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Abstract
This paper argues that a techno-philosophical reading of the EU AI Act can offer fresh insight into the
long-term dynamics of  data within  AI  systems—specifically,  how the  lifecycle from data ingestion  to
model deployment generates  recursive value chains that challenge existing regulatory frameworks for
Responsible AI. We introduce a new conceptual tool to critically frame the AI pipeline, from data, training
regimes, deep learning architectures, feature stores, and transfer learning processes. Drawing on cross-
disciplinary  methods,  we  develop  a  technically  grounded  and  philosophically  coherent  analysis  of
regulatory blind spots. Our central claim is that what remains absent from contemporary AI policymaking
is an account of the dynamic of becoming that underpins both the technical operation and economic logic
of  AI  systems.  To  address  this,  we  advance  a  formal  reading  of  AI  inspired  by  Gilbert  Simondon’s
philosophy of technology, reworking his concept of  individuation—a processual, non-static ontology—to
model AI’s developmental lifecycle. We distinguish three phases: i. the pre-individual milieu, where data,
architectures,  and parameters  exist  as  latent  potentials;  ii.  the  process of individuation,  where  model
coherence emerges through training, tuning, and integration; and iii. the  individuated AI, which retains
residual pre-individuality—ongoing capacities  for adaptation,  retraining,  and cross-domain transfer.  To
translate these ideas into more applied terms, we introduce the concept of  futurity: the self-reinforcing
lifecycle of AI, in which increased data availability enhances model performance, deepens personalisation,
and enables new domains of  application.  Futurity highlights  the  recursively generative,  non-rivalrous
nature of data in deep learning systems, underpinned by infrastructures like feature stores that enable
real-time  feedback,  adaptation,  and  temporal  recursion.  Our  intervention  foregrounds  the  escalating
power  asymmetries  at  this  critical  juncture  in  history,  particularly  the  tech  oligarchy  whose
infrastructures of data capture, model training, and deployment concentrate value and decision-making
power. We argue that the challenge of AI misalignment must be understood in light of these recursive
value chains, and that effective regulation must account for the infrastructural and temporal dynamics of
AI becoming. Our paper makes a number of regulatory proposals, including Lifecycle-based audit regimes,
Temporal  traceability,  Feedback  accountability,  Recursion  transparency,  and  the  Right  to  Contest
Recursive Reuse, measures that seek to reassert agency over futurity.
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1. Introduction

This paper argues that a techno-philosophical reading of the EU AI Act can offer fresh insight into
the  long-term  dynamics  of  data  within  AI  systems—specifically,  how  the  lifecycle  from  data
ingestion to model deployment generates recursive value chains that challenge existing regulatory
frameworks for Responsible AI. We introduce new conceptual tools to critically frame technical
objects in the AI pipeline, from data, training regimes, deep learning architectures, and transfer
learning processes. Drawing on cross-disciplinary methods, we develop a technically grounded and
theoretically sophisticated analysis of regulatory blind spots. 

Our  central  claim  is  that  what  remains  absent  from  contemporary  AI  policymaking  is  an
account of the dynamic of becoming that underpins both the technical operation and economic logic
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of AI systems. To address this, we advance a formal reading of AI inspired by Gilbert Simondon’s
philosophy  of  technology,  reworking  his  concept  of  individuation—a  processual,  non-static
ontology—to model AI’s developmental lifecycle. We distinguish three phases: i. the pre-individual
milieu,  where  data,  architectures,  and  parameters  exist  as  latent  potentials;  ii.  the  process  of
individuation, where model coherence emerges through training, tuning, and integration; and iii.
the  individuated  AI,  which retains residual  pre-individuality—ongoing capacities  for  adaptation,
retraining, and cross-domain transfer. We theorise the dynamic becoming of AI by introducing the
complimentary concept of technicity which designates an excess or potential for new functionality
present in all technical objects.  

We apply this techno-philosophical framework to a concrete system, i.e., the Google AI stack, to
trace the becoming of AI across seven interconnected stages—from data generation and capture to
personalised inference and recursive feedback. At each stage, we examine both technical operations
and their philosophical implications. We argue that data in this context is not a passive input but
part of a dynamic, self-reinforcing system—a recursive infrastructure made possible by the non-
rivalrous nature of data and its excludability within Google’s proprietary pipeline. It is through this
recursive architecture that we introduce the concept of futurity. Futurity describes how past user
interactions  and  present  system  behaviours  are  recursively  leveraged  to  refine  predictions,
personalise outputs, and extend model capabilities into new domains. It foregrounds the techno-
economic logic underpinning AI: the continuous generation of value through temporally structured
feedback loops. By mapping how Google’s AI stack enacts this logic, we show how the temporal
logic  of  futurity becomes  material—operationalised  not  as  an  abstract  potential  but  as  an
infrastructural condition of AI development and deployment.

