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Abstract
In industrial settings, anomalies often indicate critical events such as equipment failures or system faults. These
events are rare but highly impactful and require urgent attention and often have financial or safety consequences.
Deep learning models, especially Graph Neural Networks (GNNs) have gained prominence due to their ability to
capture intricate dependencies between sensor signals as graphs. Understanding the reasons behind the predicted
anomalies is essential for effective response, however, the black-box nature of GNNs poses a significant challenge.

To address this limitation, we propose a counterfactual explanation framework that offers human-
understandable insights by identifying minimal input changes capable of altering the model’s decision. Our
method employs a two-stage process: (i) selecting the most relevant nodes contributing to the anomaly using
graphs, and (ii) generating counterfactual instances by perturbing only these selected nodes. We evaluate our
approach on two real-world CPS datasets: SWaT and WADI. Experimental results show that our method produces
significantly sparser explanations compared to existing techniques. Additionally, our ablation study shows using
graph information for node selection helps in generating sparse explanations. These counterfactual insights
enhance model transparency, support better operational decision-making, and ultimately foster greater trust in
anomaly detection systems.

Keywords
Graph Neural Network, Time-series Anomaly Detection, Counterfactual Explanation, Graph Node selection, GNN
Explainer

1. Introduction

In the age of cyber-physical systems (CPS), where physical processes are tightly integrated with
computation and communication infrastructure, ensuring reliable and safe operation of these systems
is of paramount importance. As these systems become increasingly complex, continuous monitoring of
their health has emerged as a vital component of operational safety and performance optimization. One
of the key techniques employed in this context is anomaly detection (AD), which involves identifying
patterns in system behavior that deviate from expected norms. Accurate anomaly detection enables
early fault diagnosis, minimizes downtime, and helps prevent catastrophic failures.

Traditional anomaly detection methods encompass a wide range of statistical and machine learning
techniques. These include clustering approaches such as k-means, and density estimation methods
like One-Class SVM and Isolation Forests [1]. More recently, deep learning-based methods such as
autoencoders, recurrent neural networks (RNNs), and variational autoencoders (VAEs) have been
employed to model the normal behavior of time-series data and identify deviations [2]. While effective
in many cases, these approaches generally operate under the assumption that sensor observations
are independent or sequentially dependent, and they often fail to account for the structural inter-
dependencies among sensors in a system.

Traditional anomaly detection methods often treat sensor observations independently or assume
simplistic temporal dependencies, ignoring the inherent structural relationships between different
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sensing components. In many CPS applications, such as industrial automation, energy distribution
networks, and autonomous vehicles-the behavior of a sensor is often influenced by the states of its
neighboring sensors due to underlying physical or logical connections. Capturing these interactions is
essential for robust modeling of system behavior. Graph-based representations provide a natural and
expressive framework to encode these inter-sensor relationships. Recent advances in Graph Neural
Networks (GNNs) have made it possible to effectively leverage graph-structured data for tasks like
classification, prediction, and anomaly detection in multivariate time series data [3].

Several studies have demonstrated that modeling sensor dependencies through graph structures can
significantly enhance the performance of anomaly detection systems in CPS settings [4, 5, 3]. Despite
these promising results, a major limitation persists: the lack of explainability. GNN-based anomaly
detection models are often treated as black boxes, offering little insight into why a particular anomaly
was detected. This is particularly a problem in safety-critical domains, where human operators must
understand and trust the decisions made by automated systems.

To bridge this gap, the machine learning community has increasingly focused on explainability, with
methods generally categorized into local explanations—targeting individual predictions and global
explanations—describing overall model behavior [6]. While several explanation techniques have been
proposed for standard deep learning models, the explainability of GNNs, especially in time-series
contexts, remains an underexplored area. Moreover, existing explanation methods often rely on
feature attribution or saliency maps, which may lack causal grounding and are limited in the types of
counterfactual insights they can provide. Our primary focus is to explore whether graph structure in
GNNs be harnessed for better explaining the model’s decisions.

In this work, we propose a novel framework for counterfactual explanation tailored to GNN-based
anomaly detection models operating on time-series sensor data. Counterfactual explanations aim to
answer the question: “What minimal change to the input would alter the model’s prediction?”—thus
providing actionable and intuitive insights into model decisions. Counterfactual explanations can give
a clue as to the root cause of the anomalies.

Our approach comprises a two-stage process. In the first stage, we identify the most influential
sensors that contribute to an anomaly, along with their local graph neighborhoods. This localization
step leverages node-level deviations and GNN attention mechanisms to pinpoint regions of the graph
that are most responsible for the prediction. In the second stage, we generate counterfactual instances
by perturbing sensor readings in a minimal and plausible manner, aiming to flip the model’s prediction
from anomalous to normal (or vice versa). These counterfactuals serve as transparent, case-specific
explanations that can assist operators in understanding failure modes and potential corrective actions.
By integrating such support-systems reduces cognitive load on the human decision-makers, while
allowing them to effectively validate model outputs.

