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Abstract

Current search techniques are limited to standard RAG query-document applications. In this paper, we propose a
novel technique to expand the code and index for predicting the required APIs, directly enabling high-quality,
end-to-end code generation for auto-completion and agentic Al applications. We address the problem of API
leaks in current code-to-code benchmark datasets by introducing a new dataset built from real-world ServiceNow
Script Includes that capture the challenge of unclear API usage intent in the code. Our evaluation metrics
show that this method achieves 87.86% top-40 retrieval accuracy, allowing the critical context with APIs needed
for successful downstream code generation. To enable real-time predictions, we develop a comprehensive
post-training pipeline that optimizes a compact 0.6B reranker through synthetic dataset generation, supervised
fine-tuning, and reinforcement learning. This approach enables our compact reranker to outperform a much
larger 8B model while maintaining 2.5x reduced latency, effectively addressing the nuances of enterprise-specific
code without the computational overhead of larger models.
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1. Introduction

Large Language Models (LLMs) have become integral to modern developer workflows through Al-
assisted code completion. In specialized enterprise environments like ServiceNow, model effectiveness
depends heavily on context quality, particularly for custom APIs called Script Includes. Script Includes
in ServiceNow are reusable JavaScript components that serve as a centralized repository for storing
functions and classes, enabling developers to encapsulate complex business logic [1].

This paper addresses the critical challenge of context retrieval for LLM-powered code generation in
ServiceNow’s code completion and Build Agent tasks.

The core problem is accurately retrieving relevant Script Includes from partial developer code without
explicit queries. Traditional methods like keyword search or basic vector search fail to capture nuanced
developer intent and lack awareness of complex hierarchical relationships across the ServiceNow
platform. General-purpose LLMs also lack domain-specific knowledge, making high-quality retrieval
essential for reusing instance-specific Script Includes.

We propose DeepCodeSeek, a multi-stage retrieval pipeline that maximizes context relevance for
LLMs. Our main contributions are: (1) a search pipeline using platform metadata and advanced IR
techniques to significantly improve retrieval accuracy over baselines; (2) a comprehensive post-training
pipeline optimizing compact reranker models through synthetic dataset generation, supervised fine-
tuning, and reinforcement learning; and (3) empirical validation showing our optimized 0.6B reranker
surpasses 8B models while maintaining significantly reduced latency for real-time applications.

The rest of this paper is organized as follows: Section 3 details our multi-stage retrieval method,
Section 4 describes dataset construction and indexing, Section 5 presents experimental setup and
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evaluation methodology, Section 6 shows main results and ablation studies, and Section 7 details our
post-training pipeline for optimizing compact reranker models.

2. Related Work

Our work builds on recent advances in neural code retrieval, retrieval-augmented generation (RAG),
structural code analysis, and search refinement techniques, adapting them to a large-scale enterprise
environment.

2.1. Neural Code Retrieval

Code search has evolved from keyword-based methods like BM25 [2] to dense retrieval models such as
CodeBERT [3], which embed queries and code into a shared semantic space. Yet recent evaluations
(e.g., ColR [4]) show that general-purpose dense retrievers degrade in domains different from what
they were trained on, mainly because their pretraining rarely covers such niche knowledge. To control
for this effect, we adopt BM25 as a strong, domain-agnostic baseline that remains competitive under
out-of-domain conditions. Our work then targets the missing piece: a domain-aware retrieval pipeline
tailored to ServiceNow Script Includes.

2.2. RAG with Filtering and Query Enhancement

Retrieval-Augmented Generation (RAG) [5] improves LLM outputs by dynamically providing relevant
context, now common in coding assistants [6]. A key challenge is ensuring retrieved context relevance,
which can be addressed by leveraging code structure [7] and query enhancement techniques. Inspired
by Hypothetical Document Embeddings [8], LLMs can generate complete hypothetical code snippets
from partial code, creating richer queries.

While many systems build Code Knowledge Graphs from source code [9, 10] to enable filtering,
our RAG pipeline constructs a Knowledge Graph from ServiceNow platform metadata for scope-level
filtering. This constrains the search space and enables efficient retrieval of relevant Script Includes
within our enterprise-specific context.

