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Abstract
Can we create explanations of artificial intelligence and machine learning that have some level of consistency
over time as we might expect of a human explanation? This paper explores this issue, and offers several strategies
for either maintaining a level of consistency or highlighting when and why past explanations might appear
inconsistent with current decisions.
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1. Introduction

This paper considers how XAI systems can behave in ways that are coherent over time, mirroring the
expectations of consistency for human explanations.

It is widely believed that there are advantages to having AI systems that are comprehensible to
human users. This has been part of the literature since the early 1990s [1], in particular highlighting the
potential for ethnic, socio-economic and gender bias in black-box ML and the way that explanation as a
form of transparency can help expose this. However, over recent years the issue has become a major
area of both research and practical development, with numerous algorithms [2, 3, 4, 5], frameworks and
surveys [6, 7, 8, 9, 10, 11, 12].

Myers and Chater argue that a human explanation is not just an atomic utterance, but that we expect
a level of coherence over time [13, 14]; that is future statements and explanations should be consistent
with previous ones. Indeed, this is part of the implicit contract between the parties that enables mutual
trust, effective communication and collaboration. For example, if Alan explains a food choice by saying
“I prefer sausages to poultry”, you would expect him to subsequently choose sausages if given a choice.
Myers and Chater extend their argument from the realm of human explanation to highlight ‘what it
would really mean for AI systems to be explainable’. They argue that AI explanations equally should
have some level of consistency. Myers and Chater build their position based on extensive theoretical and
empirical literature from psychology, sociology and XAI; we do not repeat this here beyond motivating
examples. In this paper, we take a next step exploring the different ways that this consistency can occur
within XAI settings and some potential algorithmic strategies to ensure this in practice.
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In the next section we’ll look at the different ways (in)coherence may manifest in AI systems, and
then move on to consider ways this can be managed such as explaining incoherence or avoiding it
happening. Notions of nearness, closeness or local neighbourhoods are crucial to both.

Note this paper will deal principally with single point explanations: “the system made this decision
about input 𝑋 because ...”. Contrastive explanations may also be very powerful, that is answering
questions of the form, “why are the decisions about inputs 𝑋 and 𝑌 different (or the same)?” We also
principally focus on coherence between explanations and decisions for different inputs or models, that
is inter-response consistency. In addition for complex explanations (particularly LLMs), we can ask
whether the parts of the explanation are coherent, that is intra-response consistency. There are also
important issues regarding instability of explanations [15, 16] to the same input (in the case of stochastic
algorithms or ongoing learning) and of explanations of the same decision given to different people
(where there is personalisation, for example in LLMs). We leave a detailed discussion of these issues to
a future paper.

2. Types of Incoherence

Within both human–human there are many different meanings of coherence or consistency, with no
single clear definition, In general the term ‘coherence’ seems to be used more for internal consistency
with an argument intra-response consistency and ‘consistency’ more to do with the relationship between
multiple utterances or between utterance and action inter-response consistency. Here we are looking
predominantly at the latter, especially in relation to AI explanations, that is the extent to which the
decisions/outputs and explanation given by an AI at different times appear to agree or make sense
relative to one another. However, there are several ways in which an AI or ML system may exhibit
behaviour apparently (in)consistent with previous explanations. We will attempt to be more precise
than the fairly open definition above, but ultimately this is about human judgement or impressions of
what seems to be coherent.

We will first look at situations where different inputs to the same model give rise to apparent
incoherence; that is, an AI medical advice system said that grapefruit was good to eat for one kind of
cancer, but not for another. We will then consider cases where the model has changed, say, owing to
new training data; perhaps analogous to the doctor changing their opinion based on a new article in
The Lancet.

