation in
our experiments.

4.1.2. Real Emotional Example

To better understand the role of emotional analogy in our framework, we illustrate a representative
example from our experiments. The goal is to analyze how vector arithmetic in the embedding space
can capture shifts in emotional expression between sentences. Figure 4 visualizes this example. The
corresponding text for each variable in the figure is as follows:

» joy ="joy”
« neutral = “neutral”
« neutral_sent = “It’s my first day as a student”

« joy_sent = “I'm so happy, it’s my first day as a student!”

In the Figure 4, we observe that the distance between the neutral and joy emotion embeddings is
relatively large. This discrepancy poses a challenge for emotional analogy, as the semantic distance
between the two sentence embeddings (neutral_sent and joy_sent) is significantly smaller than the
distance between their corresponding emotion labels. To mitigate this, we construct an analogy vector
using the following equation:

analogy_vector = neutral — neutral_sent + joy_sent (1)

This vector is then compared with the joy embedding. As shown in the Figure 4, the analogy vector
lies closer to joy than neutral, indicating that the analogy operation effectively captures the intended
emotional shift.

Recognizing emotions in real user utterances is particularly challenging due to their subtle and
nuanced nature. As shown in Table 1, the best model achieves an F1-score of only 35.79%, signifi-
cantly lower than the 60.25% observed on acted datasets like MELD [25]. To further investigate this
phenomenon, we visualized the semantic structure of emotion representations using the BGE-M3
embedding model. Figure 5 shows a 2D projection of both the emotion label embeddings and the
average embeddings of real user utterances associated with each emotion. In this plot, each circle



Emotion Embeddings in 2D Space

HEm joy -> neutral
N joy_sent -> neutral_sent
B neutral -> (n-n_sent+j_sent)
=== joy ~ (n-n_sent-+j_sent)

Y

‘eutral_sent

01
\@yisent

0.0

0.2

_sent+j_sent

T T T
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

Figure 4: Visualization of emotional analogy in the embedding space. The plot shows the positions of the
neutral, joy, and sentence embeddings (neutral_sent and joy_sent) in the embedding space.

represents an emotion label (e.g., joy, disgust, neutral), and each square denotes the average embedding
of utterances tagged with that emotion. Two sets of relationships are highlighted:

+ Red lines connect the embedding of the label neutral to other emotion labels.

+ Green lines connect the average embedding of utterances labeled as neutral to the average
embeddings of utterances for other emotions.

The figure reveals that while the emotion labels are well-separated in the embedding space, indicating
clear semantic distinctions, the average embeddings of real user expressions are clustered more closely
together, especially around the neutral region. This supports the idea that emotional language in real
interactions is often more subtle, making automatic emotion detection more challenging in natural
contexts.

To better understand how emotional meaning is encoded in sentence embeddings, we explore the
relationship between labeled and unlabeled emotional expressions. Specifically, we aim to approximate
the embedding of an emotionally tagged utterance using its neutral version and the emotional shift
encoded in a semantically aligned sentence. Here, labeled emotion refers to utterances that include
direct emotion labels from the gold-standard data in UniC dataset (e.g., “I'm so happy, it’s my first day
as a student! (joy emotion)”), while unlabeled emotion refers to emotionally expressive content without
such tags but still conveying affect (e.g., “I'm so happy, it’s my first day as a student!”). Neutral versions
are affectively flat and omit emotional cues.

Our approach applies an analogy-style vector transformation of the form: neutral — neutral_sent
+ joy_sent, where neutral_sent and joy_sent are the neutral and emotionally expressive versions of
the same utterance. This transformation enriches the affective content of the neutral-tagged embedding
by injecting the emotional variation from the unlabeled expression, while preserving the shared semantic
structure. The goal is to reduce the distance between the synthesized embedding and its explicitly
emotional counterpart, effectively revealing how emotional meaning can be reconstructed through
compositional operations. Figure 6 visualizes this transformation. The green arrow illustrates the
analogy vector described above, and the dashed lines indicate the proximity between the predicted and
actual emotion embeddings. The text associated with each vector in the figure is as follows:

« joy = “I'm so happy, it’s my first day as a student! (joy emotion)”
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Figure 5: 2D projection of emotion embeddings using t-SNE. Circles represent the embeddings of emotion labels
(e.g., joy, neutral), while squares represent the average embeddings of real user utterances associated with each
emotion. Red lines show distances from the neutral label to other labels, and green lines show distances from
the average neutral embedding to other emotion averages.

