
Adversarial Evaluation of Machine Learning-Based Python
Source Code Vulnerability Detectors
Talaya Farasat*, Ahmed Bouzid and Joachim Posegga*

University of Passau, Passau, Germany

Abstract
Machine learning models for Python source code vulnerability detection have demonstrated impressive accuracy
in identifying security vulnerabilities. However, their robustness against adversarial manipulation remains largely
unexplored. In this work, we evaluate the adversarial resilience of two strong Python vulnerability detection
models. We apply simple semantics-preserving perturbations that maintain the original Python code functionality
while misleading the detection models. Our evaluation shows that such adversarial examples can cause substantial
performance degradation. We observe that even simple, semantics-preserving transformations are sufficient to
mislead the models, without requiring complex attack strategies. These findings expose critical weaknesses in
current machine learning-based detectors and underscore the urgent need for more robust, semantics-aware
approaches to secure code analysis.

Keywords
Machine Learning, Vulnerability Detection, Adversarial, Python

1. Introduction

Code flaws or vulnerabilities are prevalent in software systems and can potentially lead to system
compromise, information leaks, or denial of service [8]. Recognizing the constraints of traditional
code analysis methods (static and dynamic code analysis [8, 12]), and with the growing accessibility
of open-source software repositories, it has been recommended to adopt a data-driven approach for
software vulnerability detection. Therefore, various machine learning techniques have been applied
to learn vulnerable features of source code, and to automate the process of software vulnerability
identification, with varying success[1, 2, 3, 4, 5, 6, 7, 13, 15, 16, 19, 21].

Many researchers have dedicated considerable attention to source code vulnerability detection written
in different programming languages like Java, C, and C++ [1, 2, 3, 5, 8, 9, 10, 16, 20, 21]. In 2025, Python
continues to maintain its prominent position as one of the top programming languages [30]. Therefore,
many studies [6, 13, 17, 18, 19, 23, 25, 34, 35] focus specifically on vulnerability detection in Python.
However, there is a major hazard lying with these software vulnerability detection models – they lack
adversarial robustness.

Adversarial examples are inputs intentionally crafted by an adversary to mislead a trained machine
learning model into making incorrect predictions. These examples are generated by applying care-
fully designed, minor perturbations to the original inputs. Although these perturbations are often
imperceptible to human observers, they can significantly degrade the performance of machine learning
models.

Unlike natural languages, programming languages are governed by strict lexical, grammatical, and
syntactic rules. Consequently, adversarial examples for source code must be both syntactically valid
and semantically correct; otherwise, they may fail to compile [26]. This makes adversarial manipulation
more challenging than in continuous domains like images, where small pixel-level changes suffice.
In source code, valid perturbations include (i) renaming variables, (ii) inserting dead code, and (iii)

GeCoIn 2025: Generative Code Intelligence Workshop, co-located with the 28th European Conference on Artificial Intelligence
(ECAI-2025), October 26, 2025 — Bologna, Italy
*Corresponding author.
$ tf@sec.uni-passau.de (T. Farasat); bouzid01@ads.uni-passau.de (A. Bouzid); jp@sec.uni-passau.de (J. Posegga)
� 0000-0002-0560-0334 (T. Farasat)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:tf@sec.uni-passau.de
mailto:bouzid01@ads.uni-passau.de
mailto:jp@sec.uni-passau.de
https://orcid.org/0000-0002-0560-0334
https://creativecommons.org/licenses/by/4.0/deed.en


reordering independent statements. These transformations require a deep understanding of program
semantics to avoid altering functionality [27].

Different studies explore adversarial attacks on source code. Zhang et al. [26] introduce the Metropolis-
Hastings Modifier for generating adversarial examples (applied on C/C++). Yefet et al. [27] propose
Discrete Adversarial Manipulation of Programs (DAMP) to attack code models (applied on Java and C).
Liu et al. [29] develop a ChatGPT-based evasion attack against detectors (applied on C/C++). Henkel et
al. [28] evaluate the robustness of current machine learning architectures for vulnerability detection.
Despite these advances, research on adversarial attacks in this domain remains limited [29].