We  conclude  by  demonstrating  how  a  techno-philosophical  perspective—grounded  in  the
concepts  of  individuation,  technicity,  and  futurity—can  generate  new  insights  for  regulatory
design, particularly in relation to the EU AI Act. Specifically, we identify three interrelated blind
spots. First, the Act does not adequately address the temporal infrastructures that drive ongoing
and long-term model transformation; it regulates static systems rather than recursive ones. Second,
while  lifecycle  obligations  are  acknowledged  for  high-risk  systems,  the  Act  lacks  a  robust
framework for evolutionary governance—mechanisms that can track and audit  systems as they
adapt, personalise, and reconfigure post-deployment. Third, and most critically, the Act is silent on
the political economy of value extraction: it offers no tools to address the structural asymmetries
through which large platforms accumulate predictive capital by enclosing user interaction within
closed-loop infrastructures. Our intervention foregrounds these escalating asymmetries—not as a
failure of technical alignment, but as a consequence of the recursive, infrastructural dynamics of AI
becoming. We argue that effective AI governance must move beyond static compliance and risk
categorisation  toward  a  temporal,  infrastructural  mode  of  regulation—one  that  can  track  how
systems evolve, who benefits from their transformations, and how value is redistributed across
time.

2. A Techno-Philosophical Reading of AI

Our  conceptual  reframing  of  current  regulatory  initiatives  comes  from a  techno-philosophical
reading of  AI  inspired by the work of  Gilbert  Simondon (1924-1989).  Simondon was a  French
philosopher of technology concerned with understanding the nature of technical objects and their
role in human life. Instead of succumbing to technophobic or technophilic views of technology,
Simondon grounded his theorisation in a rigorous study of the technical functioning and evolution
of specific objects, from tools to industrial and information machines. Albeit marginal beyond the
French intellectual scene of his time, Simondon’s work has been the object of growing attention in
recent years among scholars aiming to theorise data and AI (Aires, 2024; Christen and Fabro, 2019;
Coté and Pybus, 2016). He authored two major interrelated concepts: the theory of individuation
put forward in  Individuation in light of notions of form and information (2020) and, the theory of



technology advanced in On the mode of existence of technical objects (2017). From these core tenets,
we draw 1) the analysis of the  process of becoming advanced in individuation theory and 2) the
privileging of technicity underpinning Simondon’s theory of technology. We posit that this techno-
philosophical  reading  of  AI  can  offer  a  novel  understanding of  Responsible  AI  and  prompt  a
reappraisal of existing regulatory approaches.

Individuation  is  the  cornerstone  of  Simondon’s  philosophy.  It  designates  the  process  of
becoming, a processual and relational ontology applicable to humans and technical objects alike
(Simondon, 2017, 2020). Why we find Simondon so apposite for rethinking AI is that he does not
limit  'individuation'  or  the  'individual'  to  humans,  but  rather  posits  becoming  across  myriad
domains, from the physical to the biological to the social, and crucially, to the technical. Here we
put forward individuation to explain the becoming of AI as it offers a processual understanding of
AI as something that undergoes continual change after model deployment, not as fixed and stable
entities. Individuation offers an innovative conceptual map of the AI lifecycle across three phases
(See Figure 1). First is the pre-individual state, in which components like data, model architecture,
training  objectives  and  parameters  exist  as  unstructured  potential.  Second  is  the  phase  of
individuation proper which operationally coheres these components through training, tuning and
system integration. Third we arrive at the individuated AI system - a functioning model embedded
in application context. Crucially, this is not the terminal stage but rather a temporary resolution.
The individuated AI system retains residual potential for further adaptation, reconfiguration, and
transfer. This ongoing capacity for transformation marks the temporal openness we refer to as
futurity, developed further in Section 3. For now, we put forward individuation as a conceptual
language for understanding AI systems not as static entities, but as evolving infrastructures shaped
by recursive feedback, temporal depth, and infrastructural becoming. 

Figure 1: The three phases of AI becoming: 1) pre-individual milieu, where technical elements
exist as potential; 2) the phase of individuation, where elements are put into relation to foster the
becoming of the AI model, i.e., the emergence of a coherent schema of functioning, individuating
model parameters through training, tuning and integration; 3) the individuated AI model emerges
as a  functional  unit  and a provisional  resolution.  Technicity -  the engine of  AI  becoming -  is
present throughout as residue of potential for the temporal adaptation, retraining, transfer and
transformation of data and model functionality.