2.1. Notation

We will use the following semi-formal notation for the AI cases:

• 𝑋, 𝑑𝑋, 𝑒𝑋 – previous input X, decision and explanation for a model 𝑀
• 𝑌, 𝑑𝑌, 𝑒𝑌 – current input Y, decision and explanation for the same
• 𝑑′𝑋, 𝑒

′
𝑋 – decision for input X and explanation for this following a model change to 𝑀′

The precise meaning of these differ depending on the kind of input data (e.g. images, medical test
results, user interface logs), the kinds of output (e.g. medical diagnosis, classification, automated action)
and explanation (e.g. SHAP-style feature importance, linear discriminant, decision tree).

Inconsistency

We will use the symbol ≁ to mean ‘apparently contradicts’ for different kinds of comparisons. In
some cases this is effectively ‘not equal’, but in others, for example looking at the relation between a
feature-importance explanation and particular decision, this is a more complex relationship.



Explanation as function

In many cases explanations are expected to be local [2, 3, 4], that is only operative in a neighbourhood
of the particular input. However, the explanation can often be applied in relation to other inputs; we
will write 𝑒𝑋[𝑌 ] for the explanation given for input 𝑋 interpreted in the context of input 𝑌. Crucially
some explanations can be treated as functions that give a decision for a particular input, in these cases
we can think of 𝑒𝑋[𝑌 ] as the decision that would be taken given input 𝑌 treating 𝑒𝑋 as a function.

2.2. Fixed model

First let’s consider the case of a fixed model that has been trained or constructed beforehand and does
not learn further during the period of use (see Figure 1, upper). We have two main cases:

Inconsistency of decisions – Is the current decision inconsistent with past explanation(s): 𝑑𝑌 ≁
𝑒𝑋[𝑌 ]? Is the past decision consistent with current explanation: 𝑑𝑋 ≁ 𝑒𝑌[𝑋]?

Inconsistency of explanations – Do the explanations agree in terms of decisions on the inputs, but
with different reasoning: 𝑑𝑌 ∼ 𝑒𝑋[𝑌 ] while 𝑒𝑋 ≁ 𝑒𝑌?

A human example of the first case would be if Tommaso said that a Fiat 500 was a good car because it
was small and then later said he would like to have a Humvee. An example of the second case would be
if he said he liked a blue Fiat 500 because it was small and then later said he liked a blue Mini because it
was blue.

This incoherence might be for valid reasons. For example, in the first, Tommaso might prefer a small
car for ease of parking at work, but if not for that would really like the idea of driving the Humvee
– that is they are local explanations. In the second case, it might be that the explanation of the Fiat
500 had been made in comparison to a SUV whereas that for the (all) blue Mini was in contrast to a
red, white and blue striped Mini. Note that the latter, contrastive explanations, need special treatment,
which, as noted, we leave for a future paper.

As with Tommaso’s reasoning, an AI model might be working well and be a justified inconsistency,
albeit initially appearing incoherent. Alternatively, the incoherence may represent a genuine problem
in reasoning:

• one or other decision or explanation was simply wrong as the model generalises poorly;
• the act of finding the later explanation effectively opened up ways of looking at the data that
would have been better applied to first input (related to model change);

• the explanation finding mechanism has stochastic elements or stability issues in certain areas
and simply gives different explanations by chance. In contrast to one being wrong, each might
have validity.

2.3. Changed model

Now consider cases where the model has changed due to new training data (see Figure 1, lower). All
the above apply, that is we might have presented 𝑋 to the old model 𝑀 and 𝑌 to the new model 𝑀′, and
found apparent incoherence. These are not pictured for reasons of space, but would be represented
by 𝑑′𝑌 ≁ 𝑒′𝑋[𝑌 ] and 𝑒′𝑌 ≁ 𝑒𝑋, etc. In practice, this may result from new training examples ‘near’ the old
decision points.

In addition, we may see non-monotonic reasoning, that is issues of consistency with the same input
𝑋 in different models 𝑀 and 𝑀′:

Inconsistency of decisions – Has the decision changed? 𝑑′𝑋 ≠ 𝑑𝑋

Inconsistency of explanations – Has the explanation for the same decision changed? 𝑑′𝑋 = 𝑑𝑋, but
𝑒′𝑋 ≁ 𝑒𝑋



Figure 1: Types of incoherence.