2.3. Reranking

Following retrieval, a cross-encoder or long-context LLM reranker [11] can re-order top candidates,
ensuring the most relevant results are prioritized for the final generation step. Recent reinforcement-
learning approaches explicitly inject reasoning steps to boost reranking quality: REARANK [12]
introduces a list-wise reasoning reranking agent, while SWE-RL [13] shows that RL on large-scale
software-evolution data substantially improves LLM reasoning for code-centric tasks. Our reranker
adopts a similar RL fine-tuning strategy but is trained on enterprise-specific Script Include pairs, enabling
higher precision in our domain.

3. Proposed Method

Our approach is a multi-stage retrieval pipeline designed to provide highly relevant Script Includes
for code completion. The pipeline begins with setting a baseline and incorporates several techniques
to progressively refine the search space and improve accuracy. The overall architecture is depicted in
Figure 1.

The core components of our method are as follows:

+ Knowledge Graph for Search Space Reduction: We leverage a Knowledge Graph (KG)
constructed from platform metadata to prune the search space. This pre-filtering step significantly
narrows the field of potential candidates before the main retrieval stage.
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Figure 1: Overview of the proposed multi-stage retrieval pipeline.

« Enriched Indexing: Rather than indexing the raw code, we created a structured index. All
methods belonging to a single Script Include are grouped under their parent namespace. This index
is further enriched with SI code metadata and their corresponding structured JSDoc, including
API usage example. This organization helps the embedding model better distinguish between
different functionalities and reduces ambiguity during retrieval.

« LLM-Powered Code Expansion: Developer’s partial code often lacks sufficient context for
effective retrieval. To address this, we experimented using a Large Language Model (LLM) at
runtime to generate more descriptive and effective queries. By analyzing the partial code, the
LLM can infer the developer’s intent and produce a more complete code expansion, which in turn
leads to more accurate results from the embedding model.

« Reranking: The initial retrieval stage may return the correct Script Include but not necessarily
at the top of the list (e.g., within the top-5 results). For effective code generation, the downstream
LLM needs a small, highly relevant set of options. Therefore, we employ a reranking stage using
a cross-encoder or LLM reranker to improve the position of the most relevant candidates, aiming
to move them from higher K values to lower K values (e.g., top-40 into the top-5). This ensures
better performance, as it is easier for the code generation model to process fewer, higher-quality
context options.

+ Post-training optimization: We develop a comprehensive training pipeline that optimizes
compact reranker models through synthetic dataset generation, supervised fine-tuning, and
reinforcement learning, enabling smaller models to achieve performance comparable to much
larger models while maintaining significantly reduced latency.

This multi-stage process, combining a knowledge-informed search space, enriched indexing, advanced
query generation, and re-ranking, forms a robust pipeline that significantly outperforms vanilla retrieval
methods([2]) for code generation tasks.

4. Dataset and Index Construction

4.1. Dataset Construction

We constructed a custom evaluation dataset from real-world ServiceNow development scenarios to
capture the challenge of API retrieval from partial code. Our dataset consists of 850 code completion
scenarios, each containing a partial JavaScript code snippet and the corresponding ground truth Script
Include that should be used to complete the code.

To explain the terms used in our dataset:

+ code_middle: Autocompletion span where the target API is invoked.

+ code_before / code_after: Prefix and suffix around code_midd1le; the prefix omits the target
Script Include so retrieval must rely on context, while the suffix adds extra lines without exposing
the APL
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Figure 2: Task anatomy: highlighting how code_before, and code_after are used to recover the ground-
truth Script Include required for code_middle.

This setup makes the retrieval task realistic and challenging, because the model must understand the
code context without direct hints. The “incomplete code” provided as the input for completion can be
FIM (fill-in-the-middle) or non-FIM format depending on whether code_after is available in the input.

To ensure data quality, we employed an LLM judge (Gemini 2.5 Flash) to evaluate the clarity of
developer intent in each sample. The judge identified 705 samples (83%) as having clear intent, which
we use for our primary evaluation. The remaining 145 samples with ambiguous intent are excluded
from our main results but analyzed separately to understand failure cases.

