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Abstract
In knowledge acquisition, the elicitation of probabilities is a challenging task because many domain experts
prefer to communicate probability estimates with verbal probability expressions (VPEs; e.g., “likely”) rather than
precise numerical values. Since the 1960s, many methods and approaches were introduced to operationalize
verbal probability expressions. Given the conclusion that an individual’s intended meaning of an expressed
verbal probability is at risk of being lost in means of group-based aggregations, a co-learning approach between a
human individual and an AI agent has been proposed. In this paper, we summarize methods that are capable
of contributing to the realization of such a co-learning process. The methods are translation tables, fuzzy sets,
the Sheffield Elicitation Framework (SHELF), the Rational Speech Act (RSA) model, and large language models
(LLMs).
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1. Introduction

Knowledge acquisition is one of the major challenges in the field of knowledge representation and
reasoning (KRR). There exist multiple methods and protocols for expert knowledge elicitation (EKE),
that allow to acquire knowledge from domain experts. For instance, the European Food Safety Authority
(EFSA) published a guide on EKE in 2014 [1]. Nevertheless, the problem remains far from solved [2].
One challenge is that the communication between domain expert and knowledge engineer is often
inefficient and ambiguous. After all, an expert’s opinion is just a “subjective assessment, evaluation,
impression, or estimation of the quality or quantity of something of interest that seems true, valid, or
probable to the expert’s own mind.”[3, p. 98].

To handle the inherent uncertainty and subjectivity, the elicitation of probabilities is an important
aspect of EKE. While people typically prefer to hear probabilities expressed as numbers between 0.0 and
1.0, when expressing probabilities themselves, they often prefer words (this is known as the preference
paradox [4, 5]). Words and word combinations that carry probabilistic meaning (e.g., “likely”) are
referred to as verbal probability expressions (VPEs), although many synonyms exist in literature like
probabilistic phrases, probability terms, or judgment terms. Research on VPEs can be roughly divided
into two waves [6]. Researchers of the first wave (1967 – 1996) concluded that VPEs do not translate
to fixed numerical probabilities due to a between-subject variability in most studies. An extensive
summary about this period is provided by Clark [7]. The second wave started around 2013 and is still
ongoing. An overview of relevant work is provided by Dhami and Mandel [8].

Recently, Fleiner and Vennekens [6] have proposed a co-learning approach “to efficiently and effec-
tively communicate (subjective) probabilities”, in which a personalized translation table is developed
by iterative communication between a human and an AI agent (who form a human-AI team). The
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co-learning process consists of three phases which are illustratively depicted in Figure 1. The co-learning
process and its phases are described more in detail in section 2.

With many studies indicating the high effort of eliciting probabilities from domain experts for
knowledge engineers and the existence of the preference paradox, such a co-learning approach seems
promising to increase the scalability of knowledge acquisition. However, Fleiner and Vennekens [6]
provided only a high-level description of the co-learning concept for probability elicitation and identified
two research questions which first have to be thoroughly answered before such a co-learning approach
can be realized.

In this paper, we aim to answer the first research question from Fleiner and Vennekens [6]:

Which algorithms, mechanisms, and methods are most appropriate to establish co-learning
processes for estimating uncertainty in the context of collaborative tasks in human-agent
teams?

To answer the research question, we first describe identified methods and their related work. Then,
we provide explanations in which phase each method can be applied during the co-learning process.
Additionally, we provide code examples online1. The identified methods are translation tables, fuzzy
sets, the Sheffield Elicitation Framework (SHELF), the Rational Speech Act (RSA) model, and large
language models (LLMs).

2. Co-learning approach and its phases

Figure 1: Outline of the co-learning process where a service technician analyzes a damaged smartphone with
the aid of an AI agent (example from [9]). In the first phase, human and AI agent communicate using verbal
probability expressions. In the second phase, the AI agent uses numeric estimates based on evidence. In the
third phase, human and AI agent communicate using solely numerical estimates. [6, Table 2].

The co-learning approach described by Fleiner and Vennekens [6] applies in the context of a hybrid
team. A hybrid team consists of a set of intelligent (human or software) agents who engage in joint task
performance. Each agent develops and refines “a mental model containing knowledge of other agent’s
needs, goals, values, capabilities, resources, plans, and emotions” [10] through interaction and feedback.
Van Zoelen et al. describe “co-learning” as an iterative cycle of co-adaptation and feedback [11].

