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Abstract

This short paper aims to establish how to apply the ’AI system’ definition provided in the AI Act’s Article 3(1) and
further clarified in the dedicated European Commission’s Guidelines in practice. Thanks to an interdisciplinary
collaboration between legal scholars and bioengineers, we identify alignments and discrepancies between the legal
definitions and the actual use of the same terms in the engineering community. We hence define a commented
comparative interdisciplinary thesaurus of key terms. We further discuss the implications that terminological
and interpretative issues may have on legal certainty and the compliance activities of developers of Al systems.
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1. Introduction

The EU Regulation 2024/1689 on Artificial Intelligence (hereinafter: Al Act) constitutes a landmark
legislation worldwide for the governance of Al Although it aims to bring legal certainty to the develop-
ment and use of Al systems in all contexts of human life, its approval has raised interpretative issues
regarding the qualification of automated systems as Al systems within the meaning of this European
regulation. Even though the AI Act does not apply to ‘Al systems or Al models, including their output,
specifically developed and put into service for the sole purpose of scientific research and development’
(Article 2(6)), many Al projects envision the real-world use and/or the commercialization of their results:
bioengineering and biomedical research projects, for instance, almost always intend to have a concrete
impact outside of research laboratories. Al developers and deployers thus need to understand whether
and how the provisions of the Al Act apply to the systems they create or use. For example, in the case
of a high-risk system, specific requirements (e.g., in terms of system design and documentation) need
to be considered and implemented early on, since ignoring them would jeopardize later deployment
opportunities [1].

This short paper illustrates the preliminary results that have emerged from an interdisciplinary
collaboration between a team of legal scholars and a team of bioengineering researchers of the BRIEF
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project.! who design robotic prostheses. This use case is of particular interest as it constitutes an
advanced medical device designed to replace a missing limb and restore motor functions through the
integration of mechanical components and intelligent control systems [2] (see Sec. 2). First, we critically
examine the notion of Al system” provided in the AI Act in Article 3(1) and further clarified in Recital
12. This is key, because understanding if a robotic prosthesis qualifies as an Al system as defined in the
AT Act determines whether its developers and deployers should respect the applicable obligations and
requirements, depending on its level of risk. The cited Recital 12 states that “[t]he notion of ‘Al system’
in this Regulation should be clearly defined and should be closely aligned with the work of international
organizations working on Al to ensure legal certainty, facilitate international convergence and wide
acceptance, while providing the flexibility to accommodate the rapid technological developments in
this field” With the intent to offer valuable elements for the interpretation of such crucial definition,
in February 2025 the Al Office of the EU Commission published the Guidelines on the definition of an
artificial intelligence system established by Regulation (EU) 2024/1689 (AI Act) [3].

The guidelines were first analyzed by the legal experts of the team who formulated interpretative
hypotheses. Such hypotheses were then confirmed or reviewed by the bioengineers during iterative
workshops in March - April 2025 (ca. 10 hours) to identify potential discrepancies in the use of
terminology by the AI Office compared to the practices of the engineering community. Together, we
determined the notions that are critical to determine the inclusion or exclusion of the robotic prosthesis
within the boundaries of the Al system definition and sought to clarify them, by engaging in critical
discussions across disciplinary domains. This short article presents the preliminary findings of such a
fruitful collaboration in the form of a commented comparative vocabulary of the terminology used in
the AT Act and in the EC’s guidelines with technical handbook definitions, as summarized in Table 1.
As a result, we argue that, even though some explanations of the guidelines may ease the application of
the regulation, the use of certain terms complicates it further, thereby exacerbating legal uncertainty.

2. The use case: robotic prosthesis

In the framework of the BRIEF project, we considered as a use case scenario the robotic prostheses
developed by the Sant’Anna School of Advanced Studies, i.e., a robotic knee [4] and a robotic ankle
[5]. Each prosthesis contains an electric motor, batteries, and sensors to monitor the state of the
device and the motion of the user’s residual limb. Powered prostheses typically rely on a three-layered
control architecture designed to mimic the coordinated movement of a biological limb. These control
architectures are structured into multiple levels, each with a specific role in transforming user intent
into mechanical actions. This hierarchical framework allows the prosthesis to interpret the user’s needs,
generate appropriate motor commands, and execute movements in real time [6]. In this specific use
case, the low-level layer is a proportional-integrative-derivative (PID) controller that directly adjusts
the motor’s current based on the error between the measured and desired output torque of the device.
The middle-layer computes in real-time the torque command required to modulate the impedance of
the robotic joints, using a data-driven model trained offline from healthy people’s data. The high-level
layer identifies the specific locomotion task and sends relevant information to the middle layer. At the
current stage of development, task selection is performed manually by a human operator, but future
developments aim to automate this process.