4.2. Index Construction

Our search index covers 277 distinct Script Include namespaces containing 3,337 individual APIs. The
index documents vary significantly in length: full scripts range from 66 to 10,407 tokens (mean: 2,280),
while corresponding JSDoc summaries are more concise, ranging from 157 to 5,368 tokens (mean: 807).
Through extensive experimentation, we found that JSDoc summaries provide superior retrieval per-
formance compared to raw code. This is attributed to their structured nature and focused representation
of API functionality. Consequently, we use JSDoc summaries for our final optimized index, which
provides a cleaner signal for retrieval while maintaining comprehensive coverage of API capabilities.

4.3. Knowledge Graph Construction

We constructed a hierarchical Knowledge Graph from ServiceNow platform metadata to enable efficient
search space pruning. The graph captures the relationship between packages, scopes, and Script Includes,
allowing us to filter candidates based on contextual relevance before expensive retrieval operations.
Appendix B details how this metadata-based graph helps reduce search space in our use case.

5. Experimental Setup

5.1. Evaluation Metrics

We evaluate our retrieval pipeline using two primary metrics:

« Top-K Accuracy: The percentage of queries where the correct Script Include appears in the
top-K retrieved results. We report results for K = @5, @10, @20, and @40.

« Mean Reciprocal Rank (MRR): The average of the reciprocal ranks of the correct Script Include
across all queries, providing a more nuanced view of ranking quality.



5.2. Baselines and Implementation

We compare our proposed pipeline against BM25 [2] as the primary baseline, which achieved 53.02%
top-40 accuracy on our dataset. Our implementation uses the following components:

« Embedding Model: Linqg-Al-Research/Linq-Embed-Mistral (7B parameters, 32K context length)
« Reranker Models: Qwen-8B (baseline) and our optimized Qwen-0.6B models
+ Judge Model: Gemini 2.5 Flash (1M context length) for intent clarity evaluation

5.3. Pretraining Knowledge Check

To test whether Script Include knowledge was already present in model pretraining corpora, we
prompted LLMs to autocomplete our evaluation samples without any retrieval context (non-FIM, no
KG, no index). The model produced the correct Script Include namespace in only 5% of cases, indicating
limited memorization/coverage and motivating retrieval for this domain.

6. Experiments and Results

6.1. Main Results

We evaluate three primary retrieval methods against our BM25 baseline: (1) Prefix Code Embed
(Non-FIM), which uses embeddings of the code preceding the cursor; (2) LLM Description, which
generates a natural language description of user intent; and (3) Hypothetical Code Generation,
which generates hypothetical code completions for retrieval. For concise method prompts and working
examples, see Appendix J and Section I, respectively.

Table 1 shows the performance of these methods on our clear-intent evaluation subset (705 samples).
The Hypothetical Code Generation method consistently outperforms all other approaches, achieving
87.86% top-40 accuracy, more than doubling the BM25 baseline performance. Table 2 presents the Mean
Reciprocal Rank (MRR) results, confirming the superior ranking quality of our approach. Appendix
A, Cand D have various ablation studies showing how each design choice (e.g., FIM vs. non-FIM
formatting, context length, etc.) impacts accuracy in our dataset.

Table 1
Top-K Accuracy of Retrieval Methods (Non-FIM)
Method @5(%) @10(%) @20(%) @40 (%)
BM25 (Baseline) 26.69 34.16 40.28 53.02
Prefix Code Embed 58.21 65.71 75.36 85.36
LLM Description 63.35 68.68 76.87 82.92
Hypothetical Code Gen  63.93 71.79 81.43 87.86
Table 2 Table 3
Mean Reciprocal Rank (MRR)@K of Retrieval Methods (Non-FIM) Latency Analysis (Non-FIM)
Method @5 @10 @20 @40 Reranker Latency (ms)
BM25 (Baseline) 017 018 018  0.19 None 22
Prefix Code Embed 043 044 045 045 4B @ Dense 40 (HF) ~342
LLM Description 048 049 049  0.49 4B @ Dense 40 (VLLM) ~89

Hypothetical Code Gen 0.51 052 0.52  0.53 8B @ Dense 40 (VLLM) ~121




6.2. Latency Analysis

Table 3 presents latency measurements for different pipeline configurations. Our optimized 0.6B reranker
matches or exceeds the 8B model while maintaining significantly reduced latency.