« neutral = “It’s my first day as a student (neutral emotion)”

« neutral_sent = “It’s my first day as a student”

« joy_sent = “I'm so happy, it’s my first day as a student!”
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4.2. Emotion Embedding Extraction Using Prompted Text Templates

As discussed in Section 4.1.1, we use Manhattan distance as our similarity metric due to its sensitivity
to subtle semantic variations in the embedding space. This metric is essential for evaluating how
emotional content can be manipulated while preserving the original meaning. Our goal is to identify
the most effective prompt template for extracting emotion embeddings from textual descriptions.
These embeddings, denoted as E,, E,, and E,, represent the original, neutral, and target emotional
states, respectively. By inserting emotion-related phrases into structured prompt templates, we derive
these embeddings for use in analogy-based transformations. The transformation involves two steps:
neutralization and emotionalization. Let S,, S,, and S; be the sentence embeddings for the original,
neutral, and target emotional versions of the same sentence. Let MD(A, B) denote the Manhattan
distance between embeddings A and B. The neutralization step tests whether removing the original
emotion and inserting the neutral emotion embedding moves it closer to S;:

MD(S(p Sn) 2 MD(SO —Eo + Ep, Sn) (2)

The emotionalization step checks whether inserting the target emotion into the neutral embedding
moves it closer to S
MD(S,,S) > MD(S, — E, + E. S) (3)

These conditions validate whether modifying sentence embeddings via emotional vectors steers them
toward the intended emotional states. A transformation is deemed successful when both inequalities
are satisfied.

System Prompt 1: Text Neutralization

Your task is to neutralize the text by removing emotional expressions.

The text is a transcription of a video.

The text may contain emotional expressions.

The text should be neutral and not contain any emotional expressions.

The text should be in the same language, format, style, tone, and context as the input text.
Please try to change the text as little as possible.

Please neutralize the following text: {text}

The original emotion of the text is: {emotion}

Please make sure to remove all emotional expressions from the text.

System Prompt 2: Emotional Text Generation

Your task is to make the text more emotional by adding emotional expressions.

The text is a transcription of a video.

The text should be in the same language, format, style, tone, and context as the input text.
Please try to change the text as little as possible.

Don’t mention the emotion in the text directly.

Please add emotional expressions to the following text: {text}

The current emotion of the text is: neutral.

The target emotion of the text should be: {emotion}.

To identify the most effective prompt template for extracting emotion embeddings, we evaluated five
candidate prompt formulations across several LLMs. These templates vary in how they contextualize
emotion labels with respect to the text, ranging from labeled structures (e.g., “joy emotion: {text}”) to
minimal expressions (e.g., just “joy”).

Our evaluation follows a two-step analogy-based framework. In the neutralization step, we generated
neutral versions of emotional sentences using each LLM with a fixed system instruction based on
System Prompt 1. To extract the emotion embeddings E, and E, used in Equation 2, we tested the five
emotion prompt templates by plugging them into an embedding encoder. In the emotionalization step,
we used System Prompt 2 to generate emotionalized sentences from neutral ones and evaluated how
well each emotion prompt template performed using Equation 3 with the target emotion embedding E;.
The following are the details about the emotion embedding prompts:

« Prompt 1: {emotion} emotion: {text}



Table 4

Performance of different LLMs and prompt templates in analogy-based emotion embedding evaluation.
Each cell shows the percentage of samples that satisfied the analogy inequality in the neutralization
(left) and emotionalization (right) steps.

