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Abstract
Large language models (LLMs) are a powerful tool in the field of machine learning specifically and artificial
intelligence broadly. These LLMs are prone to making a variety of hallucinations and mistakes in reasoning in
specific. This paper shows that improving the ability to generate propositional logic proofs in specific does not
lead to greater performance on reasoning tasks in general. This is done by evaluating models fine-tuned on a
synthetically generated proof by contradiction dataset on a variety of reasoning based benchmarks.
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1. Introduction

The capacity to use and apply logic has been an important task in artificial intelligence broadly. Recent
work in machine learning broadly and using large language models in specific is concerned with
improving reasoning performance. Large Language Models (LLMs) are a powerful tool in artificial
intelligence but these generate text that is prone to a variety of mistakes and hallucinations in general
but exhibit mistakes when it comes to reasoning in specific [1] [2]. Increasing the trustworthiness of
these models is a meaningful goal. To evaluate this, a number of problems can be imagined as reasoning
problems in a variety of types of logic. One of the simplest of these types of logic would be propositional
logic where knowledge is encoded as sets of statements combined together with logical connectives [3].
One can evaluate more sophisticated logics such as first-order logic [4] or train a LLM for mathematical
tasks including higher order logics [5]. One issue with these LLM approaches is that they can create
false or hallucinated results.

Automated theorem provers are powerful tools to algorithmically produce step by step proofs that
are able to be validated. These automated reasoners generate proofs are used as a sort of correct
computational reasoning to show that some set of axioms deductively entail some set of conclusions.
These automated theorem provers can be used to algorithmically create large amounts of synthetic data
that a LLM can learn from and can be tailored to focus in on the types of logic that may be of interest.
In this paper the sort of logic used is propositional, and an automated theorem prover can be used to
produce valid proofs that a LLM can learn from.

2. Related Works

The large language models have been used for generating proofs before. Either in the production of
proof steps [6] or to generate whole proofs generation in higher order logic [7]. Proof assistants such
as Isabelle [8] for higher order logic were used to improve LLM performance on proof tasks like in
[7]. Further work has built on using automated theorem provers to assist in proof generation through
the use of tools which can do parts of the proof outside of the LLM [9]. Work has also been done in
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identifying reasoning errors and consistent mistakes in LLMs such as issues with in context learning
[2].

3. Methodology

Training a large language model from start to finish is a computationally expensive and lengthy process
[10]. Instead it is efficient to take an already existing foundational model and adjust this model to
perform well on a specialized task through fine-tuning. The approach taken here is to test if training a
specialized model on a propositional logic proof generation extends to better performance on a wider
variety of reasoning tasks. To achieve this a set of propositional logic statements were generated, then
input into an automated theorem prover which generated proofs, these proofs were then converted
into natural language, and these natural language statements were used to fine-tune a pretrained large
language model. The now fine-tuned large language model was evaluated on a number of benchmark
reasoning tasks and these benchmarks were then compared to the performance of the pre-fine-tuned
equivalent model.

3.1. Propositional Dataset Generation

Synthetically generating a large number of propositional logic statements was done algorithmically.
The dataset was generated using a normal grammar in conjunctive normal form (CNF). Proposi-
tional logic statements can be expressed as combinations of conjunctions, where the conjunctions
are combinations of conjunctions ’and’ed with disjunctions, and disjunctions are the combination
of disjunctions ’or’ed with literals [11]. Here the dataset was generated with four literals and their
negations 𝑎, 𝑏, 𝑐, 𝑑, ¬𝑎, ¬𝑏, ¬𝑐, ¬𝑑. These literals were then combined together to form disjunctions such
as 𝑎∨𝑏, and these disjunctions were combined together to form conjunctions such as (𝑎∨𝑏)∧𝑐. This set of
CNF statements were then treated first as a list of axioms and then as a separate list of conjectures. Each
axiom in the list of axioms was then paired with each conjecture (where the axiom and the conjecture
were not the same statement) in the Thousand Problems for Theorem Provers (TPTP) syntax [12]. Then
the list of combined axiom and conjecture was shuffled. This follows a similar pattern to previous work
where a synthetically generated dataset was used to train a classifier to differentiate between logic
statements whose proofs were found or if there was no proof that was detected [13].

An individual combination of axiom and conjecture were then input into the automated theorem
prover E which produced a proof showing if the axioms entailed the conjecture [14]. This process of
feeding input into the automated theorem prover continued until a number, here 10,000, suitable proofs
were produced. Each of these saved proofs showed that the conjecture was entailed by the axiom and
would be used for fine-tuning while the results which showed there was no entailment were not used.

The E theorem prover utilized proof by contradiction solve to produce the proofs which were used to
create the synthetic dataset here. This process begins by asserting the negation of the conclusion and
attempting to derive a contradiction. If the negation of the conclusion entails a contradiction then the
original conclusion is entailed. The E theorem prover created these proofs algorithmically and reports
them instruction by instruction. These results were then converted into a natural language equivalent.