7. Post Training and Optimization

To bridge the performance gap between the 0.6B and 8B Qwen reranker for our use case while enabling
real-time predictions, we developed a comprehensive post-training pipeline that optimizes compact
reranker models to achieve performance comparable to much larger models.

The goal is to match or surpass an 8B reranker’s ranking quality at much lower latency and cost.
This matters in production: a 0.6B model fits tighter memory budgets, runs with higher concurrency,
and reduces tail latency. Our SFT+RL results now exceed the 8B baseline while keeping the 2.5x latency
gain, which makes the approach deployment-ready.

7.1. Training Dataset

A critical challenge in training our reranker was ensuring no training contamination from our evaluation
datasets. To address this, we constructed completely fresh training datasets using previously unused
Script Include namespaces.

7.1.1. Dataset for SFT

We constructed a comprehensive dataset for supervised fine-tuning using subsets of the CodeR-Pile
dataset, focusing on JavaScript and TypeScript samples to establish a robust foundation for code
understanding. This dataset provides the necessary diversity and scale for effective SFT training.

7.1.2. Synthetic Dataset for RL

For reinforcement learning we reused Script Include namespaces that never appeared in our training or
evaluation data. First, we pulled 892 such namespaces (about 5.9K methods) that had been left out of
earlier extraction runs. We then generated fresh JSDoc signatures with an LLM so every namespace
had structured documentation in the index. Claude 3.7 analyzed each script and produced synthetic
triplets—code_before, code_middle, code_after—with the target usage placed in code_middle.
We cleaned the pool in three passes. We removed 30 samples where the ground-truth namespace
leaked into code_before or code_after, dropped another 10-15 samples that still mentioned the
namespace nearby, and finally used fuzzy matching to cut 894 close variants. This left 285 strong exam-
ples. From these we kept 204 samples that offered enough hard negatives via the sentence-transformers
mine_hard_negatives helper; the remaining 81 lacked suitable negatives, so we discarded them.

7.2. Training Pipeline
Our training approach addressed the challenge of training a small model on limited data without
overfitting or catastrophic forgetting. The pipeline consisted of three main stages:

7.2.1. Supervised Fine-Tuning (SFT)

We began with supervised fine-tuning using the dataset described in Section 7:

+ Parameter-Efficient Training: Experiments with full fine-tuning and PEFT + LoRA revealed
that LoRA adapters provided the best performance improvements for the 0.6B reranker while
maintaining efficiency.

« Balanced Training: We ensured balanced training by randomly selecting either positive or
negative samples during training, preventing class imbalance bias.
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+ Loss Function: We employed negative log-likelihood loss (n11_1loss) to optimize for the true
document label (1 for positive, 0 for negative).

Training exclusively on synthetic samples led to rapid overfitting. The CodeR-Pile dataset alone
provided better generalization and superior performance compared to mixed training approaches,
indicating that combining synthetic and open-source data did not improve results.

7.2.2. SFT + RL

To further improve ranking performance, we implemented a GRPO-based reinforcement learning
pipeline:

+ Reward Function: Training uses a completion-aware binary reward that reads the first token
produced in each GRPO rollout; matching the supervision label with “yes” yields +1, while
an incorrect “no” response receives —1. Sampling eight completions per prompt injects the
variance GRPO needs to shift the policy instead of collapsing toward the reference distribution.
See Appendix G for the full setup and diagnostics.

+ Training Strategy: We observed that RL training on the small synthetic dataset alone led to
catastrophic forgetting. The optimal approach involved applying RL to a checkpoint from the
SFT model trained on the CodeR-Pile dataset, then fine-tuning with our synthetic dataset.

+ Performance Achievement: This two-stage approach enabled the 0.6B model to achieve
performance very close to the 8B reranker on our evaluation benchmark dataset.

7.2.3. Extended SFT

As an alternative to RL, we experimented with extended supervised fine-tuning where we took the SFT
checkpoint trained on the CodeR-Pile dataset and further fine-tuned it separately with our synthetic
dataset. While this approach provided decent results, it did not show noticeable improvements over the
previous SFT checkpoint.