In contrast to prior work, our study focuses specifically on Python-based vulnerability detection
models. We demonstrate that even simple, Python-specific perturbations can significantly degrade the
performance of strong models—the accuracy of VUDENC [6] drops from 97.8% to 59.6%, while the model
by Farasat and Posegga [24] falls from 98.8% to 40.4%. These results suggest that such models remain
highly susceptible to straightforward adversarial manipulations, indicating that complex attacks are not
necessary to reveal their weaknesses. This highlights the urgent need for more robust, semantics-aware
detection methods tailored to the analysis of Python source code.

2. Experimental Design

2.1. Selection of Vulnerability Detection Models

We select two strong models for Python source code vulnerability detection: VUDENC [6] and the
model by Farasat and Posegga [24]. In this study, we focus exclusively on their Cross-Site Scripting
(XSS) detection models.

2.2. Adversarial Perturbations

We perform an adversarial evaluation using the designated final test set from the plain_xss
dataset, available at [31, 33]. The test set is defined by a list of indices provided in the
xss_dataset_keysfinaltest file. For each indexed code block, we extract the relevant context
using precomputed “bad parts” annotations and retrieve code segments of up to 200 tokens via utility
functions.

To ensure the selected blocks are relevant to XSS, we apply a regular-expression-based function,
is_xss_payload(), which identifies blocks containing known XSS markers such as <script> tags,
alert() calls, and event handler keywords like onerror and onload. We specifically filter for blocks
labeled as vulnerable (label 0) that contain syntactic evidence of XSS attacks.

These filtered vulnerable blocks are perturbed using a custom function that applies a series of
semantics-preserving transformations:

• Identifier Renaming: Replaces known XSS-related variable names using a predefined mapping.
• String Obfuscation: Splits signature patterns like <script> into concatenated substrings (e.g.,
"<scr" + "ipt>").

• ASCII Encoding: Rewrites payloads such as alert() using chr() representations to evade
pattern matching.

• Logic Refactoring: Alters detection-relevant conditions, such as replacing substring search
logic with membership tests.

• No-op Insertion: Randomly adds semantically neutral variable assignments (e.g., dummy =
None) to increase structural noise.

• Dummy Computations: Appends irrelevant arithmetic operations to inflate the complexity of
the code.

Each perturbed sample is tokenized using a custom tokenizer, embedded with a pretrained Word2Vec
model available at [32], and padded to a fixed maximum sequence length of 200 tokens. These vectorized
samples are then passed through pretrained vulnerability detection models for evaluation.



3. Evaluation

The adversarial evaluation of the VUDENC model [6] on 42 test samples yields an accuracy of 59.5%, a
recall of 59.6%, and an F1 score of 74.6%. As shown in Table 1, this represents a significant performance
degradation compared to the model’s original metrics.

Similarly, the model proposed by Farasat and Posegga [24], when subjected to the same adversarial
samples, achieves an accuracy of 40.4%, a recall of 40.3%, and an F1 score of 57.6%. The performance
decline for this model is also illustrated in Table 1.

These results demonstrate substantial performance degradation, confirming that the applied pertur-
bations effectively evade detection.

Figure 1 provides a visual example of this failure. A code used in visual demonstration available
at [31] in examples folder. Table 2 describes the specific perturbations used in the demonstration
script shown in Figure 1. As illustrated, the original Farasat and Posegga model (left side) detects
vulnerabilities that the perturbed version (right side) misses, showing the significant impact of our
adversarial modifications. We follow the same color scheme and confidence levels used in [6] for the
visualizations in Figure 1.

Note: On 42 test samples, we apply all the perturbations described above in Section 2.2 Adversarial
Perturbations. However, for the demonstration script shown in Figure 1, we apply only the relevant
perturbations listed in Table 2.