Individuation does not ask ‘what is’, rather, ‘how it came about’, and does so in processual and
relational terms, with a focus on transformative potential. The moment there is relation there is



already a “system of individuation”, wherein the elements-in-relation resonate with each other and
trigger the individuation of the system, i.e., its differentiation or phase-shift (Simondon, 2020: 8).
For example, we can consider model training as an individuating moment wherein relationality
between a training dataset and a model architecture trigger the becoming of a functional AI model
(Aires, 2024). This transformative potential of relation that underpins individuation ensues from
the residue of potential present in all individuals and capable of triggering further individuations.
Insofar  as “individuation is  an event  and an operation within a reality  that  is  richer than the
individual  that  results  from  it”  (Simondon,  2020:  53),  it  presupposes  a  domain  rich  in  latent
potentials  which triggers individuation. Simondon calls  this the  pre-individual  reality.  The pre-
individual does not correspond to a transcendental essence of all things but rather recognises the
metastable condition of individuals, a contextual reality shared by the technical and the human. By
positing  metastability as the primary condition of individuals, Simondon criticises the view that
beings move towards stability,  towards a complete and final individual,  which the philosopher
regards  as  deprived  of  fecundity  (Simondon,  2020).  In  contrast,  the  metastable  denotes  the
provisional nature of individuals, acknowledging the potential and capacity for differentiation that
they carry, i.e., the pre-individual charge, and that can, under specific conditions, be actualised and
result in the emergence of a new structuration (e.g., the technical object).

Technicity is our other concept drawn from Simondon, which he puts forward in the theory of
technology by prioritising the  technicity of technical objects – their “mode of being” (Simondon,
2014: 82). The mode of being of technical objects is in their processual functioning, in Simondonian
terms, the evolution of technicity. This requires a close study of the schemas of technical objects
and how their functionality evolves. This examination is twofold: first zooming into the elemental
components  comprising  a  given  technical  operation,  and  second,  in  considering  how  these
elements  can  be  differently  articulated  to  concretise  novel  schemas  of  functioning (Simondon,
2017). Technicity is the motor of Simondon’s theory of technology, a quasi-genetic account of the
incorporation  and transformation  of  functionality  at  work  in  the  invention  of  novel  technical
objects: we invent by drawing on existing technical elements and combining their functionality.
For example, the ImageNet dataset has long been used to train and benchmark several state-of-the-
art models. The  technicity of the ImageNet dataset acts as part of the pre-individual reality of a
plurality of AI models. As we shall demonstrate through the concrete example of Google’s AI stack,
we can think of these existing technical elements, e.g., data, model architecture, compute, among
others, as the pre-individual milieu that will enable the concretisation of new AIs.

What  is  crucial  about  technicity  is  that  it  redirects  our  attention  to  AI  by  supplanting  an
understanding  of  technical  objects  grounded  on  uses to  focus  on  their  functionality that  can
positively contribute to ongoing and future regulatory initiatives. Technicity allows us to move
beyond the limited uses that we give to technologies at a given point in time, towards a more
perennial  understanding  of  their  schemas  of  functioning.  This  perennial  understanding  of
functionality  is  in  fact  critical  to address  the highly recursive reality  of  AI,  wherein technical
elements  have  the  potential  for  constantly  being  actualised  and  recombined  to  form  novel,
unanticipated  sociotechnical  realities  and  uses.  We  favour  this  theoretical  frame  as  it  adds  a
temporal dimension to the technical which is of utmost importance to address the long-term value
chain of AI: technicity is mutable functionality that can be transformed through technical action,
spanning the past, present and, crucially, the future.

This takes us back to individuation which can help us single out the unique challenges posed by
AI technologies.  As we will  see,  individuation emphasises  how the dynamism of  AI  becoming
energises the long-term value chain of AI, and how the technicity  qua potentiality of data and
system is constantly being reused and repurposed to form new AIs without ever being exhausted.

It  is  worth  restating  the  paramount  technical  role  of  data  for  AI,  underpinning  the  pre-
individual  reality  of  contemporary  AI  models,  which  ingest  large  amounts  of  data  to  extract
patterns of functionality. Data harbours a potentiality that stems directly from our everyday lives,
capturing micro and latent sensibilities on a vast scale, with the aim of representing, quantifying
and rendering actionable multiple domains of our lifeworld. As processes of datafication occur at



an unprecedented scale, data are not only an ever-growing asset – as primary and derived data –
but a domain of potentiality that is never exhausted in the individuation of AI, for data can be
infinitely mined (see Non-rivalry below). What follows from data, as a domain of pre-individual
potentials,  is  the capacity to foster the individuation AI  models  through training,  wherein the
recursive processing of data edifies model functioning by individuating its parameters, with the
technicity of data being ‘transferred’, recombined and transformed into model functionality. The
data  and  model  architecture  that  previously  existed  as  potential,  give  rise  to  a  new realm of
functionality that is highly generative and can itself ground a new lifecycle of repurposing, as is
the case of foundation models.

