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Abstract
This paper introduces UnitTenX, a state-of-the-art open-source AI multi-agent system designed to generate unit
tests for legacy code, enhancing test coverage and critical value testing. UnitTenX leverages a combination of
AI agents, formal methods, and Large Language Models (LLMs) to automate test generation, addressing the
challenges posed by complex and legacy codebases. Despite the limitations of LLMs in bug detection, UnitTenX
offers a robust framework for improving software reliability and maintainability. Our results demonstrate the
effectiveness of this approach in generating high-quality tests and identifying potential issues. Additionally, our
approach enhances the readability and documentation of legacy code.
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1. Introduction

Software testing is an important element of the software engineering life-cycle that ensures the software
is correct [1]. In the past, writing tests for software was neglected as it was not deemed as important as
it is in recent times [2]. Legacy software is defined as software that uses outdated technologies with
source code that is not actively maintained, but is actively used in production [3]. According to [4],
legacy code may contain little or no tests. This neglect is oftentimes reflected in modern software
due to deadline restrictions [5]. In many cases, this lack of tests can manifest as bugs and security
vulnerabilities in legacy and newly built software [6, 7]. Contemporary examples of high-profile bugs in
complex modern systems are the Heartbleed bug [8] and the CrowdStrike [9] outage. These incidents
underscore the importance of thoroughly testing legacy codebases and ensuring the correctness of
software systems.

For example, consider a sequence of 1000 independent and uncorrelated if-then-else statements, such
as those found in network-based policy devices [10]; this scenario alone presents around 21000 possible
states to verify. Legacy code is often highly complex and lacks documentation, which makes bug
detection challenging. According to [11], such conditions can result in up to 15 times more defects and
extend the time required to develop new features by as much as 124%. The increase of bugs is reflected
by the reduced predictability inherent in poorly maintained codebases.

To address this problem, we propose the use of AI Agents, which are software entities that have
access to a limited environment where they can perform actions that change the environment au-
tonomously [12]. In the software testing field, AI code agents can be used to automate test creation by
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overseeing the execution of code to detect patterns, predict defects, and optimize test cases based on
software requirements and past results [13]. This auto-regressive stochastic behavior allows them to
improve the accuracy and efficiency of the tests over time. The simplicity of use, efficiency, stability,
and scalability make AI agents a powerful tool in software testing.

In this paper, we introduce UnitTenX, an AI Agent that uses formal verification to identify and create
unit tests for documenting the interfaces of legacy code, thereby uncovering conditions that can cause
the software to crash. By extension, the unit tests created also act as regression tests since they are
designed to test the software and achieve max coverage. This paper aims to answer the following
Research Questions (RQs):

1. How effectively does UnitTenX generate unit tests that increase code coverage for legacy C
codebases?

2. How does UnitTenX handle compilation errors, runtime exceptions (segmentation faults), and
timeouts during automated test generation?

3. How does the reflection and feedback loop in UnitTenX contribute to iterative improvement of
generated test suites?

This paper advances the field through the following contributions:

• Introduces UnitTenX, a formal verification driven AI agent tool that automatically generates unit
tests for code-bases with no tests, addressing a critical challenge in maintaining and modernizing
complex software systems such as legacy software.

• Combines symbolic analysis from tools like ESBMC with large language models to identify edge
cases, crash conditions, and maximize code coverage in legacy C modules.

• Automates the creation of codemockups, enabling end-to-end test suite generation and integration
with existing legacy infrastructure.

• Implements a reflection and feedback loop where a language model evaluates test outcomes,
recommends improvements, and iteratively increases both the quality and coverage of generated
test suites.

• Demonstrates robustness by recovering from common errors such as compilation faults and
segmentation violations, resulting in production-ready regression suites on real-world legacy
software.

This paper is organized as follows: In Section 2 we describe the background theory that UnitTenX
uses and also work analogous to UnitTenX and distinguish the areas in which it innovates. in Section 3,
we present a motivating example for using UnitTenX, and discuss the limitations of AI in bug detection,
highlighting the challenges LLMs face in identifying bugs. In Section 4, we describe UnitTenX itself and
how it generates unit tests for legacy code. Section 5 presents the results of our study, demonstrating
the effectiveness of our approach. Finally, Section 6 discusses threats to validity and concludes the
paper, discussing the limitations of our approach and potential areas for future research.