Models Accuracy Recall F1 Score
XSS (Original VUDENC Model [6]) 97.8% 80.8% 86.0%
XSS (With Perturbations (VUDENC Model)) 59.5% 59.6% 74.6%
XSS (Original Farasat and Posegga Model [24]) 98.8% 91.3% 93.0%
XSS (With Perturbations (Farasat and Posegga Model)) 40.4% 40.3% 57.6%

Table 1
Performance Metrics Before and After Adversarial Perturbations on 42 test samples

Perturbation Description Applied in Script
Identifier Renaming Rename sensitive identifiers based on

mapping dictionary (e.g., rules →
result_record, mapping_delete →
net_client.mapping_delete)

Yes

String Literal Breaking Break strings like mark_safe into concatenated parts
(e.g., "mark_" + "safe") to evade exact string match-
ing

Yes

No-op Line Insertion Randomly insert no-op lines with dummy variables (e.g.,
abcxyz = None # no-op filler) to confuse static
analysis

Yes

Dummy Math Insertion Insert dummy math calculations (e.g., _ghost =
sum([42, 1337, 7]) # dummy calc) inside spe-
cific functions to add noise

Yes

Literal Obfuscation Replace fixed strings like "XSS" or "Cross Site
Scripting" with concatenations (e.g., "X" + "SS") to
avoid detection

No (not applicable)

ASCII Encoding of Payloads Encode suspicious strings (e.g., <script>, alert()) as
chr() expressions to evade pattern matching

No (not applicable)

Logic Refactoring Change logic expressions like .find(...) != -1 to
alternate forms (e.g., in operator)

No (not applicable)

Table 2
Perturbations applied in the Python script (see Figure 1 for results)



Figure 1: Visualization of model predictions before (a) (the original Farasat and Posegga Model [24]) and after
(b) adversarial perturbations (perturbations applied as described in Table 2) over XSS vulnerability script available
at [31]

4. Defense Suggestions

To defend against the proposed adversarial perturbations, a combination of static analysis and model-
level enhancements is necessary. First, integrating semantic-aware models—such as those based on
abstract syntax trees (ASTs) or control/data flow graphs—can improve resistance to superficial modifi-
cations like identifier renaming and no-op insertions, as these models capture deeper structural and
behavioral properties of the code. Second, applying adversarial training with examples that include
obfuscation techniques (e.g., string splitting, ASCII encoding, and logic refactoring) can help the model
learn to generalize over such evasive patterns. To mitigate the impact of dummy computations and
structural noise, feature extraction methods that emphasize semantically meaningful elements—such as



Figure 2: Use same Color and Confidence level as in [6] for Figure 1 (demonstration)

data flow dependencies or function call patterns—should be prioritized over raw token sequences. Lastly,
deploying runtime monitoring or post-prediction semantic validation mechanisms can help detect
anomalous inputs that deviate from typical coding patterns, signaling possible adversarial manipulation
even when syntactic correctness is maintained.

5. Conclusion and Future Work

This study demonstrates that simple, semantics-preserving adversarial perturbations can significantly
degrade the performance of strong Python vulnerability detection models. By applying transformations
such as identifier renaming, string obfuscation, ASCII encoding, logic refactoring, and the insertion of
no-op or dummy computations, we show that models like VUDENC [6] (accuracy drops from 97.8%
to 59.6%) and the Farasat and Posegga model [24] (accuracy drops from 98.8% to 40.4%) are highly
susceptible to misclassifying vulnerable code. Our experiments reveal a drastic drop in performance,
confirming that even straightforward evasion strategies can bypass these models while preserving
semantic integrity—eliminating the need for complex attacks. These findings expose a critical weakness
in current machine learning-based Python vulnerability detection systems.

For future work, we plan to extend our evaluation to other vulnerability types beyond XSS, such as
SQL injection and path traversal, and to other programming languages.

Declaration on Generative AI

During the preparation of this work, the author(s) utilized X-GPT-4 to assist with grammar and spelling
corrections. Following the use of this tool, the author(s) thoroughly reviewed and revised the content
as necessary and take(s) full responsibility for the accuracy and integrity of the published work.