Analogously,  the  rollout  of  several  foundation  models  in  the  past  few  years,  including
generative  and  multimodal  models,  attests  to  the  fact  that  technicity  is  not  simply  given
functionality but the potential of functionality to form the basis of new AIs. The fact that the EU AI
Act risked being outdated before coming into effect,  due to foundation models challenging the
limited intended uses listed in the Act, attests to this fact. Technicity is a residue of potential ever-
present in individuated technical objects–including the data and models comprising AI–which can
always  foster  new  functionality.  Moreover,  this  becoming  is  always  contingent  on  the
particularities of that technical object,  for example,  with foundation models which can only be
known through ex-post close study. We will present this as a pivot point for the EU AI Act to shift
from a solely risk-based approach – which reduces the regulatory framework to specific use-cases
– to a processual orientation capable of tackling the technicity of AI.

From data to model functionality, the becoming of AI ultimately entails the following: 1) we
generate data, 2) data enter model architecture fostering the becoming of new AIs, 3) these models
are deployed in AI systems and fine-tuned through user interactions, 4) AI systems generate new
data  that  is  fed  back  into  life,  shaping  experiential  reality  and  action,  and  5)  models  can  be
repurposed  into  new  domains  repeating  the  cycle.  This  data-system  individuation—which  is
inherently a techno-human co-individuation—is what is at stake in the becoming of AI, not just
static technical objects. As we shall demonstrate through the case-study of Google’s AI stack, this
human-technical co-individuation entails not simply the recursive becoming of the model ‘in itself’
through user-model interaction, but underscores how technicity cuts across multiple dimensions of
life which are also economic and political in nature.

Summarising, we offer this philosophical frame to make visible the dynamic of AI becoming
underpinned by technicity in contrast to static technical objects with fixed functionality and risks.
Our techno-philosophical  model gives an innovative perspective on the broader lifecycle of AI,
framing a technically-grounded appraisal and regulatory rethink that brings into critical focus not
just  the  lack  of  accountability  but  the  alarming  escalation  of  political  and  economic  power
disparities.  Individuation  and  technicity  let  us  see  the  temporal  dimension  in  AI  and  the
accelerating power these multi-functional models afford to the tech oligarchs which possess them.

3. Case Study: the Google AI Stack as Futurity Infrastructure

Now we map the recursive lifecycle of data within the Google AI stack, building on the socio-
techno method of the SDK Data Audit (Pybus and Coté 2024, Pybus and Mir 2025, Coté and Pybus,
2021).  We illustrate how the ostensibly linear  AI pipeline constitutes  an expansive closed-loop
system of predictive generation, materialising what we term  futurity as infrastructure. Below we
trace  seven  interconnected  stages,  foregrounding  moments  of  becoming  (individuation)  and
implications for temporality,  agency and value.  Before turning to the case study, we introduce
three foundational concepts that frame our analysis: non-rivalry, excludability, and futurity.
Non-rivalry, in economic terms, denotes data’s capacity for infinite reuse without depletion. Unlike
physical goods, data can be replicated and deployed simultaneously across multiple applications,
domains, and systems while maintaining its full utility. For example, the same user interaction data



that trains a recommendation model can simultaneously refine a language model or drive real-time
moderation–all at once.

Excludability refers to the technical and legal infrastructures that restrict access and generate
enclosure. While data may be non-rivalrous, it becomes excludable through platform architectures–
such as closed APIs, proprietary SDKs, and paywalled services. This combination of infinite reuse
(non-rivalry)  and  controlled  access  (excludability)  underpins  the  political  economy  of  data
capitalism:  data  can generate  compound value  over  time,  but  only  for  those  who control  and
govern the infrastructure through which it flows.

Futurity, as developed by Coté (Forthcoming), refers to the monetisable orchestration of time in
data-driven  AI  systems.  It  captures  how these  systems transform past  interactions  and  present
behaviours into predictive outputs that preconfigure future actions. Data, in this view, is not merely
a byproduct of use, but the substrate of a generative feedback loop . Once captured and standardised–
through  infrastructures  like  feature  stores–data  is  continuously  transformed  into  model
refinements, actionable insights, and anticipatory interventions. In this loop, AI systems do not
merely respond to the world—they act on it pre-emptively, producing value by folding historical
traces into the conditions of future behaviour.