3.2. Natural Language Equivalents

Obtaining the natural language equivalence of the dataset was also done algorithmically. It does so
by analyzing each problem’s structure of various components like axioms, conjectures, refutation
steps, inferences, and its label. Each component has their own sub-components acting as describable
attributes. They are essential for the automated theorem prover E to algorithmically solve given
problems. However, some were not necessary in obtaining the natural language equivalence of the
results. Instead, core components were obtained that were used to achieve the result. As an example,
a problem containing the axiom (𝑏) ∧ (¬𝑏 ∨ ¬𝑐) with conjecture (¬𝑎 ∨ 𝑏) ∧ (𝑏 ∨ 𝑐) consists of multiple
refutation steps which could consist of a single inference or nested inferences. Its first refutation step



Figure 1: Natural Language Equivalence of Raw Dataset

would have two inferences where the first is to perform an operation of assuming the negation of the
conjecture. Then, the second inference would be to simplify it. This produced the sub-result ¬((¬a ∨b)
∧(b ∨c)) which the second refutation step takes in. This operation continues until the last refutation step
is reached. Throughout the entire process, the algorithm checks for particular key words that indicates
what operations were performed on each step and the derived sub-results and final result. For each
check that is made, a natural language equivalent is created and stored.

3.3. Large Language Model Fine Tuning

The seven billion parameter version Qwen2 for instruction behavior was chosen as the starting point
for fine-tuning. Quen2 is a set of foundational models where the most complex version with 72 billion
parameters performs well on multiple varieties of tasks [15]. Qwen2 was specifically chosen for this
purpose due to its open source nature and themultiple versions with differing parameter sizes. Hardware
and computational limitations prevented the inclusion of larger models. However, should performance
improve on the smaller models that would give evidence that further performance gains may be available
on larger instances of those same models.

Low-Rank Adaptation (LORA) of large language models is a technique for training models in such
a way that it decreases the number of trainable parameters through reparameterization [16]. This
allows larger models to be effectively trained on reduced hardware and is a type of parameter-efficient
fine-tuning [17]. LORA was used here to efficiently fine-tune Quen2-7B-Instruct on the dataset of proofs
converted to natural language. These were done using the Transformers library [18] and LLAMA-
Factory [19]. The model was trained for 3 epoch with a learning rate of 1.0𝑒 − 4, a batch size of 1, and
using PyTorch’s ADAMW optimizer [20] with 𝛽 = (0.9, 0.999) and 𝜖 = 1𝑒 − 08. When all was complete
these models were considered fine-tuned and suitable for evaluation on the chosen benchmark tasks.

4. Evaluation Benchmarks

The performance of these fine-tuned models is compared against the performance of the unspecialized
language models on which they are based. Reasoning can be construed broadly from the more direct
logic proof generation this paper used for training to things such as mathematical reasoning, mechanical
reasoning, and spacial reasoning among many others. To illustrate this broad perspective this paper’s
benchmarks were chosen to model a wide variety of reasoning tasks. These were the Grade School
Math 8K (GSM8K) [21], Massive Multitask Language Understanding-Redux (MMLU-Redux) [22], Code
Reasoning, Understanding, and eXecution Evaluation (CRUXEval) [23], and ZebraLogic [24] benchmark
tasks. ZeroEval [25] was used as the framework for evaluating the various models performance on
these tasks. Two variations of the Qwen2 model were chosen to evaluate the performance of this
paper’s approach; both are instruct versions which are designed to follow prompted instructions. The
smaller version is Qwen2 1.5B-Instruct which has roughly 1.5 billion parameters and the larger version



is Qwen2 7B-Instruct which has roughly 7 billion parameters. These were chosen due to hardware
constraints and are suitable for fine-tuning. This approach can scale to different language models or
larger models with more parameters without major alteration.

4.1. Grade School Math 8K

GSM8K is a collection ofmathematical reasoning problems designed to be solvablewith simple arithmetic
operations. Each problem takes two to eight steps to solve and are designed not to follow a template for
problem construction [21]. These problems also require an understanding of words and their meanings
which differ from the purely symbolic fine-tuning data that was used for this paper’s methodology.

4.2. Massive Multitask Language Understanding-Redux

MMLU-Redux is a curated subset of MMLU [26] which is large dataset of questions that span a variety
of topics. MMLU-Redux includes 5,700 manually re-annotated problems which span 57 topic areas
including logical fallacies, formal logic, economics, history, and medicine [22]. This benchmark requires
the language model to internalize a large amount of background information while also including many
problems which require formal reasoning skills.

4.3. Code Reasoning, Understanding, and eXecution Evaluation

CRUXEval is a benchmark dataset made up of 800 Python functions and input-output pairs [23]. Each
problem can either specify an input and the function and request the language model to produce the
correct output or request the language model to produce what input would produce the specified output
from the function. Answering these questions indicates how the language model understands and
reasons about programming constructs and the logic necessary to evaluate provided functions.