2. Preliminaries

The following section covers the intersection of the theories that UnitTenX utilizes, including unit
test generation (the core background theory), formal methods (used to identify crash states in the
legacy codebase), and large language models (used as the code generation element of UnitTenX ). Lastly,
previous related works that are in the field are covered.

2.1. Regression Testing

Regression Testing is the process of testing software to detect any behavioral changes that may have
appeared when the program is modified [14, 15]. This is usually done by running tests and checking if the



ProgramUnder Test (PUT) in each test has changed, this is used to verify that changes haven’t introduced
new bugs or altered existing functionality [16]. Regression testing research can be split into Regression
Test Selection and Optimization research [16] and regression test generation research [17, 18, 19]. The
main purpose of Regression Test Selection and Optimization research is to maximize the subset of test
cases affected by the code changes. This is usually done using various static and dynamic analysis
techniques. The selection process is primarily guided by code coverage, to maximize coverage and
fault detection while minimizing cost and execution redundancy [16]. In Regression Test Generation
research, the primary purpose is to generate new test cases to test parts of the program that are not
currently being tested. This is done through constraint solving at branches, using heuristics, templates,
or using AI-based methods (which includes LLMs in recent years) [17, 18, 19].

2.2. Formal Verification

Formal Verification is the process of encoding a program into an abstract representation to verify that it
does not violate any predefined properties. In our experiments, we use the Efficient SMT-based Bounded
Model Checker (ESBMC) to identify invalid states (through counterexamples) and generate test cases
for the legacy software. ESBMC is a Bounded Model Checker (BMC) that encodes the PUT into an
SMT formula and uses an SMT backend to find any violated program states. As detailed in [20, 21, 22],
ESBMC converts the program into a Control-Flow Graph (CFG), then extracts a state transition system
𝑀 = (𝑆, 𝑇 , 𝑠0) where 𝑆 is the set of states and 𝑇 represents the transitions between the states 𝑇 ⊆ 𝑆 × 𝑆
and 𝑠0 represents the initial state of𝑀. Let 𝐼 be a predicate evaluating the set of initial states of𝑀. Given
the state transition system 𝑀, a bound 𝑘, and a property 𝜙, the BMC process unrolls the system 𝑘 times
and translates it into a Verification Condition (VC) 𝜓, where 𝜓 is satisfiable iff 𝜙 has a counterexample
(CE) of length less than or equal to 𝑘. More formally, 𝐼 (𝑠0) ∧ ⋀𝑘−1

𝑖=0 𝑇 (𝑠𝑖, 𝑠𝑖+1) is the executions of 𝑀 of
length 𝑗 and the formula can be satisfied iff there exists a state at step 𝑗 where 𝜙 is violated. The VC is
calculated from the following formula:

𝜓𝑘 = 𝐼 (𝑠0) ∧
𝑘−1
⋀
𝑖=0

𝑇 (𝑠𝑖, 𝑠𝑖+1) ∧
𝑘
⋁
𝑖=0

¬𝜙(𝑠𝑖) (1)

2.3. Large Language Models

Large Language Models are deep neural networks based on the Transformer architecture [23]. The
transformer architecture is composed of layers that each include a self-attention mechanism, allowing
the model to relate different positions within the input sequence. This allows the model to compute
relationships between all input tokens in a sequence. Self-attention enables the model to weigh the
importance of different input tokens relative to each other. It does so by using 𝑄, 𝐾, 𝑉 ∈ ℝ𝑛×𝑑, where 𝑛
is the sequence length and 𝑑 is the embedding dimension. The matrices are constructed using learned
linear projections of the input embeddings. In recent years, LLMs have been utilized for code generation
tasks due to their ability to generate code from textual prompts with high performance.

2.4. Related Work

Automatic regression test generation now combines classic symbolic-execution techniques with emerg-
ing LLM-based methods. Traditional methods remain influential, such as TracerX, which mitigates path
explosion using interpolation and lazy annotations [24], or eXpress, which applies dynamic symbolic
execution to concentrate on regression-relevant paths [25]. Other symbolic execution–based tools
include MutSyn for mutation-driven testing [26] and map2check, which leverages program analysis for
error detection and test generation [27].