Model Prompt 1 Prompt 2 Prompt 3 Prompt 4 Prompt 5

gemma-3-1b-it [42] 98.96 / 100.00 98.76 / 100.00 99.79 / 96.00 33.82/28.00 33.82/24.00
llama-3.1-8b-instruct [9] 98.96 /100.00 97.51/99.90 100.00/100.00 37.86/53.22 36.62/43.15
mistral-nemo-12b-instruct [43]  98.96 / 99.90 95.85/99.90 99.69 / 100.00 38.49 /58.30 37.55/45.12
llama-3.3-70b-instruct [9] 99.38/99.48 98.96/99.38  100.00 / 100.00  37.14/57.47 36.20 / 45.64
gpt-4.1 [8] 99.07 / 98.96 96.58 / 95.95 99.59/99.48 48.55/78.42 41.80/59.44
gpt-4o-mini [10] 99.48/99.90 98.34/99.90 99.90/100.00 34.75/76.04 34.65 / 58.20
Average 99.13/99.71 97.67 /99.17 99.83 /99.25 38.44 / 58.57 36.77 / 45.93

« Prompt 2: This content has {emotion} emotion: {text}

Prompt 3: {text} ({emotion} emotion)
« Prompt 4: {emotion}

« Prompt 5: This content has {emotion} emotion

As shown in Table 4, we identify the best-performing emotion prompt template for each step of the
evaluation. Using the entire text-only UniC dataset for evaluation, we conduct experiments on two
tasks: neutralization and emotionalization. For neutralization, Prompt 3 achieves the highest analogy
satisfaction rates across most models. For emotionalization, Prompt 1 performs best, indicating its
effectiveness in reintroducing emotional content through embedding manipulation. These findings
suggest that different prompt styles may be optimal for extracting emotion embeddings depending on
the specific transformation goal.

5. Analysis and Results

Having decided on the Manhattan Distance to compare the embedding vectors (Section 4.1.1) and on
using distinct prompt templates for extracting emotion embeddings depending on the transformation
stage (Section 4.2), we set up an experiment in which our goal was to evaluate the impact of emotion
generation by comparing the original emotional data with the emotionally re-generated text. Specifically,
we used Prompt 3 for the neutralization stage and Prompt 1 for the emotionalization stage, as each
achieved the highest analogy satisfaction rates for their respective tasks across most models. To enable
a broad comparison, we evaluated a range of LLMs, including open-source models such as Gemma
[42], LLaMA-3 [9], and Mistral-NeMo [43], as well as commercial models like GPT-4.1 [8] and
GPT-40-Mini [10] from OpenAlL This mix allowed us to assess the effectiveness of emotion embedding
manipulation across both accessible, community-driven models and state-of-the-art proprietary systems.
All evaluations are on the UniC dataset’s text modality. The process consisted of the following two
main steps:

5.1. Neutralization

We used an LLM to neutralize the emotional content of the original text samples. This step aimed to
remove any labeled or unlabeled emotional signals, resulting in emotionally flat, semantically preserved
text. In this experiment, we used System Prompt 1. The following formulas were used in the tables to
evaluate the performance of different models. In these equations, A denotes the analogy vector.

A=E, —-S,+5,
R1, = cos(E,, E,), R2,=cos(E,A)
le = "Eo - En”l’ Rzm = ”Eo - A"l



As shown in Table 5, we evaluate each LLM’s ability to perform emotional neutralization based on
how well the transformed sentence embedding aligns with the original emotional context vector. The
evaluation uses both cosine similarity and Manhattan distance to capture different aspects of embedding
relationships. In both cosine similarity and Manhattan distance metrics, GPT-4.1 demonstrates the most
controlled and semantically faithful emotion neutralization among all evaluated models. While llama-
3.3-70b-instruct achieves the highest post-neutralization cosine similarity (R2_ = 0.9746) and lowest
Manhattan distance (R2 = 5.33), GPT-4.1 yields the smallest changes in both cosine (AR, = 0.0410)
and Manhattan metrics (AR | = —3.297), indicating minimal semantic distortion during transformation.
This suggests that GPT-4.1 preserves original sentence meaning more effectively while removing
emotional content. Overall, while high-capacity open-source models like mistral-nemo-12b-instruct
are increasingly competitive, commercial models such as GPT-4.1 still lead in performance when
performing nuanced tasks like emotion neutralization.

Table 5
Evaluation results of LLMs for emotion neutralization. R1/R2: before/after transformation. Subscripts ,,/:
Manhattan/Cosine.