The described co-learning process has as its final goal the bidirectional communication of numerical
probabilities to remove the vagueness and misinterpretations of VPEs. The co-learning process consists
of three phases, where the overall goal of the human-AI team is achieved when the team enters the
third phase. Depending on the use case, it might be impossible or not necessarily desired to enter the

1https://gitlab.com/EAVISE/CFL/synergy25_codeExamples, last accessed on May 27th, 2025
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third phase. Additionally, it is likely that a human-AI team switches between phases depending on the
context.

Phase 1 In the first phase, the team is familiarized with a selected translation table that serves as
probability reference and provides a small set of VPEs. The numerical translations are not important
in the first phase as the team solely communicates probabilities by using VPEs. The co-adaptation
consists of developing and using a VPE vocabulary that sufficiently and precisely enough describes the
relevant probability scale which depends on the use case. For instance, a quality assurance operator
who regularly tests material with a defect frequency with 0.05% will not necessarily need a vocabulary
that ranges along the entire probability scale, but may require a detailed vocabulary for distinguishing
various degrees of “unlikeliness”. Thus, an essential element of the first phase is the introduction of
new VPEs.

Phase 2 In the second phase, the AI agent starts to communicates numerical probabilities while the
human team member still relies on using VPEs. A prerequisite for the second phase is that enough
evidence has been collected to reliably map the VPEs to numerical probabilities. The required evidence
does not necessarily need to be acquired by the human-AI team itself. For instance, a newly observed
machine defect which was described using a VPE might become numerically translatable after the
machine manufacturer analyzed the issue and updated customers about the results. The phase’s co-
adaptation consists of understanding the reasoning behind production and interpretation of the VPE
vocabulary.

Phase 3 In the third phase, the human individual has gained enough experience to express probability
estimates numerically. The co-adaptation refers to the granular adjustment to make more precise
numeric estimates. While the overall goal (that both members use numeric probabilities) was already
achieved by entering the third phase, an important element of this phase is to numerically translate
already expressed estimates (using VPEs) to generate additional evidence.

3. Methods for the Co-learning Approach

3.1. Translation tables

Table 1
The EFSA scheme was inspired by the IPCC scheme and is a translation table using 9 VPEs to describe
the entire probability scale. Optionally, experts can report an “inconclusive” estimate when they are not
confident enough about a specific matter.

EFSA [12]

Probability term Subjective
probability range Additional options

Almost certain 99-100%
More likely than
not: >50%

Unable to give any probability:
range is 0-100%

Report as
’inconclusive’,
’cannot conclude’, or
’unknown’

Extremely likely 95-99%
Very likely 90-95%
Likely 66-90%
About as likely as not 33-66%
Unlikely 10-33%
Very unlikely 5-10%
Extremely unlikely 1-5%
Almost impossible 0-1%



Description and related work In general, translation tables translate VPEs to crisp probability sets or
thresholds (see Table 1). Translation tables are also known as numerically bounded linguistic probability
(NBLP) schemes [13]. Common translation tables contain less than ten VPEs. While most translation
tables aim to cover the entire probability scale (or at least between 1% and 99%), the Professional Head
of Intelligence Assessment (PHIA) Probability Yardstick intentionally contains 5% gaps to avoid the
conflation of VPEs [14]. A recent summary on translation tables was already provided by Fleiner and
Vennekens [6]. Some translation tables are accompanied by a confidence scale. However, research
indicates that non-experts and experts struggle to separate probability and confidence estimates [15].
Furthermore, translation tables are not effectively used as look-up tables and thus VPEs should be
always reported together with their numerical translation [16]. Lastly, a major concern is the lack of
empirical validation of translation tables [17].

Application in co-learning process While the application of a translation table is still controversially
discussed in the research community, translation tables represent a good initial reference within the
co-learning process. A translation table provides a distinguishable VPE set that ranges along the
entire probability scale which would be difficult (or at least strenuous) to achieve quickly for a human
individual. As we share the concern of lacking empirical evidence of applied translation tables, we
recommend to implement a mechanism to validate if individuals are really compliant with the ordinal
order of the chosen translation table.