More recently, LLM-driven approaches have emerged. CoverUp integrates coverage feedback to
guide test generation for Python programs [28], while SymPrompt encodes execution constraints into
prompts for systematic test creation [29]. Cleverest instead focuses on zero-shot prompt generation of
failing regression tests, targeting structured input programs [30].



UnitTenX approaches the problem of unit test-generation by using formal verification to extract
sensitization conditions to create unit that cause crashes. UnitTenX is primarily aimed at legacy code
bases with undocumented interfaces. By generating unit tests, we can resolve bugs and document
unknown interfaces, thereby increasing their understanding.

3. Motivating Example

AI Can Fix Bugs, But Can’t Find Them [31]: Finding bugs corresponds to solving the reachability problem
in sequential programs, which asks if an error state is attainable from initial conditions [32]. Depending
on variable domains and program complexity, this problem ranges from NP-complete implying high
computational difficulty, to undecidable, where no algorithm guarantees a solution. Decoder-only LLMs
generate sequences through a forward token generation process, and can at best enumerate solutions
in token space, in an exponentially large search space that minimally requires backtracking [33]. This
limitation highlights the challenges faced by AI in identifying bugs, as the search space for potential
solutions is vast and complex.

Consider the source code in Listing 3.1, which is an extracted function from djbdns [10], a DNS
server implementation using the C programming language. In large software codebases, it can be
challenging to ensure that the code behaves as expected, especially in scenarios where it relies on
results from other independent parts of the software. In the example shown, it can be hard to assert
with confidence that the code cannot enter a crash state. It can be just as hard to determine if the return
statements in lines 7 and 10 are the only possible way to exit the function.

Listing 3.1: Function from a DNS server implementation

1 int socket_recv4(int s, char *buf, int len, char ip[4], uint16 *port)
2 {
3 struct sockaddr_in sa;
4 int dummy = sizeof sa;
5 int r;
6 r = recvfrom(s, buf, len, 0, (struct sockaddr *)&sa, &dummy);
7 if (r == -1) return -1;
8 byte_copy(ip,4,(char *) &sa.sin_addr);
9 uint16_unpack_big((char *) &sa.sin_port,port);

10 return r;
11 }

To overcome this problem, we combine the use of LLMs with formal verification tools that can
analyze the source code and provide a counterexample based on predefined properties that may have
been violated [34, 35, 36]. A counterexample is a description of the state of a program that has violated
a given property [37, 22]. ESBMC 1 [37], a formal verification tool that automatically encodes safety
properties such as integer arithmetic errors and buffer overflows, and checks for any possible violations,
can be used to identify situations that may lead to crashes or other undesirable behavior [36], which is
common in legacy software. We use ESBMC [37] to analyze C code for coverage and extract sensitization
conditions. This approach complements the capabilities of LLMs, providing a more formal solution for
bug detection and software testing.

Legacy code bases often lack comprehensive tests, making them difficult tomaintain andmodernize [4].
Formal verification tools such as software model checkers can be used to find bugs and also to ensure
the absence of bugs [21]. This often comes with its own set of challenges, for instance, with bounded
model checkers, parameters such as the number of loop unwindings and execution timeouts must be
carefully configured to balance the computational effort required to detect bugs against the necessary
thoroughness and time of the search. These limitations motivate the need for automated, adaptive unit
test generation systems that can efficiently improve test coverage and reliability in complex legacy
systems.
1https://github.com/esbmc/esbmc

https://github.com/esbmc/esbmc


4. Methodology

UnitTenX operates through a series of 5 steps, which are described in this section. A visual diagram is
provided for reference in Figure 1 and summarized below. The remainder of this section provides a
detailed description of each step.

1. AutoMockUps generates mockups of each target function.
2. Symbolic Analyzer uses ESBMC, a formal verification tool to extract sensitization and crash

conditions.
3. Unit Test Generator employs an LLM to produce unit tests.
4. Coverage Analysis compiles and reports coverage from the generated tests, using gcov.
5. Reflection uses the LLM to evaluate the results and recommends improvements to test quality

and coverage.

Figure 1: Shows each component of UnitTenX along with the flow of data. The orange nodes denote steps that
use LLM to process data.