Again similar issues can arise for human–human interactions. The earlier example of a doctor
changing their diagnosis or treatment based on a new Lancet article is an example of the first case. A
health-related example of the second would be a nutritionist who has always recommended a varied
diet in order to ensure a broad range of vitamins and nutrients, but based on recent studies, now makes
the same recommendation but emphasising the way a varied diet encourages a diverse gut biome with
an ensuing wide impact on mental and physical health.

3. Strategies to improve Coherence

There are several different ways in which we can ensure coherence between decisions and explanations.

highlight inconsistency with previous explanations: “I know I said A before, but this is a different
kind of situation”. This doesn’t ensure consistency, but it maintains a claim to coherence.

explain inconsistency with previous explanations: “I know I said A before, but this is different
because of B”. This justifies the claim to coherence.

constrain consistency with previous explanations by adding each previous explanation 𝑒𝑖 as a con-
straint when making future decisions. This continually uses past explanations to update, or
manage the model, but may run into limits and may only be possible with some kinds of machine
learning algorithms.

ensure consistency by using each previous explanation 𝑒𝑖 as a local decision rule when the current
situation is sufficiently close to the input that gave rise to the explanation. That is completely
replace the model rule locally.

We’ll look at each of these in a little more detail.

3.1. Highlight Inconsistency

Here the system needs to keep track of previous decisions and explanations and simply detect that
there is an apparent inconsistency. The exact form of this detection will vary depending on the form of
ML and XAI. As an example, the FRANK system [17] is used during interactive human training, but
adopts a mechanism that applies rules based on previous decisions to verify new user input:

“At first Frank applies the Ideal Rule Check (IRC), checking if the record is covered by one of the given
rules” [18, p.17]



This approach is being used to monitor the consistency of human training examples in a process
of ‘skeptical learning’ (Fig. 2). However, the underlying mechanisms for checking aspects of training
data is similar to those that would be required to monitor future model decisions/advice. Rather than a
human labelling, we would instead check a new AI decision against previous rules.

Detecting and highlighting inconsistency is a fairly minimal strategy, but may help retain user
confidence.

Figure 2: Skeptical Learning (from [18, fig.1]).

3.2. Explaining Inconsistency

Where there is justified inconsistency of any of the types discussed in Section 2.2, we ideally need to
explain why this is occurring.

Counterfactual-style explanations are already being used in some XAI contexts [15, 19] where
decisions 𝑑𝑋 and 𝑑𝑌 differ. For example, given two inputs 𝑋 and 𝑌 that look similar, but are given
different decisions 𝑑𝑋 and 𝑑𝑌, we can try to locate training examples 𝑡𝑋 and 𝑡𝑌 with labels 𝑑𝑋 and 𝑑𝑌, and
close to 𝑋 and 𝑌 respectively (ideally also both ‘between’ 𝑋 and 𝑌), thus justifying the different decision.

In a similar way, if 𝑑𝑌 ≁ 𝑒𝑋[𝑌 ], we can find a training example 𝑡𝑌 that is close to 𝑋 or ‘between’ 𝑋 and
𝑌, but where the label on 𝑡𝑌 is not what one would expect with 𝑒𝑋[𝑡𝑌], thus justifying the limits of the
explanation 𝑒𝑋. The same technique can be used with multiple training examples to justify 𝑒𝑋 ≁ 𝑒𝑌.

In many ways if the model changes, as described in Section 2.3, less justification is needed as the new
training examples quite reasonably will have changed the model. However, if the new examples appear
to be very different to an input 𝑋, it may still seem odd that the decision 𝑑𝑋 or explanation 𝑒𝑋 changes
so that change-oriented explanations are needed. In some cases we may be able to find new training
examples that are close to the past example, that is a new 𝑡𝑋 that is close to 𝑋, but with a different
label or incompatible with the old explanation for 𝑑𝑋. In others there may be non-local changes, for
example, in a CNN (convolutional neural network) new training data might change low-level features
that have impacts on very different input data. This highlights the general XAI challenge of in some
way surfacing these intermediate emergent features.