3. When is an Al system...an Al system?

3.1. On the definition of Al system

An ‘Al system’ is defined as a“‘machine-based system that is designed to operate with varying levels
of autonomy and that may exhibit adaptiveness after deployment, and that, for explicit or implicit
objectives, infers, from the input it receives, how to generate outputs such as predictions, contents,
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recommendations, or decisions that can influence physical or virtual environments” (Article 3(1)). Not
all of these elements are required to be present continuously throughout the product life cycle. They
may be present during the pre-deployment (or building) phase but be absent in the post-deployment (or
use) phase, or vice versa [3].

Following the guidelines, we do not doubt that the robotic prosthesis is a machine-based system (i.e.,
Al systems “‘are developed with and run on machines” p. 2) that has objectives (i.e., it has goals for the
tasks it needs to perform) and that influences a physical environment (i.e., it “‘actively impact[s] the
environments in which [it is] deployed” p. 11-12). In the following, we analyze the other elements of
the definition.

3.2. “Varying levels of autonomy”

Autonomy refers to the ability of Al systems to “have some degree of independence of actions from
human involvement and of capabilities to operate without human intervention” (Recital 12). The
guidelines further explain that human involvement can be either direct (e.g., manual control) or indirect
(e.g., automated system-based control), and that a system is autonomous when it is “‘designed to operate
with some reasonable degree of independence” (p. 3), without specifying what would amount to such a
reasonable level. Lastly, the guidelines state that “independence of action” refers to the system’s capacity
to generate an output “‘on its own”, without manual control or an explicit and exact specification by a
human being.

Robotic lower limb prostheses exhibit a certain level of autonomy, which is consistent with the
definition. However, the notion of autonomy is context-dependent. From the users’ perspective, the
system remains inherently dependent on their movement: the prosthesis generally does not initiate
motion independently but reacts to the user’s residual limb activity and intent. From the engineer’s
standpoint, manual intervention may be required at the high-level control, such as when selecting a
specific locomotion mode. Once this task is set, however, the prosthesis can execute low- and middle-
level control commands autonomously, without requiring further human input. Thus, each component
of an Al system may be characterized by a different level of autonomy. Nevertheless, these factors must
all be considered when determining whether an Al system is autonomous.

3.3. “May exhibit adaptiveness”

Following Recital 12 of the AI Act, the guidelines clarify that adaptiveness “‘refers to self-learning
capabilities, allowing the system to change while in use” [3, p. 4]. Further, they mention that adaptiveness
may only pertain to the pre-deployment phase and is facultative in the post-deployment phase. We
question whether adaptiveness always implies self-learning capabilities, even though the guidelines in
the following paragraph mention them disjunctively: “the term ‘may’ [...] indicates that a system may,
but does not necessarily have to, possess adaptiveness or self-learning capabilities after deployment”
(p.4) [emphasis added].

The concept of adaptiveness in powered prostheses is often used broadly and there is no universally
accepted definition. In general terms, a system is considered adaptive if it can modify its behavior
in response to changes in the user or environment [7]. However, adaptiveness does not necessarily
imply self-learning. For example, after deployment, the high-level controller may recognize the current
locomotion task (e.g., level walking, stair ascent) and send this information to the middle-level controller.
In turn, the middle-level controller adjusts its parameters, such as switching to a different set of control
parameters that correspond to the identified task. In this case, the system adapts its behavior but does
not generate new knowledge, nor does it update its internal models based on new data. Thus, it is
adaptive, but it is not self-learning. Real self-learning systems, on the contrary, continuously update or
refine their models based on real-time feedback or user-specific performance, even after deployment
[8]. Therefore, while all self-learning systems are adaptive, not all adaptive systems are self-learning.



3.4. “Infers, from the input it receives, how to generate outputs”

Recital 12 specifies that Al systems should be distinguished from “simpler traditional software systems
or programming approaches and should not cover systems that are based on the rules defined solely by
natural persons to automatically execute operations.” Leaving aside the fact that the terms “‘simpler”
and ““traditional” are not unequivocally codified in this context, defining what falls and what does not
fall under this definition of inference is critical: the definition risks being over-comprehensive, since
most, if not all, control algorithms are based on inferences.

