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Abstract

This paper argues that a techno-philosophical reading of the EU AI Act can offer fresh insight into the
long-term dynamics of data within Al systems—specifically, how the lifecycle from data ingestion to
model deployment generates recursive value chains that challenge existing regulatory frameworks for
Responsible AL We introduce a new conceptual tool to critically frame the Al pipeline, from data, training
regimes, deep learning architectures, feature stores, and transfer learning processes. Drawing on cross-
disciplinary methods, we develop a technically grounded and philosophically coherent analysis of
regulatory blind spots. Our central claim is that what remains absent from contemporary Al policymaking
is an account of the dynamic of becoming that underpins both the technical operation and economic logic
of Al systems. To address this, we advance a formal reading of Al inspired by Gilbert Simondon’s
philosophy of technology, reworking his concept of individuation—a processual, non-static ontology—to
model AT’s developmental lifecycle. We distinguish three phases: i. the pre-individual milieu, where data,
architectures, and parameters exist as latent potentials; ii. the process of individuation, where model
coherence emerges through training, tuning, and integration; and iii. the individuated Al which retains
residual pre-individuality—ongoing capacities for adaptation, retraining, and cross-domain transfer. To
translate these ideas into more applied terms, we introduce the concept of futurity: the self-reinforcing
lifecycle of Al, in which increased data availability enhances model performance, deepens personalisation,
and enables new domains of application. Futurity highlights the recursively generative, non-rivalrous
nature of data in deep learning systems, underpinned by infrastructures like feature stores that enable
real-time feedback, adaptation, and temporal recursion. Our intervention foregrounds the escalating
power asymmetries at this critical juncture in history, particularly the tech oligarchy whose
infrastructures of data capture, model training, and deployment concentrate value and decision-making
power. We argue that the challenge of Al misalignment must be understood in light of these recursive
value chains, and that effective regulation must account for the infrastructural and temporal dynamics of
Al becoming. Our paper makes a number of regulatory proposals, including Lifecycle-based audit regimes,
Temporal traceability, Feedback accountability, Recursion transparency, and the Right to Contest
Recursive Reuse, measures that seek to reassert agency over futurity.
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1. Introduction

This paper argues that a techno-philosophical reading of the EU AI Act can offer fresh insight into
the long-term dynamics of data within Al systems—specifically, how the lifecycle from data
ingestion to model deployment generates recursive value chains that challenge existing regulatory
frameworks for Responsible Al. We introduce new conceptual tools to critically frame technical
objects in the Al pipeline, from data, training regimes, deep learning architectures, and transfer
learning processes. Drawing on cross-disciplinary methods, we develop a technically grounded and

theoretically sophisticated analysis of regulatory blind spots.

Our central claim is that what remains absent from contemporary Al policymaking is an
account of the dynamic of becoming that underpins both the technical operation and economic logic
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of Al systems. To address this, we advance a formal reading of Al inspired by Gilbert Simondon’s
philosophy of technology, reworking his concept of individuation—a processual, non-static
ontology—to model Al’s developmental lifecycle. We distinguish three phases: i. the pre-individual
milieu, where data, architectures, and parameters exist as latent potentials; ii. the process of
individuation, where model coherence emerges through training, tuning, and integration; and iii.
the individuated Al, which retains residual pre-individuality—ongoing capacities for adaptation,
retraining, and cross-domain transfer. We theorise the dynamic becoming of Al by introducing the
complimentary concept of technicity which designates an excess or potential for new functionality
present in all technical objects.

We apply this techno-philosophical framework to a concrete system, i.e., the Google Al stack, to
trace the becoming of Al across seven interconnected stages—from data generation and capture to
personalised inference and recursive feedback. At each stage, we examine both technical operations
and their philosophical implications. We argue that data in this context is not a passive input but
part of a dynamic, self-reinforcing system—a recursive infrastructure made possible by the non-
rivalrous nature of data and its excludability within Google’s proprietary pipeline. It is through this
recursive architecture that we introduce the concept of futurity. Futurity describes how past user
interactions and present system behaviours are recursively leveraged to refine predictions,
personalise outputs, and extend model capabilities into new domains. It foregrounds the techno-
economic logic underpinning Al the continuous generation of value through temporally structured
feedback loops. By mapping how Google’s Al stack enacts this logic, we show how the temporal
logic of futurity becomes material—operationalised not as an abstract potential but as an
infrastructural condition of Al development and deployment.