Besides serving as initial reference, an AI agent should be capable of showing the current VPE
vocabulary as a translation table during all three phases for the human user to check. Depending on the
current phase, more or less information might be shown in the translation table. As translation tables
normally contain non-overlapping ranges for different VPEs, there might be always some information
loss involved in favor of clarity when the AI agent generates a translation table from its current model.
The limitation of crisp ranges can be addressed by fuzzy sets.

3.2. Fuzzy sets

Description and related work Instead of describing a probability by a crisp value between 0 and 1,
it is also possible to use a fuzzy set as a more imprecise but flexible representation. Fuzzy sets were
especially popular in the first VPE research wave [3, 7]. Membership functions were mostly kept
simple and were triangular or trapezoidal. For instance, Bonissone et al. [18] integrated fuzzy sets
with trapezoidal memberships functions in an expert system to handle uncertainty. They defined the
membership function 𝜇𝐿𝑖(𝑥) with 𝐿𝑖 being part of the term set 𝐿 as

𝜇𝐿𝑖(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if 𝑥 < (𝑎𝑖 − 𝛼𝑖)

(𝛼−1
𝑖 )(𝑥− 𝑎𝑖 + 𝛼𝑖) if 𝑥 ∈ [(𝑎𝑖 − 𝛼𝑖), 𝑎𝑖]

1 if 𝑥 ∈ [𝑎𝑖, 𝑏𝑖]

(𝛽−1
𝑖 )(𝑏𝑖 + 𝛽𝑖 − 𝑥) if 𝑥 ∈ [𝑏𝑖, (𝑏𝑖 + 𝛽𝑖)]

0 if 𝑥 > (𝑏𝑖 + 𝛽𝑖)

(1)

where 𝑎𝑖 and 𝑏𝑖 defined the interval where the membership function returns 1.0; 𝛼𝑖 and 𝛽𝑖 describe the
left and right width of the probability density function. Figure 2 depicts the membership functions of
the shortened EFSA scheme which were retrieved from Fleiner and Vennekens’ dataset [19].

Application in co-learning process Fuzzy sets are an easy and fast way to numerically represent
VPEs which will be relevant in the second phase of the co-learning process where evidence is used by
the AI agent to numerically translate VPEs. The primarily applied triangular or trapezoidal membership
functions, however, are inappropriate to represent multi-peaked distributions (as summarized by Clark
[7]) and are therefore not necessarily a good choice depending on the context. Nonetheless, the



parameters for a membership function are easy to elicit. For instance, a user could adjust parameters in
an interactive graph to provide feedback to the AI agent in the third phase.

Figure 2: Fuzzy sets of VPEs (Interpretation)
with cardinality of 2.0 [19]. Figure 3: Normal distributions of VPEs (Production) [19].

3.3. Sheffield Elicitation Framework

Description and related work The Sheffield Elicitation Framework (SHELF) is a collection of
methods and materials for conducting expert knowledge elicitation (EKE) since 2008. Although SHELF
materials are primarily used in workshops where a moderator supports the elicitation process of an
expert group, a subset can be also used for remote knowledge elicitation of single experts. SHELF’s
quartile method is one of EFSA’s recommended knowledge elicitation methods described as Sheffield
method [1]. A more visual approach is SHELF’s roulette method, where “experts are asked to build
histographic representations of densities that reflect their beliefs about the quantities of interest.” [20, p.
12]. The method’s name is an analogy to the casino game because the elicitors “bet” on the true value
being in a specific range by placing probability units in a column. We have transformed the production
concerned dataset of Fleiner and Vennekens [19] to make use of the quartile method and the SHELF
tool2 to derive the optimal normal distribution parameters of the shortened EFSA scheme (see Figure 3).

Application in co-learning process While the adjustment of membership function parameters
(fuzzy sets) becomes more demanding with the complexity that was chosen for the membership function,
SHELF’s roulette method can be used instantly to elicit single-peaked and multi-peaked distributions.
Together with the SHELF software tool, which outputs optimized parameters for advanced distributions
(like skewnormal or beta distributions) from elicitation results, we see SHELF as an advanced successor
to traditional fuzzy set elicitation for VPEs. That said, SHELF with its roulette method is especially
useful in the third phase of the co-learning process to derive a good VPE distribution. Additionally, the
roulette method might be also helpful in the first phase to emphasize the ordinal order of the initial
VPE set and to identify synonymous VPEs.