3.4.1. Rule-based systems

First, a clear dividing line is the contrast between Al systems and rule-based systems. The guidelines
state that their definition does not contradict the ISO/IEC 22989’s [9] definition of inference: “‘reasoning
by which conclusions are derived from known premises” such as “‘a fact, a rule, a model, a feature or
raw data”. We posit that the AI Office intended to specify that the Al Act’s definition does not exclude
rules in the context of known premises, but systems that operate solely based on expert-defined rules
(i.e., rule-based) are. Hence, an algorithm that detects when the prosthesis is in contact with the ground
based on a signal above a user-set threshold would be considered rule-based and would not fall under
the AI Act’s definition.

3.4.2. Inference: obtaining outputs + deriving models or algorithms from inputs or data
The guidelines further explain that the ability to infer refers to:

1. “the process of obtaining the outputs” (Recital 12), which corresponds to the ability “to generate
outputs based on inputs” [3, p. 5], which, according to the Al Office, is mainly tied to the use
phase; and

2. the “capability of Al systems to derive models or algorithms, or both, from inputs or data’ (Recital
12), which “underlines the relevance of the techniques used for building a system” [3, p. 5] and
refers primarily to the building phase.

These two points underscore the difference between the use phase and the building phase. In the first
case, the intention may be to emphasize the otherness of Al systems that can generate outputs from
unknown data or new situations during deployment, unlike rule-based systems. In the second case, the
explicit reference to models or algorithms suggests a focus on the learning or training phase before
deployment, rather than inference. An example is the offline training of a classifier to discriminate
different locomotion tasks using a prerecorded dataset from multiple subjects.

3.4.3. Al techniques: machine-learning approaches and logic- and knowledge-based
approaches

Infer how to generate output The guidelines also emphasize the use of “how” in the expression
“infer [...] how to generate output”, specifying that it goes beyond “a narrow understanding of the
concept of inference as an ability of a system to derive outputs from given inputs, and thus infer the
result” which should be interpreted as referring to the “‘building phase, whereby a system derives
outputs through Al techniques enabling inferencing” [3, p. 5]. In other words, a key characteristic of
an Al system is that it does not merely generate outputs, but it also “‘understands” how to generate
outputs. However, this only occurs in the pre-deployment phase.

Machine learning and logic- and knowledge-based approaches Recital 12 mentioned two
categories of Al techniques that are employed in the building phase:

1. “machine learning approaches that learn from data how to achieve certain objectives, and
2. logic- and knowledge-based approaches that infer from encoded knowledge or symbolic repre-
sentation of the task to be solved”



Machine learning approaches encompass “‘a large variety of approaches enabling a system to ‘learn’,
such as supervised learning, unsupervised learning, self-supervised learning and reinforcement learning”
[3, p-6]. The focus of these approaches is on the system’s ability to learn which is arguably in contrast
with logic- and knowledge-based approaches that ““[i]nstead of learning from data, [...] learn from
knowledge including rules, facts and relationships encoded by human experts” [3, p.7]. Based on such
knowledge, Al systems reason rather than learn “via deductive or inductive engines or using operations
such as sorting, searching, matching, chaining” and include “knowledge representation, inductive
(logic) programming, knowledge bases, inference and deductive engines, (symbolic) reasoning, expert
systems and search and optimisation methods” [3, p.7].

Learning and reasoning The definition of Al techniques that infer outputs from inputs seems thus
very inclusive of a variety of approaches that either learn or reason. This distinction echoes a key
difference between data and knowledge: data refer to raw measurements or observations (e.g., sensor
readings), whereas knowledge consists of structured, interpretable information derived from or imposed
on data, often in the form of symbolic representations or semantic rules. Rather than learning through
exposure to data, these systems operate through reasoning, applying predefined knowledge to novel
situations [10]. For instance, in the control of powered prostheses, a knowledge-based system might
rely on explicit rules such as “if this, then that” encoded by an expert. These systems interpret data
acquired by the data sensor according to pre-encoded logic, without generalizing from new data. In
contrast, a machine learning system learns to recognize gait phases or classify locomotion tasks by
analyzing large volumes of recorded data. Although this creates a clear methodological distinction, the
boundary is increasingly blurred in practice: emerging hybrid systems combine symbolic reasoning
with data-driven learning (e.g., using ML to learn gait patterns while applying rule-based logic to ensure
safety or interpretability), leveraging the strengths of both paradigms in assistive and rehabilitation
technologies [11].