We conclude by demonstrating how a techno-philosophical perspective—grounded in the
concepts of individuation, technicity, and futurity—can generate new insights for regulatory
design, particularly in relation to the EU AI Act. Specifically, we identify three interrelated blind
spots. First, the Act does not adequately address the temporal infrastructures that drive ongoing
and long-term model transformation; it regulates static systems rather than recursive ones. Second,
while lifecycle obligations are acknowledged for high-risk systems, the Act lacks a robust
framework for evolutionary governance—mechanisms that can track and audit systems as they
adapt, personalise, and reconfigure post-deployment. Third, and most critically, the Act is silent on
the political economy of value extraction: it offers no tools to address the structural asymmetries
through which large platforms accumulate predictive capital by enclosing user interaction within
closed-loop infrastructures. Our intervention foregrounds these escalating asymmetries—not as a
failure of technical alignment, but as a consequence of the recursive, infrastructural dynamics of Al
becoming. We argue that effective Al governance must move beyond static compliance and risk
categorisation toward a temporal, infrastructural mode of regulation—one that can track how
systems evolve, who benefits from their transformations, and how value is redistributed across
time.

2. A Techno-Philosophical Reading of Al

Our conceptual reframing of current regulatory initiatives comes from a techno-philosophical
reading of Al inspired by the work of Gilbert Simondon (1924-1989). Simondon was a French
philosopher of technology concerned with understanding the nature of technical objects and their
role in human life. Instead of succumbing to technophobic or technophilic views of technology,
Simondon grounded his theorisation in a rigorous study of the technical functioning and evolution
of specific objects, from tools to industrial and information machines. Albeit marginal beyond the
French intellectual scene of his time, Simondon’s work has been the object of growing attention in
recent years among scholars aiming to theorise data and Al (Aires, 2024; Christen and Fabro, 2019;
Coté and Pybus, 2016). He authored two major interrelated concepts: the theory of individuation
put forward in Individuation in light of notions of form and information (2020) and, the theory of



technology advanced in On the mode of existence of technical objects (2017). From these core tenets,
we draw 1) the analysis of the process of becoming advanced in individuation theory and 2) the
privileging of technicity underpinning Simondon’s theory of technology. We posit that this techno-
philosophical reading of Al can offer a novel understanding of Responsible Al and prompt a
reappraisal of existing regulatory approaches.

Individuation is the cornerstone of Simondon’s philosophy. It designates the process of
becoming, a processual and relational ontology applicable to humans and technical objects alike
(Simondon, 2017, 2020). Why we find Simondon so apposite for rethinking Al is that he does not
limit 'individuation' or the ‘individual' to humans, but rather posits becoming across myriad
domains, from the physical to the biological to the social, and crucially, to the technical. Here we
put forward individuation to explain the becoming of Al as it offers a processual understanding of
Al as something that undergoes continual change after model deployment, not as fixed and stable
entities. Individuation offers an innovative conceptual map of the Al lifecycle across three phases
(See Figure 1). First is the pre-individual state, in which components like data, model architecture,
training objectives and parameters exist as unstructured potential. Second is the phase of
individuation proper which operationally coheres these components through training, tuning and
system integration. Third we arrive at the individuated Al system - a functioning model embedded
in application context. Crucially, this is not the terminal stage but rather a temporary resolution.
The individuated Al system retains residual potential for further adaptation, reconfiguration, and
transfer. This ongoing capacity for transformation marks the temporal openness we refer to as
futurity, developed further in Section 3. For now, we put forward individuation as a conceptual
language for understanding Al systems not as static entities, but as evolving infrastructures shaped
by recursive feedback, temporal depth, and infrastructural becoming.

Phases of Al Becoming
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Figure 1: The three phases of Al becoming: 1) pre-individual milieu, where technical elements
exist as potential; 2) the phase of individuation, where elements are put into relation to foster the
becoming of the Al model, i.e., the emergence of a coherent schema of functioning, individuating
model parameters through training, tuning and integration; 3) the individuated AI model emerges
as a functional unit and a provisional resolution. Technicity - the engine of AI becoming - is
present throughout as residue of potential for the temporal adaptation, retraining, transfer and
transformation of data and model functionality.