7.3. Training Results and Validation

Our comprehensive evaluation demonstrates the effectiveness of the post-training pipeline. Figure 3
shows the complete post-training results across all stages, while Table 4 presents the detailed perfor-
mance comparison:

The post-training pipeline successfully bridges the performance gap between the 0.6B and 8B models,
with the SFT + RL optimized 0.6B model achieving 68.58% top-5 accuracy compared to 66.10% for the
8B model—outperforming it by 2.48 percentage points. Detailed out-of-distribution evaluation metrics
appear in Table 7 in Appendix F.



Table 4
Training Results Comparison (FIM — Hypothetical Code Generation, Dense 40)

Model @5(%) @10(%) @15(%) @20(%)
8B Reranker (Baseline) 66.10 74.61 77.87 79.72
Qwen 0.6B Base 61.84 71.35 75.60 77.30
Qwen 0.6B SFT 63.26 70.21 74.04 75.89
Qwen 0.6B Extended SFT 63.69 70.92 74.89 78.01
Qwen 0.6B SFT + RL 68.58 76.84 82.59 83.84

8. Conclusion

We present DeepCodeSeek, a comprehensive solution for real-time API retrieval in enterprise code
completion scenarios. Our multi-stage retrieval pipeline achieves 87.86% top-40 accuracy, more than
doubling BM25 baseline performance while addressing the critical challenge of inferring developer
intent from partial code.

Our key contributions are: (1) a novel retrieval pipeline combining knowledge graph filtering, enriched
indexing with JSDoc documentation, and advanced query enhancement techniques; (2) a comprehensive
post-training pipeline optimizing compact reranker models through synthetic dataset generation,
supervised fine-tuning, and reinforcement learning; and (3) demonstration that our optimized 0.6B
reranker now outperforms the 8B model (68.58% vs 66.10% top-5 accuracy) while maintaining 2.5x
reduced latency.

Ablation studies show significant component contributions: knowledge graph filtering reduces
search space by 59%, enhanced indexing improves accuracy by 31 percentage points, and LLM reranking
provides an additional 7 percentage point boost, enabling real-time code completion in production
environments.

8.1. Limitations and Future Work

Our evaluation has limitations: dataset focus on Script Includes limits generalization to other code
completion contexts, synthetic data generation may not capture real-world complexity, and small
synthetic dataset size (204 samples) constrains training experiments.

Future work will focus on expanding data coverage through larger synthetic dataset generation and
real-world data collection, refining the knowledge graph for enhanced filtering, and specializing the
reranker for specific code completion tasks.
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A. Ablation Studies

We conduct comprehensive ablation studies to understand the contribution of each pipeline component.

A.1. Knowledge Graph Filtering

Our Knowledge Graph, constructed from ServiceNow platform metadata, captures hierarchical rela-
tionships across 17,701 Script Includes. Analysis reveals that 84% of new SI usages conform to existing
patterns, enabling effective search space reduction. By prioritizing globally scoped Script Includes, we
reduce candidate sets by approximately 59% before expensive retrieval operations.

A.2. Indexing Strategy Impact

Table 5 quantifies the impact of our enhanced indexing strategy. Grouping methods under parent
namespaces and enriching with JSDoc documentation provides dramatic improvements across all

metrics.

Table 5

Impact of Enhanced Indexing (Top-K Accuracy %)
Method Index Version @5 @40
Non-FIM Baseline 36.71 54.12

Namespace Grouping + JSDoc 58.21 85.36

A.3. Reranking Analysis

Table 6 shows that the LLM reranker (Gemini 2.5 Flash) provides substantial improvements over cross-
encoder approaches, achieving 72.60% top-5 accuracy compared to 65.84% for the Qwen Reranker
(8B).