By combining the structural strengths of GNNs with the intuitive clarity of counterfactual reasoning,
our method advances the state of the art in explainable anomaly detection for cyber-physical systems.
On the SWaT and WADI benchmarks, our two-stage approach alters fewer than 6% of sensors, yet
still delivers an outstanding sparsity-versus-proximity balance that makes the counterfactuals concise
and actionable. This not only enhances trust and accountability but also opens new avenues for
troubleshooting and diagnostics.

2. Related Work

2.1. Counterfactual Explanation for Time Series

Several recent studies have explored counterfactual explanation techniques for time series data, with
the aim of explaining model decisions by identifying minimal changes in input features that would alter
the model output.

For instance, Karlsson et al. 2020, propose a technique for generating counterfactuals usingmodels like
k-nearest neighbors and random shapelet forests. In another approach, wan 2021, focus on univariate
time series by mapping data to a latent space, identifying counterfactuals there, and decoding them



back to the input space. Native-Guide [9] identifies the nearest contrasting instance, extracts its most
influential subsequence, and substitutes it into the original time series. CoMTE [10] selects alternative
series from the training set to replace parts of the input in order to induce prediction changes. More
recently, CFWoT [11] introduces a model-agnostic framework for both static and multivariate time
series, capable of handling continuous and categorical features without needing access to training data
or similar samples.

These approaches often do not focus on relational structures present in multivariate time series data,
which is the focus of this work.

2.2. Counterfactual Explanation of Graph Neural Networks

Counterfactual explanation methods of graph neural networks aim to identify the smallest possible
modifications to the input that would lead to a different model output. By pinpointing which features
must be altered to change a prediction, these methods offer valuable insights into the model’s decision
boundaries and causal reasoning.

A representative method in this category is CF-GNNExplainer [12], which introduces a learnable
binary mask over the model’s computational graph to indicate edge presence or removal. The mask is
optimized to (1) alter predictions (prediction loss) and (2) minimize structural changes (distance loss).
The final explanation highlights edges with the highest importance scores from the learned mask.

Another thread of counterfactual explanation methods is to generate counterfactual instances that are
close to the original instance but lead to a different prediction. CLEAR [13] employs a graph variational
autoencoder (GVAE) to learn a latent representation of the input graph and generate counterfactual
graphs by making minimal changes to the original structure or features. The GVAE is trained to
reconstruct the original graph while ensuring that the generated counterfactual samples result in a
different model prediction, maintaining both proximity (closeness to the original instance) and validity
(changing the prediction). RCExplainer [14] uses a neural network that predicts the existence of an edge
between two nodes based on their embeddings. To generate counterfactual explanations, RCExplainer
modifies these pairwise node embeddings, effectively simulating the addition or removal of edges that
lead to a change in the model’s prediction. This approach allows for a structured and interpretable way
of understanding which edges influence the decision of the GNN model.

However, these methods primarily focus on structural changes to the graph, such as edge addition or
removal, rather than utilizing graph structures for time series data, which is the focus of our work. Our
approach leverages the inherent relationships between sensors in a time series context, enabling us to
generate counterfactual explanations that are both interpretable and relevant to the specific anomalies
detected by GNN-based models.

3. Method

3.1. Problem Statement

This paper addresses the task of explaining anomalies in multivariate time series data through counter-
factual explanation generation. To support this, we incorporate an initial anomaly detection component
as a foundation.

We begin by employing an unsupervised time series anomaly detection model that learns the normal
behavior of a system from historical data and detects deviations in unseen data. The input consists of
multivariate sensor data 𝑉, where |𝑉 | = 𝑁 and 𝑁 is the number of sensors. The training data is denoted
as strain = [s(1), s(2), … , s(𝑇train)], where each s(𝑡) ∈ ℝ𝑁 represents sensor readings at time 𝑡. The model
assumes training data to be free of anomalies and captures normal system patterns to flag abnormal
points in the test data.

The core focus of this work lies in generating counterfactual explanations for the data points identified
as anomalous. The counterfactual explanation provides human-interpretable insights into the model’s
decision-making process by answering the question: What minimal change would make an anomalous



instance be considered normal? Formally, given a test data sequence stest = [s(1), s(2), … , s(𝑇test)] and a
set of anomaly predictions, the goal is to generate, for each detected anomaly s(𝑖)test, a modified version
s(𝑖)

′

test such that the model classifies s(𝑖)
′

test as normal, and s(𝑖)
′

test remains as close as possible to s(𝑖)test under a
suitable distance metric.