3.4.4. Systems that fall outside the scope of Al system definition

Owing to the explicit mention in Recital 12 that the Al system definition does not cover “‘simpler
traditional software systems or programming approaches and [...] systems that are based on the rules
defined solely by natural persons to automatically execute operations”, the guidelines mention four
exceptions of systems that “have the capacity to infer in a narrow manner but may nevertheless fall
outside of the scope of the Al system definition because of their limited capacity to analyse patterns
and adjust autonomously their output” (p. 8). The distinctive ability to adjust the output autonomously
appears to refer to the self-learning capacity outlined in Section 3.3. This capacity arguably relates
more to machine learning approaches than to logic- and knowledge-based ones.

No. 1: optimization. The first exception concerns those systems that are used to “‘improve mathemat-
ical optimisation or to accelerate and approximate traditional, well-established optimisation methods,
such as linear or logistic regression methods” [3, p.8]. Optimization-based systems determine the best-
fitting relationship between input variables and outcomes by optimizing a defined objective function.
Although these methods are often associated with machine learning, they are rooted in classical statisti-
cal modeling and are based on deterministic optimization rather than on learning from data[12]. In our
view, this description does not raise any interpretative issue: when systems only perform optimization,
they are excluded from the AI Act.

No. 2: basic data processing. The second case refers to “‘basic data processing systems” that follow
“predefined, explicit instructions or operations” [3, p.9]. This means systems that “execute tasks based
on manual inputs or rules, without any ‘learning, reasoning or modelling’ at any stage of the system
lifecycle” (p. 9). The Al Office further clarifies that this category of systems operates “‘based on fixed
human-programmed rules, without using Al techniques [...] to generate outputs” (p. 9), which appears
to be tautological, since it states that the definition of Al systems excludes those systems that do not use



Al techniques. The expression “basic data processing systems” is not commonly employed in computer
science and engineering practice. Still, it likely refers to operations of importing, exporting, extracting,
filtering and reviewing data [13]. The examples provided in the guidelines, indeed, refer to database
management systems that sort or filter data (e.g., MongoDB, MySQL, etc), standard spreadsheet software
applications (E.g., Excel), software that performs descriptive analysis, hypothesis testing (e.g., R, Stata,
etc), and visualization. Even though the notion of “basic data processing systems” is broad and not
standardized, we believe that the examples reasonably clarify the scope of application of this exception.

No. 3: classical heuristics. According to the guidelines, the definition further excludes systems based
on classical heuristics, characterized as “‘problem-solving techniques that rely on experience-based
methods to find approximate solutions efficiently” (p. 9). Classical heuristics can be seen as a subset of
inference techniques. Whereas the latter encompasses a broad range of reasoning methods, including
those that evolve or adapt over time, classical heuristics are typically more rigid and do not adapt or
learn from new data (as indeed mentioned in the guidelines), unlike modern inference techniques [14].
Therefore, classical heuristics can be considered a limited, rule-based form of inference and “typically
involve rule-based approaches, pattern recognition, or trial-and-error strategies rather than data-driven
learning” [3, p.9]. There seems to be an ontological discrepancy between these examples, though,
because pattern recognition (which uses statistical methods to discern regularities and structures in
the data, identifying recurring themes or trends) can be part of classical heuristics, but can also be a
data-driven process, especially in modern machine learning systems. In contrast, classical heuristics
may employ simpler, experience-based methods to recognize patterns without relying on data learning
[15]. Thus, including pattern recognition as a typical example of classical heuristics may be confusing.

No. 4: simple prediction systems. Finally, “‘simple prediction systems [...] whose performance can
be achieved via a basic statistical learning rule, while technically may be classified as relying on machine
learning approaches fall outside the scope of the Al system definition, due to [their] performance”
[3, p-10]. This definition is quite cryptical, since the meaning of “‘performance”, which is essential in
the distinction, is not illustrated. The term could refer to either the outcome (e.g., accuracy) or the
behavior of the system. However, no benchmark or threshold is provided to support this distinction. For
example, in the case of the high-level control layer of robotic prostheses, which classifies locomotion
tasks, “‘performance” may be interpreted as classification accuracy. However, without a reference point,
this criterion is potentially arbitrary and lacks objectivity.