The conceptual dimensions of  futurity can be summarised as follows. First,  data as temporal
experience: data encodes lived user interactions across multiple temporal scales; models are trained
on the past to act on the present and modulate the future. Second,  recursive feedback: each user
interaction generates new data that refines future predictions, eliciting further interaction. Third,
model development:  the infrastructure of  futurity materialises in model evolution–through fine-
tuning, domain adaptation, and transfer learning. Fourth, actionable prediction: beyond forecasting,
AI  systems  generate  personalised  recommendations,  nudges,  flags,  and  decisions  that  actively
modulate  user  behaviour. Fifth,  monetisation:  these  outputs  are  economically  significant,
underpinning the platform’s business model and reinforcing data value asymmetries. Monetisation
serves as  a dynamic and dominant logic  articulating all  four  dimensions—integrating recursive
feedback,  inference  generation,  actionable  prediction,  and  continuous  model  training.  Thus,
monetisation drives recursivity within the dynamic AI lifecycle (See Figure 2).

Figure 2: The conceptual dimensions of Futurity.
 

To make this concept of futurity operational, we present a seven-stage case study of the Google
AI stack (See Figure 3). This lifecycle illustrates how user interaction becomes predictive capital



through  recursive  feedback  loops,  infrastructural  enclosure,  and  temporally  extended  model
refinement. Each stage is presented in two layers: first, a technical account of the data pipeline; and
second, a techno-philosophical reading of its systemic implications.

3.1. App to Firebase — Data Generation and Capture

Technical  Summary:  The  lifecycle  begins  with  the  user  interacting  with  a  mobile  application.
Actions  such  as  logging a  workout,  dismissing  a  notification,  or  entering  a  free-text  note  are
captured by the Firebase SDK embedded in the app. These interactions are recorded along with
device  metadata and contextual  information such as  time,  location,  or  connectivity  state.  This
event-level  data  is  stored  in  Firebase  and  becomes  the  foundational  substrate  for  downstream
machine learning processes.

Techno-Philosophical Reflection: At this stage, user interaction becomes a site of data extraction.
The user's lived experience is rendered into machine-readable form—what Simondon might call the
entry of pre-individual potential into a system of individuation. Data is not simply generated; it is
captured and formalised, signalling the initial move from embodied behaviour to infrastructural
trace. This is the moment when human action is made computationally actionable.

3.2. Firebase to BigQuery — Data Structuring and Preprocessing
Technical Summary: Raw event data from Firebase flows into two pipelines: i.  a batch path via
BigQuery for historical structuring and training, and ii. a real-time path via Pub/Sub and Dataflow
for feature transformation and contextual inference. In BigQuery, data is cleaned, standardised, and
shaped into structured tables to support model training and generalisation. In parallel, Dataflow
engineers  features  from raw event  data  and  writes  them to  the  Feature  Store  for  low-latency
inference. In addition to supporting scalable storage, access control, and compliance, these dual
paths  enable  the  system  to  meet  the  demands  of  both  retrospective  learning  and  real-time
prediction—two temporalities fundamental to AI’s recursive becoming.

Techno-Philosophical Reflection: This phase marks the transition from raw behavioural traces to
structured, repeatable, and monetisable information. The data is both non-rivalrous and excludable:
it can be reused indefinitely but remains under the platform’s control. It is here that data acquires
its infrastructural  character—no longer a single-use artifact,  but a reusable input into recursive
model  improvement.  From  a  Simondonian  perspective,  this  stage  enhances  the  pre-individual
potential of data, refining its technicity to support downstream processing. We can also discern a
temporal  orchestration  of  individuation:  the  training  pipeline  (BigQuery)  forms  generalised
structures—the ‘long memory’ of the model—while the inference pipeline (Feature Store) modulates
situated action, serving as the system’s immediate ‘intuition’.

3.3. BigQuery to TFX — Model Training and Orchestration

Technical  Summary: Structured  training  data  from  BigQuery  flows  into  TensorFlow  Extended
(TFX),  Google’s  end-to-end  machine  learning  platform.  TFX  orchestrates  the  batch  training
pipeline, including schema validation, feature transformation, and model development. A general-
purpose  model  is  trained  on  population-level  data  to  identify  broad  behavioural  patterns,
preferences, and user clusters. This training process encodes the system’s long memory, producing
functional predictive structures that can later be adapted and personalised during inference. TFX
ensures standardisation, reproducibility, and consistency across training environments.

Techno-Philosophical  Reflection: Here  individuation  occurs  through  transduction:  the  system
processes and integrates the pre-individual elements—data, model architecture, training objectives
—into  a  coherent  and  operational  model.  The  system  moves  from  potential  to  functioning
structure, forming a predictive entity capable of generalising across a population. It is no longer
data alone, but data shaped by learning objectives and model logic into a structure of becoming.