3.3. Constrain Inconsistency

In some cases the underlying algorithm may be able to be constrained to continue to be consistent with
a previous explanation. For example, the Query-by-Browsing system uses a variant of ID3 to build
decision trees and SQL queries [1], which can be thought of as a single global ‘explanation’. However,
the top-down nature of ID3 means that small changes in training data may give rise to a completely
different decision tree. For this reason, one variant of Query-by-Browsing used genetic algorithms to
evolve the decision tree [20]; thus favouring smaller changes to the tree where this is possible consistent
with previous data.

A more model agnostic method would be to generate synthetic training examples 𝑡𝑖 that are distant
from existing training data, but close to a previous example 𝑋. If each new training example is labelled



to be consistent with 𝑒𝑋, this effectively cements the explanation for the locality. This is similar to the
techniques used to generate privacy-preserving synthetic data in [21].

3.4. Ensure Consistency

As noted, in some cases we can interpret a decision 𝑑𝑋 and 𝑒𝑋 as a rule ‘WHEN in locality 𝐿𝑋 APPLY
rule 𝑅𝑋’. For example, LIME creates a linear discriminant model by looking at training examples in the
region of the input [4]; this both incorporates an existing idea of locality of the explanation (𝐿𝑋) and an
executable rule (𝑅𝑋).

This collection of locality–rule pairs, (𝐿𝑖,𝑅𝑖) can then be used in a two stage process as illustrated
in Figure 3: given a new unseen input 𝑌, we first check if it is within a patch, and if so return the
result of the rule; if there is no matching patch the original model is used to generate the decision and
explanation.

Initially a model M, and empty set of patches P.
for each new example X
1. look for (L[i],R[i]) in P such that X in L[i]
2. if found

2.1 give decision and explanation by applying R[i] to X
3. if not found

3.1 let dX = decison of M at X
3.2 let eX = explanation of M at X
3.3 let L = a locality of X
3.4 let R = eX interpreted as a rule
3.5 add (L,R) to P
3.6 give decision dX and explanation eX

Figure 3: Ensuring consistency with previous explanations

This is rather like ensemble methods where one has multiple models and then meta-learning to create
a decision rule to determine which is to be used. In this case the rule set consists of the original model
𝑀 and a series of example–explanation pairs, (𝑋, 𝑒𝑋), (𝑌, 𝑒𝑌), etc. Effectively one is doing ensemble
learning on 𝑀, 𝑒𝑋, 𝑒𝑌, but where we have the anchor points 𝑋, 𝑌 to help.

We can think of these local rules as comprising a partial patch model as depicted in Figure 4. The
figure also highlights several issues of patch models:



Figure 4: Patch model with important issues

varying density of patches – Some areas of the input space may be densely covered in patches,
others relatively empty. For the purposes of coherence, this is not a problem, merely reflecting
the distribution of previous user inputs and associated explanations.

varying size and shape of patches – The localities defining the patches may differ in size and (highly
multidimensional) shape. The consequent issues of what to regard as ‘near’ will be discussed in
Section 4.

overlapping patches – If two localities overlap and the decisions implied by their rules differ, then
there clearly needs to be a meta-decision rule or adjustments of the localities to disambiguate the
decision. However, even if the rules agree in the intersection, the explanations will be different,
so there still needs to be some adjustment to one or both localities.

The method above is iterative, building a secondary model patch-by-patch. It is also a partial patch
model, as the patches (initially at least) do not fully cover all inputs and the original model is still used
in the gaps.. The GLocalX method [5] is similar, but performs this whole process ‘upfront’, that is
by exploring the entire space, creating local explanations everywhere and then using this to create a
complete patch model (global explanation) all before ever encountering any unseen examples.

This method can also be used when there is underlying model change. If new training examples are
not ‘close’ to a patch, the patch can be retained between models, thus also dealing with between-models
coherence at a single input point for both decisions and explanations. However, if the underlying model
change has not also been limited using some form of ‘constrain inconsistency’ approach, then this could
lead to increased instability at patch boundaries.