Lastly, it is possible to recover a standard definition of “statistical learning” (i.e., a set of methods and
tools designed to understand complex data by extracting patterns and making predictions [16]) but
not of “basic statistical learning”. Similarly, the notion of “‘simple prediction systems”, as opposed to,
presumably, complex prediction systems is not straightforward either.

4. Discussion

4.1. Terminological and interpretative issues arising from the interdisciplinary
analysis

Even though certain constitutive elements of the definition of Al system, as expressed in Article 3(1)
and Recital 12, are clarified in the Guidelines (e.g., the exclusion of rule-based systems, of optimiza-
tion techniques, etc), several issues of semantics and interpretation have emerged from our analysis
(summarized in Table 1 in the Appendix):

1. The definition of autonomy that refers to independence of action looks rather vague and does not
provide for the different components of an Al system that may have varying levels of autonomy,
also depending on whether the perspective of the developer or the user is favored



2. whereas the guidelines suggest a complete overlap between the two categories, self-learning
systems are only a subset of adaptive systems (plus, this ability pertains to the building phase
rather than the use phase)

3. Even though the guidelines mention a clear-cut distinction, the difference between machine
learning and logic- and knowledge-based approaches is often blurred in practice

4. The use of terms such as ‘learning’ or ‘training’ would be more appropriate than ‘inference’ in
the machine learning domain

5. Pattern recognition is often based on data-driven learning; thus, it is confusing to mention it as a
typical example of rule-based system as an alternative to it

6. The term “performance” of the system is not defined, even though it is key to understanding the
scope of the exemption, and may refer either to the outcome or the behavior of the system

7. Several terms (“simple(r)”, “basic”, “traditional”) that are confidently used in the guidelines do not
have a standard meaning in the engineering and computer science communities. Thus, it may be
challenging to understand what they refer to.

As in other interdisciplinary regulatory areas (e.g., data protection), there is a need to agree on a
consistent set of terms that describe Al systems, Al techniques, their legal and technical requirements,
and so on. Such an agreed-upon vocabulary should become a shared language among various domain
experts, facilitating communication and discussion of knowledge across disciplinary boundaries, regard-
less of the specific context in which Al systems are developed or used. We therefore call for clarification
of the terms employed in the guidelines. As recalled in Recital 12, without a reliable vocabulary that can
be used unequivocally and safely across communities, there may be risks to legal certainty that could
hamper scientific research and technological development. The comparative vocabulary presented in
these pages aims to constitute a first step towards creating a shared, interdisciplinary vocabulary that
reliably drives compliance and achieves harmonization.

4.2. From definition to exceptions or from exceptions to definition?

From an operational point of view, our team has discussed at length whether it is more meaningful
to determine if the prosthesis falls under the definition of Al system (i.e., the general rule) and then
understand if it coincides with one of the exceptions listed in Section 3.4.4 or, rather, if we should
immediately determine whether it falls under one of the exceptions, which would have the benefit of
rapidly ruling out the applicability of the AI Act.

We lean towards the first method because the guidelines define what is not considered an Al system
under the AT Act. This is conceptually different from affirming that a machine-based system is not an
Al system. We believe that there is a high probability that an automated system may be considered an
Al system in the meaning of the Al Act, since the seven conditions do not need to be present in both
the pre-deployment and post-deployment phases. Further, from a logical point of view, exceptions are
elements that belong to a certain category, but due to specific (policy) reasons, they are not included in
the general rule. Regardless of whether a system is considered an Al system in the technical community,
the policy definition is the relevant factor in this analysis.

4.3. Relevance of this work

As soft law instruments, the guidelines of the Al office should inform compliance activities, by providing
reliable criteria that various stakeholders can use to evaluate Al systems and take appropriate actions to
address the requirements (e.g., in the case of developers and deployers) or to oversee if these have been
correctly implemented (e.g., in the case of supervisory authorities). Guidelines should thus support
a responsible and accountable approach to technological innovation. However, we have shown that
finding a coherent interdisciplinary method for the interpretation of the connections between the Al
Act, the guidelines, technical terms, and concrete use-cases is challenging. In interdisciplinary domains,
to close the gap between policy terms and technical definitions, the method of interpretation should



rely on a common vocabulary, combined with an attentive analysis of the grammar and the overall
logical structure of the text.