3.4. TFX to Vertex AI — Deployment and Personalisation Infrastructure

Technical  Summary: Following  training,  a  general-purpose  model  is  exported,  packaged,  and
deployed via Vertex AI, Google’s managed platform for serving and scaling AI applications. This
deployment enables  real-time inferencing and supports segmentation into behavioural  personas
derived from training on population-level patterns. The feature store—central to this deployment—
is initialised with precomputed contextual and population-level features derived during training,
setting the conditions for recursive adaptation. The feature store supports a mutable prediction
layer which dynamically combines initial features with live user inputs such as location or recent
activity—to generate tailored responses in real time.

Techno-Philosophical Reflection: At this stage, the model ceases to be merely latent potential and
becomes individuated in the Simondonian sense: it functions as a coherent, embedded technical
object within a live system. The model not only processes inputs and produces outputs, but also
sustains internal consistency and responsiveness over time. Personalisation becomes the visible
manifestation of this individuation: the system acts on users in ways shaped by both historical
population training and emergent segmentation logics. It is not a static artefact, but a modulating
situated system—operational, adaptive, and relational.

3.5. Personalised Inference — Real-Time Prediction and Granular Futurity
Technical Summary: At the moment of user interaction, the deployed model queries the feature
store to retrieve the user’s most recent contextual signals—such as history, recent actions, location,
time-of-day, or app-specific activity.  These features  are combined with the model’s  pre-trained
weights and behavioural segments to generate a low-latency, best-guess prediction tailored to the
user’s current situation. These real-time features are served through a dedicated inference pipeline
—typically using Pub/Sub and Dataflow—optimised for speed and responsiveness. The feature store
acts as the hinge between the model’s static knowledge and the user’s dynamic context, enabling
inference to be situationally aware. Crucially, this occurs  before the user acts, making inference a
predictive intervention rather than a reactive computation.

Techno-Philosophical Reflection: This is the most immediate instantiation of  futurity. Inference
becomes a site of temporal orchestration: the model mobilises the past to shape the present and
condition the future. This is not merely prediction—it is modulation. The technicity of the model
extends  into  the  user’s  world,  narrowing  their  field  of  possible  actions  through  nudges,
notifications, or recommendations. In this way, the model co-produces its own training substrate,
as the inference directly influences the user’s behaviour,  which is then recaptured as feedback.
Personalised  inference  is  not  an  endpoint;  it  is  a  hinge.  It  connects  historicised  learning with
anticipatory action, and in doing so, initiates the recursive loop that characterises AI becoming.

3.6. Adaptive Feedback Loops — Recursive Learning from User Response

Technical Summary: This occurs after the user has acted, either engaging, ignoring, or resisting the
inference. These responses are captured via Firebase and structured into new feature values—such
as recent engagement frequency, time since last interaction, or inferred user intent. These features
are then written back into the feature store, where they become immediately available for future
inferences. In this way, the system adapts to user behaviour in near real-time, refining its outputs
without the need for full model retraining. The feature store thus serves as the temporal hinge of
adaptation: personalisation deepens as the system learns not from fixed ground truths, but from
lived interaction–and renders those data points actionable for the next prediction cycle.

Techno-Philosophical Reflection: Here the recursive infrastructure of  futurity fully takes shape.
The system does not simply predict; it learns from the efficacy of its own predictions. The system
adapts  to  itself  over  time,  creating  a  loop  of  co-individuation:  the  model  evolves  as  the  user
responds  to  its  outputs,  and  the  user’s  future  experience  is  shaped  by  the  model’s  adaptive
recalibration. This is  becoming in action—a temporally extended infrastructure that folds the user



into its own developmental logic. The clear boundary between model and data dissolves; inference
becomes an engine of ongoing transformation.

3.7. Reintegration — Recursive Infrastructure and Value Accumulation

Technical Summary: The feedback data captured in Stage 6 re-enters the pipeline in two ways: as
structured features, immediately available for inference via the feature store; and as new training
material for batch-based model retraining. This closes the loop between user behaviour and model
development, enabling continuous refinement, deeper personalisation, and expansion of predictive
capacity. Over time, the system compounds value—each cycle increases its granularity and scope of
intelligibility.  This  recursive  becoming  is  embedded  within  Google’s  vertically  integrated
infrastructure:  Firebase  captures  interaction  data;  BigQuery  processes  and  structures  it;  TFX
orchestrates retraining; and Vertex AI serves updated models and supports real-time inferencing.
The system’s futurity is encoded in this stack—where past actions prefigure future outputs, and
present  behaviour  shapes  the  conditions  of  the  next  prediction.  Stage  7  thus  completes  the
temporal arc of AI individuation: not a static loop, but a recursively generative infrastructure in
continuous becoming.

Techno-Philosophical  Reflection: This final stage exemplifies the political economy of  futurity.
The system functions as a closed loop, where value is extracted from time—past behaviours become
future capital. User agency is enclosed within a recursive infrastructure in which each gesture fuels
future  prediction  and  monetisation.  Data  is  non-rivalrous—it  can  be  reused  endlessly—and
excludable—it  remains  locked  inside  proprietary  systems.  The  outcome is  a  form of  recursive
enclosure: a predictive infrastructure that grows smarter and more asymmetrical with every cycle,
where user behaviour is mined as predictive capital in perpetuity.