3.4. Rational Speech Act Model

Description and related work The Rational Speech Act (RSA) model was first introduced in 2012
[21] and is a Bayesian interpretation of the RSA theory which “predicts an interaction between (shared)
knowledge about a speaker’s knowledge state and a listener’s interpretation of his utterance” [22]. The
RSA theory is a probabilistic formalization of Grice’s pragmatics theory [23] where the assumption is
that an utterance must be informative to meet the speaker’s goal.

The RSA model considers three actors (the literal listener, the rational speaker, and the rational listener)
who reason about the state of affairs by means of a set of utterances. Applied to the Bayesian model,

2https://github.com/OakleyJ/SHELF, last accessed on May 27th, 2025.
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Hat + Glasses Glasses Neither

Figure 4: Illustrative example by Goodman and Franke [24]. The world consists of three faces which can be
described by the speaker via the utterances: "hat", "glasses", and "neither". The speaker uses the utterance "glasses"
for the listener to identify the speaker’s friend.

the internal reasoning of the literal listener (𝑃𝐿𝑖𝑡) is represented in the prior probability distribution,
the likelihood function (𝑃𝑆) depends on the rational speaker’s utility (𝑈 ), and the posterior probability
distribution (𝑃𝐿) is the consequence of the rational listener’s reasoning. We adopt the equations from
Goodman and Frank[24]:

𝑃𝐿(𝑤|𝑢) ∝ 𝑃𝑆(𝑢|𝑤)𝑃 (𝑤), (2)

𝑃𝑆(𝑢|𝑤) ∝ 𝑒𝑥𝑝 (𝛼𝑈(𝑢;𝑤)), (3)

𝑃𝑆(𝑢|𝑤) ∝ 𝑒𝑥𝑝 (𝛼𝑈(𝑢;𝑤)), (4)

𝑈(𝑢;𝑤) = 𝑙𝑜𝑔 𝑃𝐿𝑖𝑡(𝑤|𝑢), (5)

𝑃𝐿𝑖𝑡(𝑤|𝑢) ∝ 𝛿[[𝑢]](𝑤)𝑃 (𝑤) (6)

where 𝑢 is the speaker’s chosen utterance out of a set of utterances intended to describe the state of
the world 𝑤. The 𝛼 coefficient adds a simple mechanism to adjust the speaker’s (assumable) rationality,
with 𝛼 = 1 representing a purely rational speaker. 𝑃𝐿𝑖𝑡 consists of the prior probability distribution
and an indicator function that indicates whether an utterance can be used to describe a state of the
world (denoted by the Iverson bracket [[𝑢]]). In practice, the latter is represented by a truth or meaning
table.

Goodman and Frank [24] provide a short, but illustrative example where a speaker uses the utterance
“glasses” to describe his friend to the listener (see Figure 4). Although two faces can be described by
the utterance “glasses”, the listener can exclude the face with the hat and glasses, because the speaker
would have chosen the utterance “hat” to describe that face under the assumption of the speaker being
a utility-maximizing agent.

The RSA model is based on the assumption that the speaker chooses the most informative utterance.
However, this is too idealistic to reflect reality. Thus, several extended RSA models were introduced to
react to different aspects like epistemic uncertainty [24], politeness [25], or honesty [26].

Extended RSA models were also applied to formalize verbal probability elicitation and reasoning. For
instance, Herbstritt and Franke applied an extended RSA model to analyze the interpretation of simple
uncertainty expressions in situations of higher-order uncertainty[27]. In another paper, van Tiel et al.
[28] introduced an extended RSA model which was derived from an experiment using 26 VPEs.

Some issues concerning the applicability of RSA models were addressed by Degen [29]. For instance,
RSA models require both speaker and listener to know the full set of utterances as the speaker is
considered a utility-maximizing agent. As this is difficult to scale in real-world scenarios, most RSA
publications report on toy cases with single-shot utterances.