With the answers provided here (preliminary) on what falls under the scope of the AI Act and what
does not, we aim to offer guidance to other researchers and practitioners who share similar doubts,
regardless of their use cases. Developers and engineers may find it valuable to analyze (and, if necessary,
complete or review) the definitions we have formulated and mapped to the terminology employed
in the legal sources. Legal scholars, policy-makers, and regulators may find it meaningful to build
on our interpretations to determine and solve the issues of applicability of the Al Act to real-world
machine-based systems. This is paramount due to the consequences of such a classification. If a
software is understood as an Al system and is used as a medical device, it will be classified as a high-risk
system, as set forth by Article 6(1) and Annex I (11). This means that such Al systems will not only
need to comply with the Medical Devices Regulation (EU Regulation 2017/745), but also with the many
requirements of the Al Act. However, it is currently unknown how to coordinate compliance efforts
towards both regulations without overburdening developers.

This interoperable interpretation framework for robotic prostheses should be further improved with
different, more complex use cases to achieve generalization. Our efforts are meant not only to address the
ethical-legal compliance in a given R&D life-cycle, but also to contribute to pre-standardize and develop
interoperable tools of interpretation for a fragmented, ever-evolving legal framework that governs
cutting-edge technological development. We maintain that this work is a necessary precondition to an
accountable, future-proof approach.

5. Conclusions and future work

This article describes early work of an ongoing interdisciplinary dialogue between bioengineering
researchers and legal scholars. The commented, comparative lexicon we have elaborated may evolve as
our collaboration continues, since we need to determine whether the robotic prosthesis described in
Section 2 falls within the definition of an Al system. If it does, the robotic prosthesis would be classified
as a high-risk Al system because it is a medical device. Therefore, even though it is developed within
research settings, it will need to incorporate several legal and technical requirements early on, which
will later enable it to be put on the market. We welcome constructive feedback from the readers of this
article and our colleagues at the HHAI's Workshop on Law, Society, and Artificial Intelligence to build
a reliable knowledge base of Al that spans across domains.
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A. Summary of critical interpretative issues



Art. 3(1)

Recital 12

Guidelines

Issue

“Varying levels of

“some degree of

Ability to generate an

Each component may

adaptiveness”

self-learning
capabilities”

adaptiveness, but not
necessarily, or
self-learning capabilities
after deployment”

autonomy” independence of action” | output “on its own” have its own level of
autonomy
“May exhibit adaptiveness “refers to “a system may possess Not all adaptive systems

have self-learning
abilities

“infer [...] how to
generate output”

“The techniques that
enable inference while
building an Al system
include machine
learning [...] and logic-
and knowledge-based
approaches”

ML approaches
encompass ‘‘a large
variety of approaches
enabling a system to
‘learn’ ” whereas logic-
and knowledge-based
approaches “[i]nstead of
learning from data, [...]
learn from knowledge
including rules, facts and
relationships encoded by
human experts”

Increasingly blurred
distinction between the
two approaches

“infer [...] how to
generate output”

“This capability to infer
refers to [...] a capability
of Al systems to derive
models or algorithms, or
both, from inputs or
data”

which “underlines the
relevance of the
techniques used for
building a system”

In ML it would be more
appropriate to use terms
such as learning or
training, rather than
inference.

[Al systems that do not
infer (exception no. 3)]

“simpler traditional
software systems or
programming
approaches and [...]
systems that are based
on the rules defined
solely by natural
persons”

e.g., classical heuristics
“typically involve
rule-based approaches,
pattern recognition, or
trial-and-error strategies
rather than data-driven
learning”

Pattern recognition may
also be data-driven

[Al systems that do not
infer (exception no. 4)]

see above

“simple prediction
systems [...] whose
performance can be
achieved via a basic
statistical learning rule,
[...] fall outside the
scope of the Al system
definition, due to [their]
performance”

Performance is not
defined and may
indicate either the
results or the behavior of
the system

“simpler traditional
software systems or
programming
approaches”, “‘basic data
processing systems”,
“simple prediction
systems”, “‘reasonable
degree”

These terms are not
commonly used within
the engineering /
computer science
community

Table 1

Table summarizing the terminological and interpretative issues arising from the combined analysis of article 3(1),
Recital 12, Guidelines [3] and technical definitions
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