Individuation does not ask ‘what is’, rather, ‘how it came about’, and does so in processual and
relational terms, with a focus on transformative potential. The moment there is relation there is



already a “system of individuation”, wherein the elements-in-relation resonate with each other and
trigger the individuation of the system, i.e., its differentiation or phase-shift (Simondon, 2020: 8).
For example, we can consider model training as an individuating moment wherein relationality
between a training dataset and a model architecture trigger the becoming of a functional Al model
(Aires, 2024). This transformative potential of relation that underpins individuation ensues from
the residue of potential present in all individuals and capable of triggering further individuations.
Insofar as “individuation is an event and an operation within a reality that is richer than the
individual that results from it” (Simondon, 2020: 53), it presupposes a domain rich in latent
potentials which triggers individuation. Simondon calls this the pre-individual reality. The pre-
individual does not correspond to a transcendental essence of all things but rather recognises the
metastable condition of individuals, a contextual reality shared by the technical and the human. By
positing metastability as the primary condition of individuals, Simondon criticises the view that
beings move towards stability, towards a complete and final individual, which the philosopher
regards as deprived of fecundity (Simondon, 2020). In contrast, the metastable denotes the
provisional nature of individuals, acknowledging the potential and capacity for differentiation that
they carry, i.e., the pre-individual charge, and that can, under specific conditions, be actualised and
result in the emergence of a new structuration (e.g., the technical object).

Technicity is our other concept drawn from Simondon, which he puts forward in the theory of
technology by prioritising the technicity of technical objects — their “mode of being” (Simondon,
2014: 82). The mode of being of technical objects is in their processual functioning, in Simondonian
terms, the evolution of technicity. This requires a close study of the schemas of technical objects
and how their functionality evolves. This examination is twofold: first zooming into the elemental
components comprising a given technical operation, and second, in considering how these
elements can be differently articulated to concretise novel schemas of functioning (Simondon,
2017). Technicity is the motor of Simondon’s theory of technology, a quasi-genetic account of the
incorporation and transformation of functionality at work in the invention of novel technical
objects: we invent by drawing on existing technical elements and combining their functionality.
For example, the ImageNet dataset has long been used to train and benchmark several state-of-the-
art models. The technicity of the ImageNet dataset acts as part of the pre-individual reality of a
plurality of Al models. As we shall demonstrate through the concrete example of Google’s Al stack,
we can think of these existing technical elements, e.g., data, model architecture, compute, among
others, as the pre-individual milieu that will enable the concretisation of new Als.

What is crucial about technicity is that it redirects our attention to AI by supplanting an
understanding of technical objects grounded on uses to focus on their functionality that can
positively contribute to ongoing and future regulatory initiatives. Technicity allows us to move
beyond the limited uses that we give to technologies at a given point in time, towards a more
perennial understanding of their schemas of functioning. This perennial understanding of
functionality is in fact critical to address the highly recursive reality of AI, wherein technical
elements have the potential for constantly being actualised and recombined to form novel,
unanticipated sociotechnical realities and uses. We favour this theoretical frame as it adds a
temporal dimension to the technical which is of utmost importance to address the long-term value
chain of Al: technicity is mutable functionality that can be transformed through technical action,
spanning the past, present and, crucially, the future.

This takes us back to individuation which can help us single out the unique challenges posed by
Al technologies. As we will see, individuation emphasises how the dynamism of AI becoming
energises the long-term value chain of Al, and how the technicity qua potentiality of data and
system is constantly being reused and repurposed to form new Als without ever being exhausted.

It is worth restating the paramount technical role of data for Al, underpinning the pre-
individual reality of contemporary Al models, which ingest large amounts of data to extract
patterns of functionality. Data harbours a potentiality that stems directly from our everyday lives,
capturing micro and latent sensibilities on a vast scale, with the aim of representing, quantifying
and rendering actionable multiple domains of our lifeworld. As processes of datafication occur at



an unprecedented scale, data are not only an ever-growing asset — as primary and derived data —
but a domain of potentiality that is never exhausted in the individuation of AL for data can be
infinitely mined (see Non-rivalry below). What follows from data, as a domain of pre-individual
potentials, is the capacity to foster the individuation AI models through training, wherein the
recursive processing of data edifies model functioning by individuating its parameters, with the
technicity of data being ‘transferred’, recombined and transformed into model functionality. The
data and model architecture that previously existed as potential, give rise to a new realm of
functionality that is highly generative and can itself ground a new lifecycle of repurposing, as is
the case of foundation models.