Table 6

Reranker Comparison (Non-FIM, Dense 20)
Reranker @5 (%) @10(%) @15(%)
Qwen Reranker (8B) 65.84 72.95 74.73
LLM (Gemini 2.5 Flash) 72.60 74.73 75.80

A.4. Code Trimming and Context Length

We analyzed the impact of code trimming and context length on retrieval performance. To avoid
bloating the embedding model with excessive or noisy context, we experimented with various lengths
of prefix code. Our experiments show that a context of 8-10 lines before the cursor yields the best
performance, gaining a 1.82% relative increase over using a larger context in our Prefix Code Embed
(Non-FIM) Search. This optimal context length balances the need for sufficient information to infer
developer intent while avoiding noise from distant code that may not be relevant to the current retrieval
task. Note that the downstream code generation task may require more context. Figure 4 illustrates the
relationship between context length and retrieval accuracy.

A.5. Code Before vs. After Analysis

We investigated whether using code that comes before the cursor (prefix) or after the cursor (suffix)
provides better retrieval performance for user code in the middle. Our analysis revealed that the prefix
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code consistently outperforms suffix code for Script Include retrieval. This is likely because prefix code
better captures the developer’s intent and the context in which they are working, while suffix code
often contains implementation details that are less useful for API retrieval. Suffix code still provides
additional boost to the retrieval. Figure 5 shows the performance comparison between using code
before and after the cursor position.
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A.6. Code Proximity and Relevance

We conducted an ablation study to examine how the proximity of code elements affects retrieval
accuracy. Our experiments revealed a critical finding: the maximum information for API retrieval is
contained in the last 1-2 lines immediately preceding the API invocation.

Our analysis compared different context trimming strategies, including using all lines before the
cursor, excluding the last line, excluding the last two lines, and limiting context to ten lines with various
exclusions. The results consistently showed that removing the last 1-2 lines before the API invocation
leads to significant performance degradation in both Top-K accuracy and Mean Reciprocal Rank (MRR),
regardless of the overall context length.

This finding, as illustrated in 6 suggests that while broader context provides some benefit, the imme-
diate preceding lines contain disproportionately valuable information for predicting the appropriate
API This aligns with the intuitive understanding that developers typically write code in a sequential
manner, where the most recent lines provide the strongest signals about the intended functionality and
API requirements.

Context Trimming Ablation Study
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Figure 6: Effect of Code Proximity on Performance

B. Knowledge Graph Analysis

An analysis of the Script Include (SI) Knowledge Graph on our developer instance reveals several key
insights. The instance contains 2,516 global SIs and 1,744 non-global SIs. By focusing the search on
non-global packages and scopes, the search space is reduced by approximately 59%. This is a significant
improvement, and the search can be narrowed even further. Approximately 97% of non-global SIs follow
a one-to-one mapping, meaning they are used in only a single package and scope. As a result, many
package-scope pairs map to a single SI, often eliminating the need for a deeper search within those
contexts.

C. Ablation Study on Model Selection

As a preliminary step, we conducted an ablation study on an older version of our dataset to select
a foundational embedding model. This initial evaluation compared several models, most notably
ling-embed-mistral against Jina, which is a widely used embedding model for code retrieval. The
study was performed without any advanced indexing or retrieval techniques to purely assess the baseline
performance of the models. The results, shown in Figure 7, demonstrated that 1inq-embed-mistral
performed significantly better than Jina. Based on these preliminary findings, we chose it for all
subsequent experiments in our pipeline.
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Figure 7: Ablation study comparing the retrieval performance of various models.

D. Code Summarization Strategy

Chunking the raw Script Include (SI) code proved to be ineffective and, in some cases, degraded retrieval
performance. Given the availability of large-context models, we explored alternative summarization
techniques. This led to the development of automated JSDoc signature generation, which creates JSDoc
signatures from SI code. Using these JSDoc signatures as a concise summary of the script’s functionality
proved to be a more effective strategy, improving the relevance of our retrieval results.
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Figure 8: Performance comparison between JSDoc-based indexing and raw code descriptions across different
retrieval methods. JSDoc indexing shows consistent improvements in retrieval accuracy.

Figure 8 demonstrates the performance improvement achieved by using JSDoc documentation
compared to raw code descriptions. The comparison shows that JSDoc-based indexing consistently
outperforms raw code indexing across different retrieval methods, with particularly significant im-
provements in top-5 and top-10 accuracy metrics. This improvement is attributed to JSDoc’s structured
nature, which provides cleaner, more focused representations of API functionality while eliminating
noise from implementation details.