4.4. ZebraLogic

Zebra Logic is benchmark made up of Constraint satisfaction problems [24]. The language model is
provided a set of houses and a set of owners. The model is also given some constraints about which
house has what items, which people own which items, and some information relating one item to
another house. The final goal being the matching of each house to each owner. These problems require
the language model to identify a complex relationship of facts, a large number of constraints, and apply
some logic to find the solution.

5. Results

Overall using synthetically generated proofs by contradiction does not improve model performance.
To some degree the specialization can decrease performance for smaller models without substantially
improving performance for larger models. For each case the number of non-answers is the number of
questions that did not include sufficient information to check if an answer is correct or not divided by
the total number of questions. The accuracy of each example is the total number of correctly answered
questions divided by the total number of overall questions. In the case of GSM8K the base models
outperformed this paper’s fine-tuned models either by 1.97 for the larger models or a difference as great
as 20.92 for the smaller models as seen in Table 1.

The number of No Answers is similar when comparing both versions of models. For the MMLU-
Redux problems the fine-tuned model again underperformed the base models with a slight difference of
only 0.54 for the larger models as seen in Table2. The number of No Answers is similarly close. As
for CRUXEval task the results are similar with only a difference of 1 between the two larger models
accuracy as seen in Table3. ZebraLogic also has a similar result where the base model outperforms the
fine-tuned model by the small amount of 1.3 as seen in Table4.



Table 1
Grade School Math 8K

Model Accuracy No Answer Total Problems

Qwen2 7B-Instruct 80.06 0 1319
Qwen2 7B Proposition FT 78.09 0.08 1319

Qwen2 1.5B-Instruct 43.29 4.78 1319
Qwen2 1.5B Proposition FT 22.37 4.25 1319

Table 2
Massive Multitask Language Understanding-Redux

Model Accuracy No Answer Total Problems

Qwen2 7B-Instruct 67.53 0.72 2778
Qwen2 7B Proposition FT 66.99 1.04 2778

Qwen2 1.5B-Instruct 41.11 7.74 2778
Qwen2 1.5B Proposition FT 38.52 13.32 2778

Table 3
Code Reasoning, Understanding, and eXecution Evaluation

Model Accuracy No Answer Total Problems

Qwen2 7B-Instruct 37.88 0.12 800
Qwen2 7B Proposition FT 36.88 0.38 800

Qwen2 1.5B-Instruct 9.88 0.62 800
Qwen2 1.5B Proposition FT 11.25 3.62 800

Table 4
Zebra Grid Evaluation

Model Accuracy Small Puzzles Medium Puzzles No Answer Total Problems

Qwen2 7B-Instruct 8.4 26.25 0 24.4 1000
Qwen2 7B Proposition FT 7.1 21.88 0.36 20.7 1000

Qwen2 1.5B-Instruct 2.8 8.75 0 16.1 1000
Qwen2 1.5B Proposition FT 1.4 4.38 0 18.9 1000

6. Conclusion

Learning propositional logic proofs based on contradiction does not sufficiently translate to overall
reasoning skills. This is not an entirely unexpected result as many of the benchmark tasks require
the use of first order logic which is a more sophisticated than the propositional logic used to train the
fine-tuned models here.

Declaration on Generative AI

The core methodology of this research involved the use of Qwen for fine tuning and answering
reasoning based question benchmarks, as described in the paper. No generative AI tools were
employed for the writing or editing of this manuscript beyond the research itself. The author takes full
responsibility for the publication’s content.
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A. Training Data Example

Problem: (𝑏) ∧ (¬𝑏 ∨ ¬𝑐) ⊨ (¬𝑎 ∨ 𝑏) ∧ (𝑏 ∨ 𝑐)

System Message: You are Qwen, created by Alibaba Cloud. You are a helpful assistant.
Input: Given axiom axio(b)( b| c), can you prove the conjecture conj( a|b)(b|c)?
Output: step 1) Begin by assuming the negation of the conjecture which is simplified to ¬(((¬a|b)∧(b|c))).
\nstep 2) Converting the result of step 1 to negated normal form Converting the result of step 1 to
negated normal form which is distributed to (((¬b|a)∧(¬c|a))∧((¬b|¬b)∧(¬c|¬b))). \nstep 3) Applying
simplification to the result of step 2 provides us with (b∧(¬b|¬c)). \step 4) Using split conjunction on to
the result of step 3 produces (¬b|¬b). \nstep 5) Applying negated normal form to the result of step 4
renders (b∧(¬b|¬c)). \step 6) Now we apply clause normalization to step 5 results in (¬b). \nstep 7)
Using split conjunction on to the result of step 6 produces (b). \nstep 8) Given step 6 produced (¬b) and
step 7 (b), we have derived a contradiction.
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