Analogously, the rollout of several foundation models in the past few years, including
generative and multimodal models, attests to the fact that technicity is not simply given
functionality but the potential of functionality to form the basis of new Als. The fact that the EU Al
Act risked being outdated before coming into effect, due to foundation models challenging the
limited intended uses listed in the Act, attests to this fact. Technicity is a residue of potential ever-
present in individuated technical objects—including the data and models comprising Al-which can
always foster new functionality. Moreover, this becoming is always contingent on the
particularities of that technical object, for example, with foundation models which can only be
known through ex-post close study. We will present this as a pivot point for the EU AI Act to shift
from a solely risk-based approach — which reduces the regulatory framework to specific use-cases
- to a processual orientation capable of tackling the technicity of Al.

From data to model functionality, the becoming of Al ultimately entails the following: 1) we
generate data, 2) data enter model architecture fostering the becoming of new Als, 3) these models
are deployed in AI systems and fine-tuned through user interactions, 4) Al systems generate new
data that is fed back into life, shaping experiential reality and action, and 5) models can be
repurposed into new domains repeating the cycle. This data-system individuation—which is
inherently a techno-human co-individuation—is what is at stake in the becoming of Al, not just
static technical objects. As we shall demonstrate through the case-study of Google’s Al stack, this
human-technical co-individuation entails not simply the recursive becoming of the model ‘in itself’
through user-model interaction, but underscores how technicity cuts across multiple dimensions of
life which are also economic and political in nature.

Summarising, we offer this philosophical frame to make visible the dynamic of Al becoming
underpinned by technicity in contrast to static technical objects with fixed functionality and risks.
Our techno-philosophical model gives an innovative perspective on the broader lifecycle of Al
framing a technically-grounded appraisal and regulatory rethink that brings into critical focus not
just the lack of accountability but the alarming escalation of political and economic power
disparities. Individuation and technicity let us see the temporal dimension in Al and the
accelerating power these multi-functional models afford to the tech oligarchs which possess them.

3. Case Study: the Google Al Stack as Futurity Infrastructure

Now we map the recursive lifecycle of data within the Google Al stack, building on the socio-
techno method of the SDK Data Audit (Pybus and Coté 2024, Pybus and Mir 2025, Coté and Pybus,
2021). We illustrate how the ostensibly linear AI pipeline constitutes an expansive closed-loop
system of predictive generation, materialising what we term futurity as infrastructure. Below we
trace seven interconnected stages, foregrounding moments of becoming (individuation) and
implications for temporality, agency and value. Before turning to the case study, we introduce
three foundational concepts that frame our analysis: non-rivalry, excludability, and futurity.

Non-rivalry, in economic terms, denotes data’s capacity for infinite reuse without depletion. Unlike
physical goods, data can be replicated and deployed simultaneously across multiple applications,
domains, and systems while maintaining its full utility. For example, the same user interaction data



that trains a recommendation model can simultaneously refine a language model or drive real-time
moderation-all at once.

Excludability refers to the technical and legal infrastructures that restrict access and generate
enclosure. While data may be non-rivalrous, it becomes excludable through platform architectures-
such as closed APIs, proprietary SDKs, and paywalled services. This combination of infinite reuse
(non-rivalry) and controlled access (excludability) underpins the political economy of data
capitalism: data can generate compound value over time, but only for those who control and
govern the infrastructure through which it flows.

Futurity, as developed by Coté (Forthcoming), refers to the monetisable orchestration of time in
data-driven Al systems. It captures how these systems transform past interactions and present
behaviours into predictive outputs that preconfigure future actions. Data, in this view, is not merely
a byproduct of use, but the substrate of a generative feedback loop. Once captured and standardised—
through infrastructures like feature stores—data is continuously transformed into model
refinements, actionable insights, and anticipatory interventions. In this loop, Al systems do not
merely respond to the world—they act on it pre-emptively, producing value by folding historical
traces into the conditions of future behaviour.

The conceptual dimensions of futurity can be summarised as follows. First, data as temporal
experience: data encodes lived user interactions across multiple temporal scales; models are trained
on the past to act on the present and modulate the future. Second, recursive feedback: each user
interaction generates new data that refines future predictions, eliciting further interaction. Third,
model development: the infrastructure of futurity materialises in model evolution-through fine-
tuning, domain adaptation, and transfer learning. Fourth, actionable prediction: beyond forecasting,
Al systems generate personalised recommendations, nudges, flags, and decisions that actively
modulate user behaviour. Fifth, monetisation: these outputs are economically significant,
underpinning the platform’s business model and reinforcing data value asymmetries. Monetisation
serves as a dynamic and dominant logic articulating all four dimensions—integrating recursive
feedback, inference generation, actionable prediction, and continuous model training. Thus,
monetisation drives recursivity within the dynamic Al lifecycle (See Figure 2).