E. Training Loss Analysis

E.1. Supervised Fine-Tuning (SFT) Loss

Figure 9 shows the training loss progression during supervised fine-tuning. The model shows stable
convergence with the loss decreasing steadily over epochs, indicating effective learning of the ranking
task.
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Figure 9: Training loss progression during supervised fine-tuning (SFT).

Figure 10 shows the epoch-wise loss during SFT training, providing a more granular view of the
training progression across different epochs.
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Figure 10: Epoch-wise loss during supervised fine-tuning (SFT).

E.2. Reinforcement Learning Reward Progression

Figure 11 shows the reward progression during reinforcement learning training. The completion-aware
yes/no reward captures how frequently sampled responses align with the supervision label, so rising



curves indicate the model is pushing more of its rollouts toward the correct decision token.
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Figure 11: Reward progression during reinforcement learning training.

E.3. Reinforcement Learning Training Loss

Figure 12 shows the training loss during reinforcement learning, providing insight into the convergence
behavior of the RL optimization process.
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Figure 12: Training loss during reinforcement learning.



F. Out-of-Distribution Generalization

To validate that our training pipeline preserves the base model’s generalization capabilities, we evaluated
all trained models on an out-of-distribution dataset that none of the models had seen during training,.
Table 7 reports the results.

Table 7

Qut-of-Distribution Performance Validation
Model @5(%) @10(%) @15 (%)
Qwen 0.6B Base 85.50 89.90 91.30
Qwen 0.6B SFT + RL 85.30 88.90 90.70
Qwen 0.6B SFT 85.10 89.40 90.90
Qwen 0.6B Extended SFT 86.70 91.40 92.10

These results demonstrate that our trained models maintain strong generalization capabilities without
suffering from catastrophic forgetting. The Qwen 0.6B models neither significantly outperform nor
degrade compared to the base model performance, indicating successful specialization for our specific
use case while preserving general code understanding abilities.

G. Reward Function for Reinforcement Learning

Our reinforcement learning stage uses completion-aware supervision that inspects the first decision
token produced by the reranker. Multiple samples per prompt provide the variance GRPO needs, while
auxiliary diagnostics monitor the log-odds gap between “yes” and “no” generations.

G.1. Completion-Based Training Reward

The default reward passed to GRPOTrainer is does the following:

« For every sampled completion, we read the first generated token, case-fold it, and test whether it
starts with "yes" or "no", since that is what the Qwen 0.6B reranker outputs.

+ A correct match against the supervision label yields +1.0; an incorrect answer yields —1.0.

G.2. Logit-Based Diagnostics

We track the mean log-probability of answering "yes" on positive and negative labels, respectively.
These diagnostics run alongside the completion-based reward and should trend upward for positive
documents once the policy improves.
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Figure 13: Log-probability of answering yes on positive labels.

H. Analysis of Query Enhancement Techniques

Our results show that while generating a description with an LLM can help, it does not always work as
well as using the code itself for the search. The main reason is that when the LLM creates a natural
language summary of the user’s code, it can sometimes miss important details or keywords. In contrast,
the other two methods (Prefix Code Embed (Non-FIM) and Hypothetical Code Generation)
use the actual code for retrieval. This provides the search model with more specific information, which
likely explains why they perform better in some situations.

I. Qualitative Examples of Retrieval Techniques

To illustrate the differences between our retrieval methods, this section provides a concrete example of
how each technique processes the same partial code snippet.

I.1. Shared Context: User’s Partial Code

The following JavaScript code snippet is used as the input for all three retrieval techniques discussed
below. The developer’s intent is to find common elements between two arrays, a task for which the
ArrayUtil Script Include is the correct tool.

var prevGrp = [];
var currentGrp = [];
var commonGrp = [];
var manager;
var backupmgr;
currentGrp . push(event.parml);
var currentGrpList = currentGrp.toString ().split(",");
var grp = new GlideRecord(’sys_user_group ’);
grp.addQuery(’sys_id ’, event.parm2);
grp . query () ;
if (grp.next()) {
manager = grp.manager;
backupmgr = grp.u_backup_manager;
}

var grpl = new GlideRecord(’sys_user_grmember ’) ;



grpl.addQuery(’ group’, event.parm2);

grpl.query () ;
while (grpl.next()) {
prevGrp.push(grpl.user + ’’);