Model Rl, R2, AR, | Ri R2, AR,

gemma-3-1b-it [42] 16.160 7.484 -8.670 | 0.7734  0.9536  0.1802
llama-3.1-8b-instruct [9] 10.180 5965 -4.215 | 09106 0.9683  0.0576
mistral-nemo-12b-instruct [43]  9.640 5.785 -3.855 | 09185 0.9690  0.0508
llama-3.3-70b-instruct [9] 13.414 5.330 -8.086 | 0.8370 0.9746 0.1377
gpt-4.1 [8] 8.920 5.625 -3.297 | 0.9290 0.9700 0.0410
gpt-40-mini [10] 11990 6.450 -5.543 | 0.8790 0.9644  0.0855

Table 6 shows the emotion-wise results for GPT-4.1 neutralization. The neutral category exhibits the
smallest changes in both Manhattan distance and cosine similarity, reflecting that converting originally
neutral utterances to neutral is inherently easier. In contrast, other emotions require more substantial
transformations to remove affective content while preserving meaning, resulting in larger embedding
changes.

Table 6
Emotion-wise evaluation results of GPT-4.1 [8] for emotion neutralization. R1/R2: before/after transformation.
Subscripts ,,/.: Manhattan/Cosine.

Emotion R, R2, AR, | RI R2, AR,

confusion 9.650 7.254 -2.395 | 0.9224 0.9565 0.0342
joy 10.010  6.453 -3.555 | 0.9175 0.9663 0.0488
neutral 6.266 2521 -3.744 | 0.9630 0.9946 0.0317
disgust 11.760 8.164 -3.594 | 0.8857 0.9460 0.0601
contentment 9.870  7.016 -2.852 | 0.9190 0.9590  0.0400
disappointment  10.410  7.414 -2.992 | 0.9097 0.9560 0.0464
surprise 10.600 7.227 -3.375 | 0.9062 0.9580 0.0518

To evaluate the consistency between different similarity metrics, we computed the Pearson correlation
[44] between the Manhattan distance and Cosine similarity values for both R2 and R1 scores. As shown in
Figure 7, there is a very strong negative correlation between the two measures for both R2 (r = —0.99365)
and R1 (r = —0.99501). These results indicate that as the Manhattan distance increases, the Cosine
similarity decreases almost linearly, suggesting that both metrics are capturing highly similar trends in
evaluating the transcripts, albeit in opposite directions due to their different mathematical formulations.

5.2. Emotion Injection

In the emotion injection phase, we used an LLM to reintroduce a target emotion (e.g., joy) into the
neutralized text. To guide this process, we prompted the model using system-level instructions and
emotion-specific cues. The goal was to generate emotionally expressive text that closely resembles
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Figure 7: Scatter plots showing the relationship between Manhattan distance and Cosine similarity for R2 (left)
and R1 (right) metrics. Each point represents the result of a different LLM on the UniC dataset. A regression line
is included in each subplot to visualize the correlation.

the original emotional content while preserving the core semantics of the neutralized version. In this
experiment, we used System Prompt 2. To perform the re-injection, we compute the analogy vector A
based on the following relationship:

A=E—S5+5,

R1, = cos(E,, E), R1, = |E, - EJ,
R2, = cos(E,, A), R2, = |E, - Al,
R3, = cos(S,, S}), R3, =S, - Sl

Table 7 shows the performance of various LLMs in emotion injection. GPT-4.1 achieves the best
results overall, with the lowest distances and highest cosine similarities (e.g., R3, = 9.99, R3. = 0.9130),
indicating strong emotional alignment and reinjection ability. In contrast, gemma-3-1b-it performs the
weakest, especially in re-injection quality (R3. = 0.6990). While commercial models like GPT-4.1 and
GPT-40-mini outperform others due to superior training and architecture, larger open-source models
such as LLaMA-3.3-70B and Mistral-Nemo-12B show competitive performance, suggesting that open
models can still be effective in emotion-aware tasks.

Table 7
Evaluation results of LLMs for emotion injection. R1: neutral-target emotion, R2: analogy vector, R3: original-re-
injected sentence. Subscripts ,/.: Manhattan/Cosine.