Data as temporal
experience

Recursive
feedback

Actionable
prediction

Monetisation

Continuous model
development

Figure 2: The conceptual dimensions of Futurity.

To make this concept of futurity operational, we present a seven-stage case study of the Google
Al stack (See Figure 3). This lifecycle illustrates how user interaction becomes predictive capital



through recursive feedback loops, infrastructural enclosure, and temporally extended model
refinement. Each stage is presented in two layers: first, a technical account of the data pipeline; and
second, a techno-philosophical reading of its systemic implications.

3.1.  App to Firebase — Data Generation and Capture

Technical Summary: The lifecycle begins with the user interacting with a mobile application.
Actions such as logging a workout, dismissing a notification, or entering a free-text note are
captured by the Firebase SDK embedded in the app. These interactions are recorded along with
device metadata and contextual information such as time, location, or connectivity state. This
event-level data is stored in Firebase and becomes the foundational substrate for downstream
machine learning processes.

Techno-Philosophical Reflection: At this stage, user interaction becomes a site of data extraction.
The user's lived experience is rendered into machine-readable form—what Simondon might call the
entry of pre-individual potential into a system of individuation. Data is not simply generated; it is
captured and formalised, signalling the initial move from embodied behaviour to infrastructural
trace. This is the moment when human action is made computationally actionable.

3.2. Firebase to BigQuery — Data Structuring and Preprocessing

Technical Summary: Raw event data from Firebase flows into two pipelines: i. a batch path via
BigQuery for historical structuring and training, and ii. a real-time path via Pub/Sub and Dataflow
for feature transformation and contextual inference. In BigQuery, data is cleaned, standardised, and
shaped into structured tables to support model training and generalisation. In parallel, Dataflow
engineers features from raw event data and writes them to the Feature Store for low-latency
inference. In addition to supporting scalable storage, access control, and compliance, these dual
paths enable the system to meet the demands of both retrospective learning and real-time
prediction—two temporalities fundamental to AI’s recursive becoming.

Techno-Philosophical Reflection: This phase marks the transition from raw behavioural traces to
structured, repeatable, and monetisable information. The data is both non-rivalrous and excludable:
it can be reused indefinitely but remains under the platform’s control. It is here that data acquires
its infrastructural character—no longer a single-use artifact, but a reusable input into recursive
model improvement. From a Simondonian perspective, this stage enhances the pre-individual
potential of data, refining its technicity to support downstream processing. We can also discern a
temporal orchestration of individuation: the training pipeline (BigQuery) forms generalised
structures—the ‘long memory’ of the model—while the inference pipeline (Feature Store) modulates
situated action, serving as the system’s immediate ‘intuition’.

3.3.  BigQuery to TFX — Model Training and Orchestration

Technical Summary: Structured training data from BigQuery flows into TensorFlow Extended
(TFX), Google’s end-to-end machine learning platform. TFX orchestrates the batch training
pipeline, including schema validation, feature transformation, and model development. A general-
purpose model is trained on population-level data to identify broad behavioural patterns,
preferences, and user clusters. This training process encodes the system’s long memory, producing
functional predictive structures that can later be adapted and personalised during inference. TFX
ensures standardisation, reproducibility, and consistency across training environments.
Techno-Philosophical Reflection: Here individuation occurs through transduction: the system
processes and integrates the pre-individual elements—data, model architecture, training objectives
—into a coherent and operational model. The system moves from potential to functioning
structure, forming a predictive entity capable of generalising across a population. It is no longer
data alone, but data shaped by learning objectives and model logic into a structure of becoming.



3.4. TFXto Vertex AI — Deployment and Personalisation Infrastructure

Technical Summary: Following training, a general-purpose model is exported, packaged, and
deployed via Vertex Al, Google’s managed platform for serving and scaling Al applications. This
deployment enables real-time inferencing and supports segmentation into behavioural personas
derived from training on population-level patterns. The feature store—central to this deployment—
is initialised with precomputed contextual and population-level features derived during training,
setting the conditions for recursive adaptation. The feature store supports a mutable prediction
layer which dynamically combines initial features with live user inputs such as location or recent
activity—to generate tailored responses in real time.