}

for (i = 0; i < currentGrpList.length; i++) {
for (j = 0; j < prevGrp.length; j++) {

if (currentGrpList[i] === prevGrp[j]) {
commonGrp . push (currentGrpList[i] + ’);

}

I.2. Technique 1: Prefix Code Embed (Non-FIM)

This method uses a trimmed portion of the user’s code directly as the search query.

for (i = 0; i < currentGrpList.length; i++) {
for (j = 0; j < prevGrp.length; j++) {

if (currentGrpList[i] === prevGrp[j]) {
commonGrp . push (currentGrpList[i] + *’);

}

Results The model successfully retrieves the correct ArrayUtil API as the top result.

1. ArrayUtil (Correct)
2. Differ

3. LiveFeedCommon

4. XMLDocument

5. OCGroup

I.3. Technique 2: LLM Description

This method uses an LLM to generate a natural language description of the user’s intent, which is then
used as the search query.

INTENT: Identify users who are common to a previous group membership
list and a new list provided by an event parameter.

Results The abstraction to natural language causes the correct API to be ranked second.

1. GlideRecordUtil

2. ArrayUtil (Correct)
3. LiveFeedCommon

4. OCGroup

5. LabelUpdate



I.4. Technique 3: Hypothetical Code Generation

This method uses an LLM to generate a hypothetical completion for the user’s code. The original code
context combined with this hypothetical code forms the search query.

for (i = 0; i < currentGrpList.length; i++) {
for (j = 0; j < prevGrp.length; j++) {

if (currentGrpList[i] === prevGrp[j]) {
commonGrp . push(currentGrpList[i] + ’);
}
}
}
/‘k*

+ @description Finds elements that are in both currentGrpList and
prevGrp arrays and adds them to the commonGrp array.
+ Completes the nested loop comparison to identify common group
members between previous and current groups.
*/
if (currentGrpList[i] === prevGrp[j]) {
commonGrp. push (currentGrpList[i] + ’’);

}

Results This method also retrieves the correct ArrayUtil API as the top result, demonstrating the
effectiveness of using code-based context for our search index.

1. ArrayUtil (Correct)

2. LiveFeedCommon

3. Differ

4. GlideRecordUtil

5. IdentificationLookUpTables

J. Prompts for Al Models

This appendix details the prompts used for the various models in our pipeline.

J.1. Instructor-based Embedding Model

The following prompt is used to instruct the embedding model to find relevant APIs based on JSDoc for
a given code snippet.

Instruct: Given the code, find APIs based on their JSDoc that this
code might need to complete its intended purpose.

Code:

J.2. Reranker Model

The reranker model uses a prefix, suffix, and an instruction to judge whether a document meets the
query requirements.



J.2.1. Prefix

Judge whether the Document meets the requirements based on the Query

" "

and the Instruct provided. Answer "yes" or "no

J.2.2. Suffix

<|]im_end|>\n<|im_start|>assistant\n<think >\n\n</think >\n\n

J.2.3. Instruction

Using the API’s JSDoc, decide whether this API is directly wuseful
for the caller -code to complete its intended task.

J.3. LLM Judge for Dataset Intent

To judge the intent of a dataset, we use a system and user prompt pair.

J.3.1. System Prompt

Role : ServiceNow code-completion judge

Input : (a) partial ServiceNow JavaScript Glide code, (b) proposed
Script Include namespace, (c) all the possible method
descriptions for the given namespace

Task : Decide whether the namespace is the natural, intended fit
for completing the partial code snippet.

Reply : Output only "Yes." if it fits, otherwise "No." (no extra
text).

J.3.2. User Prompt
The user prompt is a formatted string.

user_prompt = (
f"### CODE:\n{code}\n\n"
f"### NAMESPACE:\n{namespace}\n\n"
f"### API DESCRIPTIONS (Context):\n{api_description}\n\n"
f"Does this namespace fit the code’s intent?"
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