3.2. Overview
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Figure 1: The overall framework of our approach. The framework consists of two primary modules: (1) a
GNN-based model for time series anomaly detection, and (2) a two-stage approach for generating counterfactual
explanations: (a) the node selector and (b) the counterfactual generator.

Figure 1 illustrates the overall framework of our proposed methodology. Our framework consists
of two primary modules: (1) a graph neural network (GNN) architecture designed for time-series
anomaly detection, and (2) a two-stage mechanism for producing counterfactual explanations. The
GNN component processes the input time series sequences and produces binary classifications (normal
versus anomalous) for individual temporal observations. Subsequently, the two-stage explanation
module utilizes both the original time series input and the GNN’s classification outcomes to construct
counterfactual explanations specifically for data points identified as anomalous.

3.3. GNN-based Model for Time-Series Anomaly Detection

This section presents GNN-based model for time-series anomaly detection, which utilizes the method-
ology proposed by den 2021. The model produces an anomaly score for time series data, labeling
it as anomalous if its score exceed a specified threshold. Following the GDN architecture [4], the
implementation integrates structural learning techniques with graph neural networks, comprising four
interconnected modules: sensor embedding, graph structure learning, graph attention-based forecasting,
and graph deviation scoring.

For each sensor 𝑖 is represented by a trainable embedding vector e𝑖 ∈ ℝ𝑑, learned jointly with the
forecasting objective. These embeddings capture the behavior patterns of the sensors and can be used
to identify which sensors are similar to each other. Sensors that are highly correlated will have similar
embedding vectors.

To explicitly represent inter-sensor relationships, we build a data-driven directed graph. For every



pair of sensors embeddings e𝑖 and e𝑗, we compute cosine similarity as:

A′
𝑖𝑗 =

e𝑇𝑖 e𝑗
‖e𝑖‖‖e𝑗‖

, (1)

and retain the top-𝑘 neighbors of each node to obtain the adjacency matrix A. This resulting directed
graph explicitly encodes dominant inter-sensor relationships, informing subsequent forecasting and
anomaly scoring steps.

With the learned adjacency matrix A, graph-attention layers process each time window x(𝑡) ∈ ℝ𝑁×𝑤.
For node 𝑖 at time 𝑡, the hidden state is

h(𝑡)𝑖 = ReLU (𝛼𝑖,𝑖Wx(𝑡)𝑖 + ∑
𝑗∈𝒩 (𝑖)

𝛼𝑖,𝑗Wx(𝑡)𝑗 ) , (2)

where attention weights 𝛼𝑖𝑗 are softmax-normalized cosine similarities of concatenated node features.
A fully connected layer then maps sensor representations into predicted sensor values:

ŝ(𝑡) = 𝑓𝜃 ([e1 ⋅ h
(𝑡)
1 , e2 ⋅ h

(𝑡)
2 , … , e𝑁 ⋅ h(𝑡)𝑁 ]) , (3)

where 𝑓𝜃 is a fully connected layer. The output ŝ(𝑡) is the predicted values of the sensors at time 𝑡. The
model is trained using a mean squared error (MSE) loss function:

ℒMSE = 1
𝑇train − 𝑤

𝑇train
∑

𝑡=𝑤+1
‖ŝ(𝑡) − s(𝑡)‖22, (4)

where 𝑇train is the total number of training samples.
Deviations between predicted and actual values are calculated as the deviation score for each sensor

Err𝑖(𝑡) = |ŝ(𝑡)𝑖 − s(𝑡)𝑖 |, where ŝ(𝑡)𝑖 is the predicted value and s(𝑡)𝑖 is the actual value of sensor 𝑖 at time 𝑡.
To ensure that all deviation scores are on the same scale, we normalize the deviation score as follows:

AS𝑖(𝑡) =
Err𝑖(𝑡) − 𝜇̃𝑖

𝜎̃𝑖
, (5)

where 𝜇̃𝑖 and 𝜎̃𝑖 are the median and inter-quartile range (IQR) of the deviation scores of sensor 𝑖 over
the training set, as followed by [4].

The final anomaly score at time 𝑡 is given by taking the maximum across all sensors:

AS(𝑡) =
𝑁

max
𝑖=1

𝐴𝑆𝑖(𝑡), (6)

where 𝑁 is the number of sensors. The system is flagged as anomalous if the score exceeds a predefined
threshold.

3.4. Two-stage Approach

Anomaly samples detected by the GNN-based anomaly detection model are fed into the two-stage
approach for generating an explanation. The first stage involves node extraction, which identifies
the most relevant sensors to guide the counterfactual explanation method. The second stage uses a
counterfactual explanation method that generates counterfactual instances by altering only the sensors
identified in the extracted node set from the first stage.



e1 e5

e3

e2

e4

selected

e1 e5

e3

e2

e4

e1 e5

e3

e2

e4

selected

a) b) c)

Figure 2: Node extraction module. This figure illustrates the process of selecting the most important sensors
based on their anomaly scores. Sensors with darker red coloring indicate higher anomaly scores. With parameters
𝑘1 = 1 and 𝑘2 = 1, the 4th sensor is first selected (subfigure b), and then the 5th sensor is selected as it is connected
to the 4th sensor (subfigure c). The final selected node set contains the 4th and 5th sensors.