UnitTenX processes code from a single source file when creating regression tests as the whole program
is included in the context of the LLM. The AutoMockups step automates this by constructing a single file
for each function to be tested that contains the transitive closure of the symbol-dependency graph, called
the Implied Functions. The Implied Functions are generated by iterating over all symbols in the source
file, analyzing control-flow and dependency relationships between functions. This consolidation enables
inclusion of the complete source context in LLM prompts for each target function, which is otherwise
difficult because functions often depend on symbols across multiple files (Figure 2). Additionally, because
the automated process to generate the mockups is reversible, tests generated using formal methods
and LLMs can be correlated and annotated in the original code. By making functions and variables
non-static, we increase the transparency and control over the test program, enabling more effective
testing and analysis. Lastly, AutoMockups decreases long compilations when testing for coverage as it
only compiles a single source file instead of multiple.

Figure 2: C Package Problems

The Symbolic Analyzer scans the single source file generated using AutoMockUps and extracts
sensitization conditions that target coverage gaps and identifies potentially unsafe execution states.



Using formal verification, it checks for vulnerabilities such as integer overflows/underflows, buffer
overflows, and other crash-inducing behaviors that ESBMC automatically encodes [36, 21]. These
extracted conditions then serve as input for the Unit-Test Generation step.

The Unit-Test Generation step creates unit tests using the LLM. The LLM receives in its input the entire
Implied Function C source code, previously generated tests, coverage analysis, and ESBMC outputs. The
LLM then generates candidate unit tests. Any unit test that crashes on execution is commented out and
annotated with // CRASH, creating a record of issues for developers and marking areas requiring further
analysis. The unit-tests generated create a regression infrastructure, as illustrated in Figure 3. This
infrastructure allows developers to track changes in the code and assess their impact on the software’s
behavior. Executing all generated tests can detect changes in package accesses or cross-dependencies,
as illustrated in Figure 4.

Figure 3: Tests are Regression Units Figure 4: Regression Units Can Detect Changes

The Coverage Analysis step compiles and extracts coverage information from the unit tests generated.
This is later used in the reflection stage to evaluate the quality of the generated test. While ESBMC
counterexamples are not used directly in this step, they influence coverage indirectly by guiding the
LLM during unit test generation. If ESBMC completes with a decisive result, the unit-tests generated
will usually have high coverage (as seen in Section 5).

The Reflection step analyzes test and coverage results to recommend actions for improving tests. It
is at this step that the test generation loop can exit or continue to keep improving the system. UnitTenX
will exit before the Reflection step if the max number of test generation and evaluation iterations has
passed over a predefined value, and there are no errors reported from previous steps. If the loop is
continued, the Reflection step tasks the LLM with rating the generated test by using the coverage results
and recommending a plan of action for the Unit-Test Generation step.

5. Experimental Evaluation

This section presents a comprehensive experimental evaluation of UnitTenX 2. A record of the experi-
mental data and results can be found at [38]. The experiments were conducted using the legacy DNS
server djbdns [10] over 202 functions. For the experimental execution, the tests involved the execution
of UnitTenX for each function, with automated logging to capture quantitative data for measuring code
coverage, error handling, test generation, edge case analysis, and robustness. For the experiments,
UnitTenX utilizes the pycparser package for parsing C source code, ESBMC v7.7.0 64-bit x86_64
Linux for symbolic execution with Z3 v4.13.3 64-bit as the SMT backend. ESBMC is executed with a
10-second timeout, and GCC/clang with Gcov for instrumentation and coverage analysis. The LLM used
to generate the unit tests and for review is gpt-4o [39]. The max iterations of the Unit-Test Generation,
Coverage Analysis and Reflection steps was set to 4.

2UnitTenX Source Code: www.github.com/cnunescoelho/UnitTenX

www.github.com/cnunescoelho/UnitTenX


5.1. RQ1: How effectively does UnitTenX generate unit tests that increase code
coverage for legacy C codebases?

Figure 5 illustrates a scatter plot comparing the initial test quality ratings, from the initial test generation
(x-axis) against the final test quality ratings (y-axis) assigned by UnitTenX ’s reflection step. Each point
represents a function, with its position indicating the initial and final subjective test quality ratings on a
0–8 scale, where points above the red dashed “No Improvement Line” signify improvement. Additionally,
objective coverage metrics are derived from the dataset to assess coverage effectiveness from a baseline
of 0%, as no comprehensive unit tests existed before UnitTenX ’s intervention:

• Coverage Effectiveness: Of the 199 functions that executed (98.5% of 202 total), coverage was
successfully measured for 186 functions (93.5%).