References

[1] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen. SySeVR: A Framework for Using Deep Learning
to Detect Software Vulnerabilities. In IEEE Transactions on Dependable and Secure Computing,
Volume: 19, 2022.

[2] G. Lin, S. Wen, Q. Han, J. Zhang, and Y. Xiang. Software Vulnerability Detection Using Deep
Neural Networks: A Survey. In IEEE Proceedings, Volume: 108, 2020.

[3] Y. Zhou, S. Liu, , J. Siow, X. Du, and Y. Liu. Devign: Effective Vulnerability Identification by
Learning Comprehensive Program Semantics via Graph Neural Networks. In Advances in Neural
Information Processing Systems 32 (NeurIPS), Vancouver Canada, 2019.

[4] S. Chakraborty, R. Krishna, Y. Din, and B. Ray. Deep Learning Based Vulnerability Detection: Are
We There Yet?. In IEEE Transactions on Software Engineering, Volume: 48, 2021.



[5] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir, P. Ellingwood and M. McConley.
Automated Vulnerability Detection in Source Code Using Deep Representation Learning. In IEEE
International Conference on Machine Learning and Applications (ICMLA), Orlando USA, 2018.

[6] L. Wartschinski, Y. Noller, T. Vogel, T. Kehrer, and L. Grunske. VUDENC: Vulnerability Detection
with Deep Learning on a Natural Codebase for Python. In ELSEVIER Information and Software
Technology, Volume 144, 2022.

[7] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng and Y. Zhong. VulDeePecker: A Deep Learning-
Based System for Vulnerability Detection. In 25th Annual Network and Distributed System Security
Symposium (NDSS), California USA, 2018.

[8] H. K. Dam, T. Tran, T. Pham, S. W. Ng, J. Grundy and A. Ghose. Automatic feature learning for
vulnerability prediction. In IEEE Transactions on Software Engineering, Volume: 47, 2018.

[9] K. Liu, D. Kim, T. F. Bissyand´e, S. Yoo and Y. Le Traon, Mining Fix Patterns for FindBugs Violations.
In , IEEE Transactions on Software Engineering, Volume: 47, 2018.

[10] R. Rolim, G. Soares, R. Gheyi and T. Barik. Learning Quick Fixes from Code Repositories. In ACM
Brazilian Symposium on Software Engineering, Brazil, 2021.

[11] T. Zimmermann, N. Nagappan and L. Williams. Searching for a Needle in a Haystack: Predicting
Security Vulnerabilities for Windows Vista. In IEEE International Conference on Software Testing,
Verification and Validation, France, 2005.

[12] M. Ceccato and R. Scandariato. Static analysis and penetration testing from the perspective of
maintenance teams. In Proceedings of the 10th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, USA, 2016.

[13] R. Wang, S. Xu, X. Ji, Y. Tian, L. Gong and K. Wang. “An extensive study of the efects of diferent
deep learning models on code vulnerability detection in Python code. In Automated Software
Engineering, Volume 31, 2024.

[14] R. Scandariato, J. Walden, and W. Joosen. Static analysis versus penetration testing: A controlled
experiment. In IEEE 24th International Symposium on Software Reliability Engineering (ISSRE), USA,
2013.

[15] T. Sharma, M. Kechagia, S. Georgiou, R. Tiwari, I. Vats, H. Moazen and F. Sarro. A survey on
machine learning techniques applied to source code. In ELSEVIER Journal of Systems and Software,
Volume 209, 2024.

[16] A. O. A. Semasaba, W. Zheng, X. Wu, and S. Agyemang. Literature survey of deep learning-based
vulnerability analysis on source code. In WILEY IET Software, Volume 14(6), 2020.

[17] A. Bagheri and P. Heged˝us. A Comparison of Different Source Code Representation Methods
for Vulnerability Prediction in Python. In Springer Quality of Information and Communications
Technology, 2021.

[18] M. Alfade, D. E. Costa and E. Shihab˝us. Empirical analysis of security vulnerabilities in Python
packages. In ACM Empirical Software Engineering, Volume 28, 2023.