Application in co-learning process In the context of verbal probability elicitation, several extended
RSA models (e.g., [28]) have been already introduced where the models were based on data retrieved
from surveys under laboratory settings with limited external validity. Additionally research must be
conducted in the field to validate if the RSA model and its extensions are reliable and robust enough to
be applied in the context of probability elicitation with experts.

Nonetheless, we can already identify the appropriate use cases in the co-learning process where RSA
models can be applied. Even though we cannot reliably ensure that the human user will purely act as
utility-maximizing agent, we can do so for the AI agent. In the role of the rational speaker, the AI agent



can deliberately decide on the best VPE to use in situations where the numerical probability is known,
but the user prefers to hear the VPE instead. The required meaning table can be either directly acquired
from the initial translation table or by eliciting appropriate VPEs from probabilities (production). The
production elicitation must not necessarily been done by the human team member, but can be retrieved
from a group, as the meaning table is subject to be personalized in the human-AI team over time.

Another interesting possibility is to extend the RSA models of the human team member by adding
social and psychological factors to the utility function. For instance, Yoon et al. extended the RSA model
to introduce politeness as additional goal [25]. Vignero used the same approach to consider the agent’s
honesty [26]. In the context of the co-learning process, the human-AI team could better react on biases
which are dominant in probability elicitation like overconfidence which would be present and therefore
relevant in all co-learning phases.

3.5. Large Language Models (LLMs)

Description and related work Large language models show human-like language capabilities which
makes them also interesting for verbal probability elicitation. As the application of LLMs for verbal
probability elicitation is still new, we could only identify two relevant papers so far.

Tang et al. [30] recently compared the use of VPEs between modern LLMs and human subjects.
The human dataset (N=123) was retrieved from Fagen-Ulmschneider [31]. Only for 5 of the 17 VPEs,
the GPT-4 model provided similar estimates to the human dataset. The closest estimates between the
human dataset and the GPT-4 model were observed for VPEs with high probability indications like
“highly likely” and “almost certain”. Only minor differences were observed between English and Chinese
prompts for the GPT-4 model. Lastly, Tang et al. argue that advanced methods like Chain-of-Thought
could not significantly reduce the gap between human and LLM estimates. Maloney et al. [32] conducted
a coordination game where either a human participant (N=50) or the GPT-4 model had to point out
the intended meaning of a VPE. In contrast to Tang et al. [30], Maloney et al. concluded that “based
on overall performance we cannot distinguish GPT-4 and human”. Two explanations for the different
claims might be that (1) a different VPE set and (2) a different sentence set was used. While ordinary
sentences had to be completed in Tang et al.’s experiment, only the VPEs were given to the participants
in the coordination game within an investment or medical context.

Application in co-learning process As current research is still inconclusive about the qualities that
an LLM could provide in the context of verbal probability elicitation, we base the application in the
co-learning process on assumptions. A first application could be the retrieval of flexible translation
tables which cannot be achieved by the methods before. While we recommend to use an established
translation table as initial VPE set, there might be a situation where none of the translation tables
contains the desired VPE set. An LLM could be used to provide a situational appropriate VPE set with
further definitions and descriptions. Additionally, the limitation of the availability of translation tables
in different languages might be solved by the application of LLMs.

In the third phase, we have described the granular adjustments of numerical estimates to be solved by
mainly visual means. An human-AI team with an LLM-powered chatbot might use purely verbal means
instead which might be preferred by the human team member or due to the environmental constraints
(e.g., no access to a display).

4. Conclusion

Although many methods have been proposed since the 1960s, verbal probability elicitation remains a
prevailing challenge. The main reason is that the individual use of verbal probability expressions is
context-sensitive and difficult to aggregate due to a proven between-subject variability. A conceptual
co-learning approach between a human individual and an AI agent has been proposed instead where
individual translation tables between verbal probability expressions and numeric probability values



are developed. In this paper, we have provided summaries of relevant methods to communicate verbal
probability expressions and descriptions how the methods should be applied in the co-learning process.
Lastly, we provide code examples of each method online.

Resource Availability Statement: The code examples are available from GitLab at https://gitlab.
com/EAVISE/CFL/synergy25_codeExamples.

Declaration on Generative AI

The author(s) have not employed any Generative AI tools to create this document. The code examples
to demonstrate the application of LLMs use the model gemma3:4b.
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