3.4.1. Node Extraction

To generate counterfactual explanations focused on the most relevant sensors, we need to extract a
node set containing only the most important sensors from the original graph. The node extraction
module uses the anomaly score for each sensor to identify the most important sensors in the graph.
The extraction process consists of three steps:

1. Select the top 𝑘1 sensors with the highest anomaly scores, where 𝑘1 is a hyperparameter that
controls the size of the initial node set.

2. Select 𝑘2 additional sensors that are connected to the selected 𝑘1 sensors in the graph, where 𝑘2 is
a hyperparameter that controls the size of the extended node set.

3. Combine both sets of sensors to form the final set of selected sensors 𝑆(𝑡).

Figure 2 illustrates this node extraction process. For a given time step 𝑡, we extract a node set based
on anomaly scores. In the first step, we select the top 𝑘1 sensors 𝑆(𝑡)1 according to their anomaly scores
AS𝑖(𝑡) from the sensor set 𝑉:

S(𝑡)1 = {𝑖 ∈ 𝑉 ∣ rank(AS𝑖(𝑡)) ≤ 𝑘1}, (7)

where rank(⋅) ranks sensors by anomaly scores in descending order. This step selects sensors with the
highest anomaly scores, as they are most likely to contribute to the detected anomaly and are therefore
most relevant for generating counterfactual explanations.

In the second step, we select 𝑘2 sensors 𝑆(𝑡)2 that are connected to the selected 𝑘1 sensors:

𝒩 (𝑆(𝑡)1 ) = {𝑗 ∈ 𝑉 ∖ 𝑆(𝑡)1 ∣ ∃𝑖 ∈ 𝑆(𝑡)1 ∶ 𝐴𝑖𝑗 = 1},

S(𝑡)2 ⊆ 𝒩 (𝑆(𝑡)1 ), |S(𝑡)2 | = 𝑘2,
(8)

where 𝒩 (𝑆(𝑡)1 ) represents the neighboring sensors of the selected 𝑘1 sensors. Several strategies exist for
selecting S(𝑡)2 from 𝒩 (𝑆(𝑡)1 ), including choosing sensors with the highest anomaly scores, those most
connected to 𝑆(𝑡)1 , or random selection. We choose the top 𝑘2 sensors with the highest anomaly scores
as this provides a simple and effective way to select the most relevant sensors.

Finally, we combine both sets to form the final selected sensor set:

𝑆(𝑡) = 𝑆(𝑡)1 ∪ 𝑆(𝑡)2 . (9)

The selected node set 𝑆(𝑡) is then used as input to the counterfactual explanation method, which
generates counterfactual instances by altering only the sensors in the extracted set.



3.4.2. Counterfactual Explanation Generation

The counterfactual explanation generation module creates counterfactual instances by altering the
signals of the sensors in the extracted node set. We use a perturbation-based approach that generates
counterfactual instances by adding small changes to the original signal.

We employ gradient optimization, a technique commonly used in adversarial attacks, to compute these
perturbations effectively. The perturbation is found by minimizing the objective function ℒ(x,x + 𝛿),
where x is the original signal, and 𝛿 is the perturbation. The objective function is defined as:

ℒ(x,x + 𝛿) = ℒCE(𝑓 (x + 𝛿), 𝑦target) + 𝜆 ⋅ ‖𝛿‖, (10)

where 𝜆 controls the trade-off between the two terms, 𝑓 (⋅) is the model, 𝑦target is the target class, and
ℒCE is the cross-entropy loss. The first term pushes the model to produce a specific output (the target
class), while the second term keeps the perturbation small.

The perturbation is computed using gradient descent:

𝛿(𝑡+1) = 𝛿𝑡 − 𝜂∇𝛿ℒ(x,x + 𝛿), (11)

where 𝜂 is the learning rate, and 𝑡 is the iteration number. We initialize the perturbation to zero: 𝛿0 = 0.
To focus only on the extracted sensors, we apply a mask to the gradient. The mask m is defined as:

m𝑖 = {
1, if 𝑖 ∈ 𝑆(𝑡),
0, otherwise.