4. Nearness and locality

In multiple places we have needed to think about some form of nearness or locality. In Section 2, which
considered the ways in which incoherence may occur, explanations for inputs 𝑋 and 𝑌 would only be
seen to be in conflict if 𝑋 and 𝑌 are sufficiently close. Similarly, the patch models in Section 3 depend on
defining a locality over which each rule operates, typically defined in terms of closeness to a defining
example. Indeed ‘local’ explanation methods such as SHAP and LIME [3, 4] have to have some measure
of what is close to a particular input in order to perform perturbations.

Note there are three senses of closeness, one might want to consider:

closeness of input vectors – 𝑋 𝑌 – For binary features this might be Hamming distance or for contin-
uous features some form of Euclidean distance in feature space normalised by individual feature
variance.



closeness of outputs/classifications/decisions – 𝑑𝑋 𝑑𝑌 – This might be a binary agree/disagree, but
could be a more complex metric of the output such as a set of classifications with weightings.

coherence of explanations – 𝑒𝑋 𝑒𝑌 – This is the metric that is critical for instability in XAI [16]. For
feature importance explanations this might be a euclidean distance, cosine similarity or Spearman
or Kendall rank correlation coefficient . For symbolic explanations, this may be some form of
inter-formulae edit distance.

It is the first that we are dealing with in this section, but all are important in different circumstances.

4.1. Localised feature importance

Initially, closeness can be based on a global metric of closeness of input vectors. However, once we
have local explanations these can be used to help define more localised metrics. For example, as noted
previously, local explanations are often created by looking at training data close to the input; to be
‘local’ these will have adopted a measure of nearness, which can then be used to create the locality for a
patch model.

In addition, the explanation will often create some form of feature importance which can be used to
create localised nearness metrics. In the case of perturbation and hotspot methods this is very direct,
as each feature is given a direct measure of importance, which can then be used to weight the feature
differences in a local Euclidean metric; that is:

𝑑(𝑋 , 𝑌 ) = ∑
𝑓
𝑤𝑓(𝑋𝑓 − 𝑌𝑓)2

where 𝑤𝑓 are weights based on the feature importance vector. Note that smaller differences are
considered significant where they have higher feature importance, whereas even quite large differences
in unimportant features may still be considered ‘close’.

In the case of more algorithmic explanations such as decision trees, the fact that a feature is mentioned
can be used as metric of feature importance weighting these more highly than others. If the explanation
includes derived features (e.g boolean ‘SALARY > 50000’), then these can be used to give a scale to the
feature. If the SALARY in the input that gave rise to this explanation is 60000, then we would expect
the locality of the rule to extend at least to some inputs that are otherwise similar, but with SALARY
less then 50000 so that the locality defines a region within which the rule is meaningfully applicable.

4.2. Explaining using measures of nearness

As well as being important for constraining inconsistency or creating patch models, measures of
nearness can be used as part of explanations themselves. This might be vague, something like, “𝑋 and 𝑌
are similar in many ways, but differ in ways which are particularly important for the decision making”.
More convincing explanations could give the precise metrics being used to make the distinction, for
example, “while employee 𝑋 and 𝑌 have similar experience and skills, their jobs differ in terms of risk”.

Local measures of nearness could also be used in counterfactual generation. If we are looking for a
training example 𝑍 to explain the difference between decisions and/or explanations for 𝑋 and 𝑌, then 𝑍
should be ‘between’ 𝑋 and 𝑌. The weighted locality metrics for 𝑋 and 𝑌 are likely to be better measures
of ‘between’ than global feature distances.

4.3. Explanations of measures of nearness

Of course, if metrics of nearness contribute to the coherence of explanations and decisions, they must
themselves be explainable to end users. For example, rather than simply saying “while 𝑋 and 𝑌 differ
substantially in feature 𝐹, this is considered unimportant”, instead the explanation could be “while 𝑋
and 𝑌 differ substantially in feature 𝐹, this feature does not appear in the explanations for 𝑋 and 𝑌 and is
therefore considered unimportant”.