• Test Quality Improvement: Figure 5 shows that 66/199 functions (33.2%) improved their test
quality ratings, moving above the diagonal. The median test quality gain was +3 points (e.g.,
from 0 to 5), with the largest single improvement being from 0 to 8 (+8 points), as evidenced by
the point at (0,8).

These findings highlight UnitTenX ’s dual capability: generating tests that cover previously untested
code (186/199 functions) and enhancing test quality for a significant subset (33.2%). While direct
coverage percentages are not plotted, the high coverage success rate and test quality improvements
show that UnitTenX successfully generates comprehensive test suites for legacy C codebases.

5.2. RQ2: How does UnitTenX handle compilation errors, runtime exceptions
(segmentation faults), and timeouts during automated test generation?

• Compilation Errors: The majority of failures occur due to code generated from the LLM that
does not compile. There were 982 compilation errors. However, these were all resolved due to
the iterative nature of UnitTenX.

• Segmentation Faults: There were a total of 118 unit tests generated using the symbolic ana-
lyzer that crashed and were commented out. These expose crash conditions and are useful for
documentation purposes.

• Timeouts: 61 total timeouts occurred when ESBMC exceeded its 10 second time limit.

Despite 1161 total errors across 1167 iterations, UnitTenX produced compiling tests for all 199 executed
functions, underscoring its robustness in recovering from intermediate setbacks.

Figure 5: RQ1: UnitTenX Initial test coverage
rating against final. Figure 6: RQ3: Reflection & Feedback Loop Impact



5.3. RQ3: How does the reflection and feedback loop in UnitTenX contribute to
iterative improvement of generated test suites?

Figure 6 shows a scatter plot of rating improvement (y-axis, -6 to 8) versus reflection cycles (x-axis,
0 to 8) for 199 executed functions. Each orange dot represents a function, with its position reflecting
the change in test quality rating post-reflection. 66/199 functions (33.2%) showed improved ratings.
Pearson correlation yields 𝑟 = 0.0859, 𝑝 = 0.224155 (𝑝 ≥ 0.05), indicating no significant relationship
between reflection cycles and rating improvement. Most rating improvements occurred after the first
three cycles, as can be seen by the shape of the diagram.

5.4. Discussion

The findings highlight UnitTenX ’s potential to significantly reduce the manual effort required for
testing legacy codebases. In our evaluation, the codebase under test went from 0% line coverage to
100% proving that with the correct tools. A study showed that up to 50% of the development time
was spent on fault localization and bug fixing [40]. By automating the generation of high-coverage
test suites and effectively handling errors, UnitTenX addresses key challenges in maintaining and
modernizing legacy software systems. The ability to generate tests that expose crash conditions also
enhances the documentation and understanding of legacy interfaces, which is critical for long-term
maintenance. Moreover, the system’s robustness in error handling makes it a reliable tool for production
environments.

6. Conclusion

Threats to Validity Several limitations should be considered when interpreting the results. First,
the evaluation was conducted on a single legacy DNS server code-base. This limits the generalizability
of the results. Second, the test quality ratings used in the reflection step are subjective (to the LLM’s
generation) and could introduce bias in assessing test quality improvement. Objective metrics, such as
code coverage percentages or fault detection rates, would provide a more rigorous evaluation.

This paper introduced UnitTenX, a tool to generate regression tests to document legacy codebases
automatically by using LLMs equipped with formal verification to extract sensitization conditions.
The experimental evaluation showed that UnitTenX was able to bring 100% line coverage to a real-life
code-base without any tests initially, proving that it is capable of being used in production environments.
This makes it a viable tool for software maintenance and modernization. However, further research is
needed to validate its effectiveness across diverse legacy software systems.

To address these limitations, future research should evaluate UnitTenX on a broader range of legacy
codebases, including those from different domains and with varying levels of complexity. Integrating
more objective metrics, such as coverage into the rating process in the Reflection step could improve its
overall accuracy in assessing the generated unit-tests.

Declaration on Generative AI During the preparation of this work, the author(s) used Perplexity
AI to review documents and sentences. After using these tool(s)/service(s), the author(s) reviewed and
edited the content as needed and take(s) full responsibility for the publication’s content.
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