(12)

This mask zeros out the gradients for sensors not in the extracted node set. The masked gradient is
computed as:

∇′𝛿ℒ(x,x + 𝛿) = ∇𝛿ℒ(x,x + 𝛿) ⊙m, (13)

where ⊙ denotes element-wise multiplication. The perturbation is then updated using the masked
gradient:

𝛿(𝑡+1) = 𝛿𝑡 − 𝜂∇′𝛿ℒ(x,x + 𝛿). (14)

This process continues until we reach the maximum number of iterations or obtain a valid counter-
factual instance. The final step adds the perturbation to the original signal:

xcf = x + 𝛿. (15)

The generated counterfactual instance xcf is a modified version of the original signal that produces a
different model output. This counterfactual instance explains the model’s decision by showing how the
prediction changes when influential sensors are altered. By only perturbing sensors in the extracted
node set, we focus on the most relevant sensors, which helps minimize the perturbation size and
improve the quality of explanations.

4. Experiments

4.1. Experiment Setup

4.1.1. Datasets

We evaluate our approach on two multivariate time series datasets from industrial control systems,
comprising both public benchmarks. Dataset statistics are summarized in Table 1.

We use two widely-adopted water treatment testbed datasets: SWaT [15] and WADI [16]. The Secure
Water Treatment (SWaT) dataset contains data from a scaled water treatment plant with 51 sensors
monitoring various physical processes. The Water Distribution (WADI) dataset extends SWaT with a
more comprehensive 128-sensor water distribution system. Both datasets include two weeks of normal



Table 1
Dataset statistics and characteristics.

Dataset #Feature #Train #Test Anomaly Ratio
SWaT [15] 51 47,520 44,991 12.20%
WADI [16] 128 118,800 17,280 5.77%

operations followed by controlled attack scenarios that simulate real-world anomalies through physical
system manipulations.

We apply consistent preprocessing across all datasets following [4]: (1) median downsampling
to 0.1 Hz (one sample per 10 seconds) to reduce noise and computational overhead, (2) sensor-wise
min-max normalization to [0,1] range, and (3) sliding window segmentation into 50-second chunks (5
downsampled measurements) for model input, following the previous works [4].

4.1.2. Baseline Methods

We compare the GNN anomaly detection approach against several baseline models, including six
traditional machine learning models, and one GNN-based model. The compared models are listed as
follows:

• KNN: K Nearest Neighbors utilizes the distance of each point to its 𝑘 nearest neighbors as the
anomaly score and classifies the point as anomalous if the score is greater than a specified
threshold.

• IForest: Isolation Forest is an ensemble-based anomaly detection model that isolates anomalies
by randomly partitioning the data into smaller subsets. It builds an ensemble of isolation trees
and uses the average path length of the trees to compute the anomaly score.

• OCSVM: One-Class SVM is a support vector machine-based anomaly detection model that learns
a decision boundary around the normal data points and classifies points outside the boundary as
anomalous.

• AutoEncoder: AutoEncoder consists of an encoder and a decoder which reconstruct data samples
from the input data. The reconstruction error is used as the anomaly score.

• VAE: Variational AutoEncoder is a improved version of AutoEncoder, which learns a probabilistic
model of the data.

• PCA: Principal Component Analysis looks for a low-dimensional projection of the data that
captures most of the variance of the data. The reconstruction error is used as the anomaly score.

• FuSAGNet [17]: FuSAGNet introduces Fused Sparse Autoencoder and Graph Net, which jointly
optimizes reconstruction and forecasting while explicitly modeling the relationships within
multivariate time series.

For counterfactual explanation generation, we compare against two additional baselines: (1) Recon-
struction, which directly uses autoencoder reconstructions as counterfactual explanations under the
assumption that reconstructions project onto the normal space, and (2) Without Node Extraction, which
represents our method without the node extraction component.

4.1.3. Evaluation Metrics

We evaluate our approach using two sets of metrics: anomaly detection performance and counterfactual
explanation quality.

Anomaly Detection Performance. We assess the anomaly detection model using standard classifi-
cation metrics: precision, recall, F1-score, AUC-ROC, and PRC-AUC. AUC-ROC and PRC-AUC provide
a comprehensive assessment of the model’s performance across different threshold values and are
widely used metrics for evaluating classification models.



Counterfactual Explanation Quality. We evaluate generated counterfactuals using three quantita-
tive metrics alongside qualitative visual inspection. Validity measures the fraction of counterfactuals
that successfully flip the model’s prediction:

Validity = 1
𝑁cf

𝑁cf

∑
𝑖=1

𝕀(𝑓 (x𝑖cf) < 𝜃) (16)

where 𝑁cf is the number of counterfactuals, 𝑓 (⋅) is the model, 𝜃 is the classification threshold, and 𝕀(⋅) is
the indicator function.
Sparsity quantifies the average fraction of sensors modified per counterfactual:

Sparsity = 1
𝑁cf

𝑁cf

∑
𝑖=1

1
𝑁

𝑁
∑
𝑗=1

𝕀(|𝛿 𝑖𝑗 | > 𝜖) (17)

where 𝑁 is the number of sensors, 𝛿 𝑖𝑗 is the perturbation for sensor 𝑗 in counterfactual 𝑖, and 𝜖 is a
minimal change threshold.
Proximity measures the average magnitude of perturbations:

Proximity = 1
𝑁cf

𝑁cf

∑
𝑖=1

‖𝛿𝑖‖ (18)

where 𝛿𝑖 represents the perturbation vector for counterfactual 𝑖.
Higher validity indicates more effective counterfactuals, while lower sparsity and proximity reflect

better explainability through minimal, localized changes.