Techno-Philosophical Reflection: At this stage, the model ceases to be merely latent potential and
becomes individuated in the Simondonian sense: it functions as a coherent, embedded technical
object within a live system. The model not only processes inputs and produces outputs, but also
sustains internal consistency and responsiveness over time. Personalisation becomes the visible
manifestation of this individuation: the system acts on users in ways shaped by both historical
population training and emergent segmentation logics. It is not a static artefact, but a modulating
situated system—operational, adaptive, and relational.

3.5.  Personalised Inference — Real-Time Prediction and Granular Futurity

Technical Summary: At the moment of user interaction, the deployed model queries the feature
store to retrieve the user’s most recent contextual signals—such as history, recent actions, location,
time-of-day, or app-specific activity. These features are combined with the model’s pre-trained
weights and behavioural segments to generate a low-latency, best-guess prediction tailored to the
user’s current situation. These real-time features are served through a dedicated inference pipeline
—typically using Pub/Sub and Dataflow—optimised for speed and responsiveness. The feature store
acts as the hinge between the model’s static knowledge and the user’s dynamic context, enabling
inference to be situationally aware. Crucially, this occurs before the user acts, making inference a
predictive intervention rather than a reactive computation.

Techno-Philosophical Reflection: This is the most immediate instantiation of futurity. Inference
becomes a site of temporal orchestration: the model mobilises the past to shape the present and
condition the future. This is not merely prediction—it is modulation. The technicity of the model
extends into the user’s world, narrowing their field of possible actions through nudges,
notifications, or recommendations. In this way, the model co-produces its own training substrate,
as the inference directly influences the user’s behaviour, which is then recaptured as feedback.
Personalised inference is not an endpoint; it is a hinge. It connects historicised learning with
anticipatory action, and in doing so, initiates the recursive loop that characterises Al becoming.

3.6.  Adaptive Feedback Loops — Recursive Learning from User Response

Technical Summary: This occurs after the user has acted, either engaging, ignoring, or resisting the
inference. These responses are captured via Firebase and structured into new feature values—such
as recent engagement frequency, time since last interaction, or inferred user intent. These features
are then written back into the feature store, where they become immediately available for future
inferences. In this way, the system adapts to user behaviour in near real-time, refining its outputs
without the need for full model retraining. The feature store thus serves as the temporal hinge of
adaptation: personalisation deepens as the system learns not from fixed ground truths, but from
lived interaction—and renders those data points actionable for the next prediction cycle.
Techno-Philosophical Reflection: Here the recursive infrastructure of futurity fully takes shape.
The system does not simply predict; it learns from the efficacy of its own predictions. The system
adapts to itself over time, creating a loop of co-individuation: the model evolves as the user
responds to its outputs, and the user’s future experience is shaped by the model’s adaptive
recalibration. This is becoming in action—a temporally extended infrastructure that folds the user



into its own developmental logic. The clear boundary between model and data dissolves; inference
becomes an engine of ongoing transformation.

3.7.  Reintegration — Recursive Infrastructure and Value Accumulation

Technical Summary: The feedback data captured in Stage 6 re-enters the pipeline in two ways: as
structured features, immediately available for inference via the feature store; and as new training
material for batch-based model retraining. This closes the loop between user behaviour and model
development, enabling continuous refinement, deeper personalisation, and expansion of predictive
capacity. Over time, the system compounds value—each cycle increases its granularity and scope of
intelligibility. This recursive becoming is embedded within Google’s vertically integrated
infrastructure: Firebase captures interaction data; BigQuery processes and structures it; TFX
orchestrates retraining; and Vertex Al serves updated models and supports real-time inferencing.
The system’s futurity is encoded in this stack—where past actions prefigure future outputs, and
present behaviour shapes the conditions of the next prediction. Stage 7 thus completes the
temporal arc of Al individuation: not a static loop, but a recursively generative infrastructure in
continuous becoming.