5. Discussion and Conclusion

This paper has outlined several strategies for achieving coherent explanations in AI systems, particularly
in response to temporal or contextual shifts. It has identified several promising directions for future work,
including the development of mechanisms for explaining changes in reasoning; the use of patch models
that retain and reuse prior explanations; and the exploration of nearness metrics, which determine
when explanations can be meaningfully applied to new inputs. More broadly, the diversity of model
architectures and explanation types suggests a rich design space for experimenting with coherence
strategies, from algorithmic constraints to user interface representations and feedback mechanisms.

From a human-centred AI perspective, coherence in explanations is not merely a technical attribute
but a vital social and cognitive affordance that underpins trust and mutual understanding. Just as
people rely on consistent reasoning to interpret intentions and anticipate actions, AI systems — all of
which operate within socio-technical settings — should treat coherence as a primary design objective
alongside accuracy and fairness. For instance, if an AI system revises its reasoning, a transparent shift in
rationale (e.g., “Given the user’s recent preferences, I now recommend slower but more scenic routes”)
can maintain user confidence even amidst change. Thus, explanation strategies supporting temporal
narrative continuity —where decisions are justified in the moment and situated within a comprehensible
arc of system behaviour — are key to fostering durable human-AI combination.

While much of this paper focuses on model-specific XAI techniques, large language models (LLMs)
increasingly act as explanation interfaces — either as direct decision-makers or as natural language
layers over other AI systems. In these contexts, their internal consistency over a series of decisions
becomes a crucial dimension of explanation quality.

Recent work has shown that large language models (LLMs) often exhibit sycophantic behaviour —
a tendency to align their outputs with user biases, personas, or perceived preferences—at the cost of
logical consistency and rational argumentation. This phenomenon introduces both intra-response and
inter-response inconsistencies, undermining the expectation of coherent explanatory reasoning over
time. For example, models have been shown to shift or abandon previously correct reasoning chains
when faced with user disagreement or subtle framing changes [22, 23, 24, 25, 26]. Benchmarks such as
SycEval [27] and BeHonest [28] quantify how sycophancy can persist across turns, leading to regressive
reasoning where models rationalize incorrect answers to maintain agreement. This behaviour poses a
direct challenge to explanation consistency, particularly in human-AI collaboration where users expect
stable, accountable rationales for system behaviour. Techniques such as bias-augmented training or
pinpoint tuning have shown promise in mitigating these effects [22, 26], but the deeper issue remains:
without mechanisms to preserve a coherent explanatory stance, models risk eroding user trust even
when individual outputs appear plausible. Addressing sycophancy is thus central to ensuring that
explanations remain reliable not just in the moment, but across the evolving arc of user interaction.

In related work we have been looking at the way humans can explain their decisions/labels to AI on
order to improve ML and XAI [29]. A key way in which these human explanations can be used is to
constrain the ML system to create decision systems that respect the human explanation as well as the
decision/label. This differs from the work in this paper in that the human explanations are effectively
additional input to the model, whereas the coherent use of XAI explanations is in some way a feedback
loop based on the current model. However, the algorithmic requirements for ensuring XAI consistency
turn out to be very similar to those for the use of human explanations as input.

Coherence in AI explanations — whether provided through structured XAI methods or natural
language interfaces — remains an open challenge with significant implications for trust, usability,
and long-term human-AI hybridity. As AI systems become increasingly embedded in interactive
settings, the ability to provide stable, transparent, and revisitable justifications will be as important
as the correctness of individual decisions. This paper has presented potential strategies to implement
coherence within XAI, but it is not intended to offer a final solution; our aim is to provide clarification of
the area and a partial roadmap for future research. We hope this initial exploration encourages further
work on algorithms, interaction strategies, and evaluation frameworks that treat coherence not as an
afterthought, but as a central goal of explainable AI.
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