4.1.4. Implementation Details

We implement the proposed approach using PyTorch and PyTorch Geometric. The model is trained
with Adam optimizer with learning rate 1 × 10−3 and (𝛽1, 𝛽2) = (0.9, 0.99) for 50 epochs. We include
early stopping with a patience of 10 epochs. The embedding dimension for the sensors is 128 for WADI
dataset, and 64 for SWaT dataset. Training is performed on a single Tesla T4 GPU with 16 GB memory.
For the node extraction module, we set 𝑘1 = 2 and 𝑘2 = 1. The perturbation is computed using gradient
descent with a learning rate of 0.001 and a maximum of 100 iterations, with Adam optimizer. 𝜆 for the
objective function is 0.1 for SWaT dataset and 0.001 for WADI dataset.

4.2. Benchmark Comparison

In this section, we conduct two benchmark comparisons. The first benchmark is to compare the
anomaly detection performance of the proposed GNN-based model with the other baseline models.
This benchmarking acts a sanity check for anomaly detection. The second benchmark is to compare
the generated counterfactual explanations with the baseline models.

Anomaly Detection Performance As a sanity check for GNN model, we compare the performance
of anomaly detection for the proposed GNN-based model and the other baseline models on the two
datasets. The results are shown in Table 2.

On the WADI dataset, GDN achieves the highest F1, precision and PRC-AUC, while FuSAGNet leads
in ROC-AUC. VAE achieves the best recall. These results suggest that GNN-based models offer more
balanced performance.

On the SWaT dataset, GDN consistently outperforms others across nearly all metrics. PCA achieves
the highest precision but with lower recall, indicating a stricter anomaly boundary that may misclassify
normal instances.



Table 2
Anomaly detection performance of different models on the WADI and SWaT datasets. The best results are
highlighted in bold. Higher values are better.

Dataset Model F1 Precision Recall ROC-AUC PRC-AUC

WADI

KNN 0.5295 0.7824 0.4002 0.7685 0.4829
IForest 0.2984 0.3010 0.2959 0.7375 0.2104
OCSVM 0.5109 0.6772 0.4102 0.7872 0.4897

AutoEncoder 0.5434 0.8124 0.4082 0.7775 0.4928
PCA 0.5159 0.7036 0.4072 0.7449 0.4685
VAE 0.3652 0.2614 0.6058 0.7962 0.4753

FuSAGNet 0.4697 0.5195 0.4273 0.8109 0.4884
GDN 0.5646 0.8263 0.4293 0.8051 0.5089

SWaT

KNN 0.7423 0.9826 0.5965 0.8058 0.7007
IForest 0.7075 0.9237 0.5733 0.8213 0.6155
OCSVM 0.7503 0.9922 0.6032 0.8178 0.7148

AutoEncoder 0.7411 0.9864 0.5936 0.8101 0.6959
PCA 0.7404 0.9939 0.5899 0.8151 0.7044
VAE 0.7378 0.9899 0.5881 0.8063 0.6960

FuSAGNet 0.7799 0.9847 0.6455 0.8676 0.7607
GDN 0.8152 0.9403 0.7209 0.8917 0.7988

Explanation Performance We compare the performance of counterfactual explanations across
different models. In addition to our proposed method, we apply the two-stage approach using FuSAG-
Net. For baseline models without graph structures, we skip the node extraction step and apply the
counterfactual method directly. We also evaluate a reconstruction-based counterfactual approach on
both GDN and FuSAGNet. Results are shown in Table 3. Note that KNN and IForest are excluded, as
their non-differentiable nature prevents gradient-based counterfactual generation.

On the WADI dataset, the proposed approach achieves a validity score of 0.5718, which is not
significantly higher than other models, but still acceptable. Notably, it outperforms others in sparsity
and proximity, indicating that the generated counterfactuals are both sparse and close to the original
instances. In contrast, baseline models show poor performance, with a sparsity score of 1.0000 and much
higher proximity values. While FuSAGNet with node extraction achieves a higher validity score, its
sparsity and proximity do not improve significantly. These suggest that generating valid counterfactuals
is more easy, but needs more adjustment to the original signal. We also find that the node extraction
step is not effective for FuSAGNet, as the validity score is the same as the model without the node
extraction step. Reconstruction-based methods perform poorly on WADI, with low validity and sparsity
fixed at 1.0000, indicating difficulty in generating meaningful and interpretable counterfactuals.