Figure 3: The Google AI Stack as a futurity infrastructure. The AI lifecycle begins with 1) User
data being generated and captured by Firebase. 2) Data stored in Firebase flows into two pipelines:
a batch-based training path via BigQuery and a real-time inference path via Pub/Sub and Dataflow.
3)  Structured  data from BigQuery is  used for  model  training and orchestration in  TensorFlow
Extended (TFX) while features engineered by Dataflow are written into the Feature Store for low-
latency inference. 4) The trained model is exported, packaged, and deployed via Vertex AI. 5) At
the moment of user interaction, the deployed model queries the feature store to retrieve the user’s
most recent contextual signals, generating a personalised inference before the user acts. 6) Once
the user acts,  user  responses are captured via Firebase and structured into new feature values



which become immediately available for real-time prediction via the feature store. At the same
time, user responses become new training material for model retrospective learning. 7) The closed
loop between user behaviour and model deployment enables the reintegration of data into the
Google  AI  Stack,  which  becomes  an  infrastructure  in  recursive  becoming,  with  deepening
predictive accuracy and growing economic capital.

Together, these seven stages form an infrastructure of futurity—a system capable of not only
predicting  behaviour,  but  of  recursively  shaping  it,  personalising  outputs  in  the  present,  and
learning from interactions to generate value in the future. Together, they map the individuation of
AI not as a discrete act, but as a recursive process linking data capture, model training, system
deployment, inference, and adaptive feedback into a continuous infrastructure of becoming. This
orchestration relies on two interlocking temporal  pipelines:  a  batch-based training path, which
aggregates historical data for generalisation, and a real-time inference path, in which the feature
store acts as a temporal hinge—connecting the model’s general knowledge to the user’s dynamic
context. Inference and feedback do not represent the end of AI; they form a generative loop in
which past behaviour becomes the substrate for future intervention. Through this lens, the Google
AI  stack  exemplifies  how  futurity  operates  not  as  a  future  event,  but  as  an  infrastructural
condition. Notably, this is as a closed, vertically integrated system in which user data is recursively
transformed into capital–both predictive and financial. It is within this loop that personalisation
deepens, value accumulates, and user agency is progressively directed by the logic of the model.
This infrastructure operationalises and monetises futurity.

4. Futurity Governance Mechanisms: A Techno-Philosophical 
Reading of the EU AI Act

Our techno-philosophical reading of the EU AI Act is intended not merely as critique, but as a
speculative contribution to a shared imaginary of what AI governance could look like in a post-AI
Act landscape.  Central to this reimagining is  the insight that the terrain on which AI systems
operate is dynamic, not static—that becoming and futurity are fundamental features of AI systems
and should be integrated into their regulation. We identify three major blind spots in the Act from
this perspective (See Figure 4).

Figure 4: Blind spots in the EU AI Act. 



First and fundamentally, the AI Act misses AI as being temporally recursive. The EU AI Act
treats  AI  systems  as  bounded,  classifiable  objects,  assessed  for  risk  categories  based  on  their
immediate  functionality.  But  AI  systems  today  are  temporally  recursive:  they  evolve  through
feedback  loops,  learn  from  user  interactions,  and  refine  themselves  post-deployment.  Futurity
foregrounds this reality,  framing AI  as  an infrastructure of  continuously becoming—shaped by
historical  data  and  generating  new data  to  shape  future  behaviours.  In  other  words,  the  Act
regulates outputs (risk, performance), but not the processes of becoming that recursively generate
those outputs over time. This leaves futurity as infrastructure—the temporal infrastructures that
drive long-term model transformation—in a blindspot.

Second,  a  techno-philosophical  interpretation of  the  becoming of  AI  systems brings  critical
attention to the Act’s ex ante  regulatory logic: systems are assessed before being placed on the
market. Ex ante—Latin for beforehand—is codified in Article 9 Risk management System and Article
10 Data and Data Governance, which require providers to ensure high-quality training data, design
controls,  and  conformity  assessments  prior to  deployment.  Ex  ante accountability  frameworks
assume risk can be assessed and mitigated in advance, a logic that breaks down in the face of
recursive AI systems that can adapt and evolve with every user interaction. Futurity, by contrast,
demands lifecycle-based regulation, and shifts the focus from initial model evaluation to ongoing,
post-deployment governance.1 

The precise nature of temporal governance mechanisms exceeds the scope of this paper. Yet if
regulation is to remain relevant in the face of recursive, evolving AI systems, futurity-proofing must
become a guiding principle of governance design. At minimum, this entails developing lifecycle-
based  audit  regimes that  move  beyond  static  compliance  checks  and  instead  address  the
evolutionary trajectories of AI systems.