Techno-Philosophical Reflection: This final stage exemplifies the political economy of futurity.
The system functions as a closed loop, where value is extracted from time—past behaviours become
future capital. User agency is enclosed within a recursive infrastructure in which each gesture fuels
future prediction and monetisation. Data is non-rivalrous—it can be reused endlessly—and
excludable—it remains locked inside proprietary systems. The outcome is a form of recursive
enclosure: a predictive infrastructure that grows smarter and more asymmetrical with every cycle,
where user behaviour is mined as predictive capital in perpetuity.
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Figure 3: The Google Al Stack as a futurity infrastructure. The Al lifecycle begins with 1) User
data being generated and captured by Firebase. 2) Data stored in Firebase flows into two pipelines:
a batch-based training path via BigQuery and a real-time inference path via Pub/Sub and Dataflow.
3) Structured data from BigQuery is used for model training and orchestration in TensorFlow
Extended (TFX) while features engineered by Dataflow are written into the Feature Store for low-
latency inference. 4) The trained model is exported, packaged, and deployed via Vertex AL 5) At
the moment of user interaction, the deployed model queries the feature store to retrieve the user’s
most recent contextual signals, generating a personalised inference before the user acts. 6) Once
the user acts, user responses are captured via Firebase and structured into new feature values



which become immediately available for real-time prediction via the feature store. At the same
time, user responses become new training material for model retrospective learning. 7) The closed
loop between user behaviour and model deployment enables the reintegration of data into the
Google AI Stack, which becomes an infrastructure in recursive becoming, with deepening
predictive accuracy and growing economic capital.

Together, these seven stages form an infrastructure of futurity—a system capable of not only
predicting behaviour, but of recursively shaping it, personalising outputs in the present, and
learning from interactions to generate value in the future. Together, they map the individuation of
Al not as a discrete act, but as a recursive process linking data capture, model training, system
deployment, inference, and adaptive feedback into a continuous infrastructure of becoming. This
orchestration relies on two interlocking temporal pipelines: a batch-based training path, which
aggregates historical data for generalisation, and a real-time inference path, in which the feature
store acts as a temporal hinge—connecting the model’s general knowledge to the user’s dynamic
context. Inference and feedback do not represent the end of Al they form a generative loop in
which past behaviour becomes the substrate for future intervention. Through this lens, the Google
Al stack exemplifies how futurity operates not as a future event, but as an infrastructural
condition. Notably, this is as a closed, vertically integrated system in which user data is recursively
transformed into capital-both predictive and financial. It is within this loop that personalisation
deepens, value accumulates, and user agency is progressively directed by the logic of the model.
This infrastructure operationalises and monetises futurity.

4. Futurity Governance Mechanisms: A Techno-Philosophical
Reading of the EU AI Act

Our techno-philosophical reading of the EU AI Act is intended not merely as critique, but as a
speculative contribution to a shared imaginary of what Al governance could look like in a post-Al
Act landscape. Central to this reimagining is the insight that the terrain on which Al systems
operate is dynamic, not static—that becoming and futurity are fundamental features of Al systems
and should be integrated into their regulation. We identify three major blind spots in the Act from
this perspective (See Figure 4).

Blind Spots in the EU Al Act

TEMPORAL EVOLUTIONARY POLITICAL ECONOMY
INFRASTRUCTURES GOVERNANCE OF VALUE EXTRACTION
The Al Act lacks adequate The Al Act ignores
sTtI;(tei?IS Asctterrrﬁsglezlniaeesr mechanisms for tracking structural asymmetries in
than rgcursive ones and auditing system predictive and economic
’ adaptation. value generation.

Figure 4: Blind spots in the EU Al Act.



First and fundamentally, the AI Act misses Al as being temporally recursive. The EU AI Act
treats Al systems as bounded, classifiable objects, assessed for risk categories based on their
immediate functionality. But Al systems today are temporally recursive: they evolve through
feedback loops, learn from user interactions, and refine themselves post-deployment. Futurity
foregrounds this reality, framing Al as an infrastructure of continuously becoming—shaped by
historical data and generating new data to shape future behaviours. In other words, the Act
regulates outputs (risk, performance), but not the processes of becoming that recursively generate
those outputs over time. This leaves futurity as infrastructure—the temporal infrastructures that
drive long-term model transformation—in a blindspot.

Second, a techno-philosophical interpretation of the becoming of Al systems brings critical
attention to the Act’s ex ante regulatory logic: systems are assessed before being placed on the
market. Ex ante—Latin for beforehand—is codified in Article 9 Risk management System and Article
10 Data and Data Governance, which require providers to ensure high-quality training data, design
controls, and conformity assessments prior to deployment. Ex ante accountability frameworks
assume risk can be assessed and mitigated in advance, a logic that breaks down in the face of
recursive Al systems that can adapt and evolve with every user interaction. Futurity, by contrast,
demands lifecycle-based regulation, and shifts the focus from initial model evaluation to ongoing,
post-deployment governance.!