On the SWaT dataset, a similar trend emerges. The proposed approach achieves a high validity score
alongside low sparsity and proximity, indicating effective and interpretable counterfactuals. Although
baseline models and reconstruction-based methods reach perfect validity, they suffer from high sparsity
and proximity, reducing explinability. When the node extraction step is removed from the proposed
approach, validity drops and sparsity increases significantly, which highlights the step’s effectiveness.
We attribute this to the gradient-based method distributing perturbations across all sensors, leading to
less valid and less sparse counterfactuals. Interestingly, FuSAGNet performs worse with node extraction
on SWaT, dropping to a validity score of 0.1380. This may stem from its architectural constraints
enforcing sparsity in the latent space [17], which limits its adaptability in counterfactual generation.

4.3. Ablation Studies

Effect of Node Extraction Hyperparameters for Counterfactual Explanations: We investigate
the impact of hyperparameters 𝑘1 and 𝑘2, which control the number of selected sensors and their
neighbors, on the quality of counterfactual explanations using GDN on the SWaT and WADI datasets.
Results are shown in Table 4.



Table 3
Performance of counterfactual explanations for anomalous instances on the WADI and SWaT datasets. W/o Node
Extr. refers to methods without the node extraction step, whileW/ Node Extr. includes it. Reconstruction indicates
reconstruction-based counterfactual generation. Metrics include validity, sparsity, and proximity, where higher
validity and lower sparsity/proximity indicate better performance. Best results in each category are shown in
bold.

Dataset
Anomaly Detection
Model

Counterfactual
Generation Validity Sparsity Proximity

WADI

OCSVM w/o Node Extr. 0.4412 1.0000 0.2490
AutoEncoder w/o Node Extr. 0.4557 1.0000 0.1336

PCA w/o Node Extr. 0.4581 1.0000 0.0561
VAE w/o Node Extr. 0.6131 1.0000 0.0808

FuSAGNet
w/o Node Extr. 0.6714 0.0140 0.0075
Reconstruction 0.0892 1.0000 0.5617
w/ Node Extr. 0.6714 0.0138 0.0075

GDN
w/o Node Extr. 0.5148 0.1551 0.2837
Reconstruction 0.0023 1.0000 0.4868
w/ Node Extr. 0.5718 0.0091 0.0124

SWaT

OCSVM w/o Node Extr. 1.0000 1.0000 0.1132
AutoEncoder w/o Node Extr. 1.0000 1.0000 0.1002

PCA w/o Node Extr. 1.0000 1.0000 0.1680
VAE w/o Node Extr. 0.9997 1.0000 0.2386

FuSAGNet
w/o Node Extr. 0.9980 0.1517 0.0571
Reconstruction 0.1330 1.0000 0.3188
w/ Node Extr. 0.1380 0.0552 0.0157

GDN
w/o Node Extr. 0.9010 0.7714 0.0324
Reconstruction 1.0000 1.0000 0.3218
w/ Node Extr. 0.9740 0.0547 0.0141

Table 4
Performance of generated counterfactual explanations with different hyperparameters for GDN on the SWaT
and WADI datasets. 𝑘1 and 𝑘2 are the number of selected sensors and the number of neighbors for each selected
sensor, respectively. Higher validity and lower sparsity and proximity scores are better.

Dataset 𝑘1 𝑘2 Validity Sparsity Proximity

SWaT

1 0 0.4160 0.0200 0.0067
1 1 0.9640 0.0351 0.0113
2 0 0.9680 0.0361 0.0116
2 1 0.9740 0.0547 0.0141
3 0 0.9570 0.0548 0.0161
5 0 0.9430 0.0798 0.0206

WADI

1 0 0.4123 0.0064 0.0094
1 1 0.4123 0.0066 0.0096
2 0 0.5763 0.0089 0.0121
2 1 0.5718 0.0091 0.0124
3 0 0.5900 0.0096 0.0128
5 0 0.5900 0.0109 0.0139

As 𝑘1 and 𝑘2 increase, the validity score generally improves, indicating that more valid counterfactuals
can be generated, with more features to perturb. However, this trend plateaus when the sum 𝑘1 + 𝑘2
exceeds 2, suggesting only a small number of informative sensors and their immediate neighborhood
are sufficient for effective explanation. Meanwhile, both sparsity and proximity scores increase with 𝑘1
and 𝑘2, reflecting reduced explainability due to more widespread perturbations.