Here we briefly outline several conceptual pillars that could guide such an approach.  Temporal
Traceability  would track how predictions and model outputs  change over  time, and what  data
transformations or interactions have shaped those changes. Feedback Accountability makes visible
how  user  interactions—clicks,  dismissals,  completions—feed  back  into  model  updates  or
personalisation  strategies,  asking  who  is  being  predicted  from,  and  who  benefits  from  those
predictions? Recursion Transparency identifies which inputs (users, datasets, sources) contribute to
which model outputs, at what stages of training or inference. This would enable users, auditors,
and regulators to trace how past data  re-enters the system. Finally, there is the  Right to Contest
Recursive Reuse which would afford individuals the ability to challenge or opt out of  recursive
data  reuse—that  is,  the  use  of  their  behavioural  data  to  continuously  refine,  personalise,  or
monetise AI outputs, often without their knowledge or consent. This would shift regulation from
simply protecting users from harm, to reasserting agency over futurity—to recognise data not
only as personal, but as temporal, infrastructural, and political.

Finally, there is the giant blindspot to the asymmetries of value capture, that is, whereas the Act
seeks  to  mitigate  harm,  it  does  not  challenge  how  AI  systems  extract  value  from  time, how
predictive infrastructures enclose user agency and distribute benefits unevenly. As we illustrated in
our  case  study,  the  Google  AI  Stack  can  also  be  considered  a  platform  of  extractive  value
generation,  wherein  every  user  interaction  becomes  a  training  substrate  for  increasingly
personalised, commercialised prediction. Yet this infrastructural dynamic remains wholly outside
the current scope of AI regulation.

1 We are aware that the EU AI Act foresees the existence of a “post-market monitoring system” to be implemented by
providers of high-risk AI systems, as per Article 72 (Regulation 2024/1689). Although the European Commission is due to
provide a template for this purpose in 2026, we are worried that the emphasis on  ex ante conformity assessment may
result in monitoring systems becoming a box-ticking exercise with limited regulatory oversight. Moreover, the dismissal
of recursive learning as a requirement for a new conformity assessment (Article 43), except in the event of “substantial
modification”, may hinder the fundamental aspect of lifecycle-based evaluation and governance (ibid).



5. Conclusion

We conclude not in despair at the hundreds of billions funnelled into the hands of tech oligarchs
via these self-reinforcing systems. Instead, we offer a few speculative but actionable proposals to
reorient the flow of AI futurity toward public value. First, we propose temporal value disclosure—a
regulatory  mechanism requiring  providers  to report  how much of  their  model  performance is
attributable to post-deployment user data, and to quantify the extent to which real-time feedback
loops contribute to ongoing system optimisation. This would foreground the temporality of value
generation  that  currently  escapes  visibility  in  regulatory  reporting.  Second,  we  call  for
infrastructure transparency requirements that would mandate clear reporting on data flows, from
user  input  to  model  output,  and  provide  visibility  into  access  and  control  over  key  pipeline
components such as Firebase, BigQuery, TFX, and Vertex AI. While proprietary claims may remain,
such reporting would at least enable auditing bodies and civil society actors to observe how these
systems operate recursively and at scale. Third, we propose the introduction of an AI windfall tax,
which could support a public Futurity Value Redistribution Fund. This fund would be dedicated to
strengthening public-sector AI capacity or building a federated AI Data Commons, making the
Common European Data Spaces a reality. Importantly, the legal infrastructure for such an initiative
already exists in the form of the Data Altruism provision within the Data Governance Act (Article
20). This could be leveraged to require large-scale AI providers to contribute a portion of their
derivative  embeddings,  anonymised  model  outputs,  or  synthetic  datasets—particularly  those
derived  from  public  data—back  into  commons-based  infrastructures.  Such  a  system  would  be
especially impactful in critical  domains like health,  education, and labour,  where private-sector
dominance risks eroding public knowledge and capacity.

We recognise that these proposals may sound ambitious, even utopian. But they are grounded
in  existing  systems,  conceptually  coherent  with  the  demands  of  temporally  recursive  AI
governance  and  ultimately  aligned  with  the  public  interest.  When  contrasted  with  the  de-
regulationist ideologies advanced by figures like Musk or Trump, which actively undermine the
possibility of meaningful oversight, we argue that such proposals are not only timely—they are
necessary.

6. Declaration on Generative AI

During the preparation of this work, the authors used Canva for all figures in order to: Generate
images. After using this tool, the authors reviewed and edited the content as needed and take full
responsibility for the publication’s content.
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