The precise nature of temporal governance mechanisms exceeds the scope of this paper. Yet if
regulation is to remain relevant in the face of recursive, evolving Al systems, futurity-proofing must
become a guiding principle of governance design. At minimum, this entails developing lifecycle-
based audit regimes that move beyond static compliance checks and instead address the
evolutionary trajectories of Al systems.

Here we briefly outline several conceptual pillars that could guide such an approach. Temporal
Traceability would track how predictions and model outputs change over time, and what data
transformations or interactions have shaped those changes. Feedback Accountability makes visible
how user interactions—clicks, dismissals, completions—feed back into model updates or
personalisation strategies, asking who is being predicted from, and who benefits from those
predictions? Recursion Transparency identifies which inputs (users, datasets, sources) contribute to
which model outputs, at what stages of training or inference. This would enable users, auditors,
and regulators to trace how past data re-enters the system. Finally, there is the Right to Contest
Recursive Reuse which would afford individuals the ability to challenge or opt out of recursive
data reuse—that is, the use of their behavioural data to continuously refine, personalise, or
monetise Al outputs, often without their knowledge or consent. This would shift regulation from
simply protecting users from harm, to reasserting agency over futurity—to recognise data not
only as personal, but as temporal, infrastructural, and political.

Finally, there is the giant blindspot to the asymmetries of value capture, that is, whereas the Act
seeks to mitigate harm, it does not challenge how Al systems extract value from time, how
predictive infrastructures enclose user agency and distribute benefits unevenly. As we illustrated in
our case study, the Google AI Stack can also be considered a platform of extractive value
generation, wherein every user interaction becomes a training substrate for increasingly
personalised, commercialised prediction. Yet this infrastructural dynamic remains wholly outside
the current scope of Al regulation.

1 We are aware that the EU AI Act foresees the existence of a “post-market monitoring system” to be implemented by
providers of high-risk Al systems, as per Article 72 (Regulation 2024/1689). Although the European Commission is due to
provide a template for this purpose in 2026, we are worried that the emphasis on ex ante conformity assessment may
result in monitoring systems becoming a box-ticking exercise with limited regulatory oversight. Moreover, the dismissal
of recursive learning as a requirement for a new conformity assessment (Article 43), except in the event of “substantial
modification”, may hinder the fundamental aspect of lifecycle-based evaluation and governance (ibid).



5. Conclusion

We conclude not in despair at the hundreds of billions funnelled into the hands of tech oligarchs
via these self-reinforcing systems. Instead, we offer a few speculative but actionable proposals to
reorient the flow of Al futurity toward public value. First, we propose temporal value disclosure—a
regulatory mechanism requiring providers to report how much of their model performance is
attributable to post-deployment user data, and to quantify the extent to which real-time feedback
loops contribute to ongoing system optimisation. This would foreground the temporality of value
generation that currently escapes visibility in regulatory reporting. Second, we call for
infrastructure transparency requirements that would mandate clear reporting on data flows, from
user input to model output, and provide visibility into access and control over key pipeline
components such as Firebase, BigQuery, TFX, and Vertex Al. While proprietary claims may remain,
such reporting would at least enable auditing bodies and civil society actors to observe how these
systems operate recursively and at scale. Third, we propose the introduction of an Al windfall tax,
which could support a public Futurity Value Redistribution Fund. This fund would be dedicated to
strengthening public-sector Al capacity or building a federated Al Data Commons, making the
Common European Data Spaces a reality. Importantly, the legal infrastructure for such an initiative
already exists in the form of the Data Altruism provision within the Data Governance Act (Article
20). This could be leveraged to require large-scale Al providers to contribute a portion of their
derivative embeddings, anonymised model outputs, or synthetic datasets—particularly those
derived from public data—back into commons-based infrastructures. Such a system would be
especially impactful in critical domains like health, education, and labour, where private-sector
dominance risks eroding public knowledge and capacity.

We recognise that these proposals may sound ambitious, even utopian. But they are grounded
in existing systems, conceptually coherent with the demands of temporally recursive Al
governance and ultimately aligned with the public interest. When contrasted with the de-
regulationist ideologies advanced by figures like Musk or Trump, which actively undermine the
possibility of meaningful oversight, we argue that such proposals are not only timely—they are
necessary.

6. Declaration on Generative Al

During the preparation of this work, the authors used Canva for all figures in order to: Generate
images. After using this tool, the authors reviewed and edited the content as needed and take full
responsibility for the publication’s content.
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