On the SWaT dataset, the best configuration is 𝑘1 = 2, 𝑘2 = 1, achieving the highest validity of 0.9740
while maintaining relatively low sparsity and proximity. Notably, this configuration outperforms than
the one with 𝑘1 = 3 and 𝑘2 = 0, despite both involving three total nodes. This indicates that leveraging



the graph structure to incorporate neighbors provides more targeted and efficient perturbations than
selecting more sensors independently, which highlights the benefit of graph-based relational modeling
in counterfactual generation. In contrast, too few sensors (e.g., 𝑘1 = 1, 𝑘2 = 0) result in poor validity
(0.4160), while too many (𝑘1 = 5) can dilute the perturbation effect, lowering validity to 0.9430. A
similar pattern is observed on WADI, where the best validity (0.5900) occurs at 𝑘1 = 3, 𝑘2 = 0, though
the overall scores are lower, which is likely due to WADI’s higher dimensionality and complexity.

Overall, the number of selected sensors should be large enough to ensure generation of valid coun-
terfactuals, but small enough to maintain explainability. Validity gains plateau after a certain point,
suggesting a trade-off between completeness and sparsity.

4.4. Visual Analysis Experiments

We show one illustrative example of the generated counterfactual explanations for the detected anoma-
lies. This example is selected from the SWaT dataset, which contains a detected anomaly with a label of
9. The original instance and the generated counterfactual instance are shown in Figure 3.

0 2 4 6 8
Time

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Am
pl

itu
de

Anomaly 9
FIT-401
P-501
Altered FIT-401
Altered P-501

Figure 3: An example of the detected anomaly and the generated counterfactual instance on SWaT dataset.
The original signals are shown in solid lines, and the generated counterfactual signals are shown in dashed lines.
Only two altered sensors are shown in the figure.

This anomaly example is due to a attack on the sensor FIT-401, which is a flow transmitter sensor.
The attack manually set the sensor value to 0, which makes actuator P-501 turns off (from 2 to 1 in
value). The original instance is shown in solid lines, and both sensors are in the status of turning off.
Our node extraction module selects the most important sensors, i.e., FIT-401 and P-501. The generated
counterfactual instance is shown in dashed lines, where the sensor FIT-401 is set to a higher value,
and the actuator P-501 is set to a higher value. We can see that there are correlations between the two
sensors, which indicates that they are related and can influence each other’s behavior. This aligns with
the physical setting of the system, as FIT-401 is the upstream sensor of P-501, and the value of FIT-401
has direct influence on the value of P-501. The generated counterfactual instance is valid, as it is close
to the original instance and can be interpreted as a valid counterfactual explanation.



5. Discussion

Our experimental results confirm that the proposed two-stage counterfactual framework provides
concise, actionable explanations that improve trust and troubleshooting efficiency for system operators.
In this section we discuss two main insights.

Effectiveness of graph‐aware counterfactuals: Across both datasets, validity increases sharply
once the explanation can perturb at most three sensors, i.e. the 𝑘1+𝑘2 = 3 setting, where 𝑘1 > 0, and
𝑘2 > 0 and 𝑘2 > 0, denote that neighbors of the selected features are utilised. This shows that usually
only a few, closely linked variables drive each anomaly. When we choose some of those sensors using
the graph of how they connect (i.e. increasing 𝑘2), the resulting counterfactuals are more valid than if
we just picked the sensors with the highest anomaly scores. This backs up our idea that knowing the
system’s structure is crucial for clear counterfactual reasoning in highly coupled systems.

Trade-off between validity, sparsity and proximity: Letting the algorithm perturb more sensors
(higher 𝑘1 or 𝑘2) makes its explanations more often valid, but it also means bigger changes to the data,
resulting in the results become harder to read and trust. Looking at Table 4, the sweet spot seems to be
𝑘1 = 2 and 𝑘2 = 1: we still get over 97% validity on the SWaT dataset while the typical change stays
under 0.015 (in normalized units). In practice, engineers can pick these two knobs to suit their goals:
smaller values if they want to pinpoint the root cause with minimal edits, larger values if making sure
the validity is more important than keeping the edits tiny.

6. Conclusion

In this work, we introduced a novel framework to generate counterfactual explanations tailored for
graph neural network-based model. Our approach leverages the representational power of GNNs to
model complex inter-sensor relationships in our two-stage explanation mechanism which enables
interpretable counterfactual reasoning. Extensive experiments on the SWaT and WADI benchmarks
show that our two-stage framework cuts the number of perturbed sensors to less than 6% on average,
while generating highly valid counterfactual explanation. This superior sparsity–proximity trade-off
means the counterfactuals are both concise and easier for practitioners to act upon.

Our framework contributes tomore transparent and trustworthymachine learning solutions for safety-
critical domains by bridging the gap between black-box anomaly detection using GNNs and explainable
AI. Future work may explore weighted similarity-based relationships in graphs, the integration of
domain constraints, real-time explanation generation, and multi-criteria optimization.
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