[19] N. S. Harzevili, J. Shin, J. Wang and S. Wang˝us. Characterizing and Understanding Software
Security Vulnerabilities in Machine Learning Libraries. In IEEE/ACM International Conference on
Mining Software Repositories (MSR), Australia, 2023.

[20] J. Fan, Y. Li, S. Wang and T. N. Nguyen. A C/C++ Code Vulnerability Dataset with Code Changes
and CVE Summaries. In ACM International Conference on Mining Software Repositories (MSR), South
Korea, 2020.

[21] D. Zou, S. Wang, S. Xu, Z. Li, and H. Jin. µVulDeePecker: A Deep Learning-Based System for
Multiclass Vulnerability Detection. In IEEE Trans. Dependable Secure Computing, Volume 18(5),
2019.

[22] M. Davari, M. Zulkernine, and F. Jaafar. An Automatic Software Vulnerability Classification
Framework. In IEEE International Conference on Software Security and Assurance (ICSSA), USA,
2017.

[23] M. Ehrenberg, S. Sarkani, and T. A, Mazzuchi. Python Source Code Vulnerability Detection with
Named Entity Recognition. In ElSEVIER Computers & Security, 2024.

[24] T. Farasat and J. Posegga. Machine Learning Techniques for Python Source Code Vulnerability



Detection. In Proceedings of the Fourteenth ACM Conference on Data and Application Security and
Privacy (ACM CODASPY), Portugal, 2024.

[25] T. Farasat, A. Ahmadzai, A. Elsa George, S. Alisina Qaderi, D. Dordevic and J. Posegga. SafePyScript:
A Web-Based Solution for Machine Learning-Driven Vulnerability Detection in Python. Available
at: https://arxiv.org/abs/2411.00636, 2024.

[26] H. Zhang, Z. Li, G Li, L. Ma, Y. Liu, and Z. Jin. Generating adversarial examples for holding
robustness of source code processing models. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 1169–1176, 2020.

[27] N. Yefet, U. Alon, and E. Yahav. Adversarial examples for models of code. Proceedings of the ACM
on Programming Languages, 4(OOPSLA):1–30, 2020.

[28] J. Henke, G. Ramakrishnan, Z. Wang, A. Albarghouth, S. Jha, and T. Reps. Semantic robustness of
models of source code. In 2022 IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 526–537, 2022.

[29] S. Liu, D. Cao, J. Kim, T. Abraham, P. Montague, S. Camtepe, J. Zhang, Y. Xiang. EaTVul: ChatGPT-
based Evasion Attack Against Software Vulnerability Detection. In 33rd USENIX Security Sympo-
sium (USENIX Security 24), 2024

[30] Python. Available at https://www.tiobe.com/tiobe-index/, Accessed on: July, , 2025.
[31] VUDENC. Available at

https://github.com/LauraWartschinski/VulnerabilityDetection, Accessed on: July. 01, 2025.
[32] Vulnerability Detection. Available at

https://github.com/Tf-arch/Python-Source-Code-Vulnerability-Detection?tab=readme-ov-file, Ac-
cessed on: July, 2025.

[33] L. Wartschinski, Vudenc-datasets for vulnerabilities (2020). Available at
https://zenodo.org/record/3559841#.XeVaZNVG2Hs, Accessed on: January, 2025

[34] T. Farasat and J. Posegga. Enhancing Python Code Security: A Comparison of Machine Learning,
ChatGPT, and Static Analysis Methods. In International Conference on Electrical and Computer
Engineering Researches (ICECER 2025), Madagascar, 2025.

[35] T. Farasat and J. Posegga. Optimizing Code Embeddings and ML Classifiers for Python Source
Code Vulnerability Detection. Available at: https://arxiv.org/pdf/2509.13134, 2025.


	1 Introduction
	2 Experimental Design
	2.1 Selection of Vulnerability Detection Models
	2.2 Adversarial Perturbations

	3 Evaluation
	4 Defense Suggestions
	5 Conclusion and Future Work