Model R1,, R2, AR, R3, | RI R2, AR, R3,

gemma-3-1b-it [42] 15560 9.190 -6.375 18.890 | 0.7930  0.9287  0.1357  0.6990
llama-3.1-8b-instruct [9] 12125 6.824 -5301 13.830 | 0.8740 09590 0.0850  0.8374
mistral-nemo-12b-instruct [43] 12.164 6.625 -5539 13.390 | 0.8740 0.9610  0.0869  0.8486
llama-3.3-70b-instruct [9] 12950 5.824 -7.126  13.290 | 0.8486 0.9700 0.1216  0.8496
gpt-4.1 [8] 8.086 5.470 -2.617 9.990 | 0.9310 0.9680 0.0366 0.9130
gpt-40-mini [10] 10.390  6.016 -4.375 13.414 | 09077 09670  0.0591  0.8500

Table 8 reports emotion-wise performance of GPT-4.1 on the emotion injection task. The model
performs consistently across all emotions, with strong alignment scores (e.g., R3. > 0.88) and small
Manhattan distances. Notably, the neutral class achieves the best results (R3. = 0.9280, R1,,, = 2.30),
which is expected since the model is converting a neutralized utterance back to a neutral form, making
the reinjection task considerably easier in this case.

To further validate the metric alignment, we conducted a correlation analysis between Manhattan
distance and cosine similarity across the three relations (R1, R2, R3). All pairs exhibit strong negative
correlations below —0.9819, confirming the inverse relationship between the two metrics (see Figure 8).
These results confirm that increased directional similarity corresponds closely with reduced embedding
distance, validating the use of both metrics to quantify emotional fidelity in the reinjection process.



Table 8
Emotion-wise evaluation results for GPT-4.1 in emotion injection. R1: neutral-target emotion, R2: analogy
vector, R3: original-re-injected sentence. Subscripts ,/.: Manhattan/Cosine.

Emotion R, R2, AR, R3, | Ri R2, AR, R3,

surprise 11.766 7.688 -4.078 11.410 | 0.8870 0.9517 0.0645 0.8920
disgust 12.200 8480 -3.720 11.610 | 0.8780 0.9414 0.0635 0.8860
confusion 10.734  7.977 -2.757 10.160 | 0.9060 0.9480 0.0425 0.9140
contentment 10490 7.598 -2.892  9.970 | 0.9097 0.9517 0.0420 0.9160
neutral 2303 1225 -1.078 8920 | 0.9920 0.9980 0.0059 0.9280
joy 11.000 7.242 -3.758 10.164 | 0.9010 0.9575 0.0566 0.9126
disappointment  11.230  7.477 -3.753 10.990 | 0.8975 0.9546 0.0571 0.8975
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Figure 8: Scatter plots showing correlation between Manhattan distance and Cosine similarity for R1, R2, and
R3 embedding relations. Each point represents the result of a different LLM on the UniC dataset. A regression
line is included in each subplot to visualize the correlation.

6. Conclusion and Future Works

In this study, we explored the capability of LLMs to manipulate and generate emotionally expressive
text through a two-step process: emotional neutralization followed by targeted emotion injection. Using
embedding-based similarity metrics such as Manhattan distance and cosine similarity, we quantitatively
evaluated the extent to which LLMs can remove and reintroduce specific emotions while preserving the
semantic core of the original text. Our findings indicate that GPT-4.1, a commercial model, consistently
outperforms other models in maintaining semantic fidelity and accurately reconstructing emotional
nuances. Among open-source models, LLaMA-3.3-70B-Instruct demonstrates the best performance in
our experiments, making it a strong candidate for accessible, open research in emotion-aware language
generation. These results underscore the effectiveness of large-scale LLMs for emotion control and
expression in text and provide a foundation for broader affective computing applications. Although our
current focus is on the text modality, the proposed framework is explicitly designed to extend to speech
and visual channels by leveraging shared embedding spaces. In particular, recent work by Jha et al. [45],
which builds upon the Platonic Representation Hypothesis introduced by Huh et al. [46], demonstrates
that as neural networks scale, internal representations across modalities converge toward a shared
statistical model of reality. This convergence enables cross-modal affective analysis without requiring
paired training data, providing a strong theoretical and practical foundation for our future work.

In addition to aligning emotional content across text, speech, and visual modalities within unified
embedding spaces, our future efforts will also involve improved prompt engineering and the development
of more expressive embedding models to enhance emotional transformation capabilities. As a concrete
application, we aim to develop a multimodal empathetic conversational agent for second language
(L2) learning. By engaging students in emotionally supportive interactions, such agents can foster
psychologically safe and motivating learning environments while assisting teachers in managing
affective dynamics in the classroom.
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