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Abstract

Cyber-physical systems like autonomous vehicles are tested in simulation before deployment, using domain-
specific programs for scenario specification. To aid the testing of autonomous vehicles in simulation, we design a
natural language interface, using an instruction-following large language model (LLM), to assist a non-coding
domain expert in synthesising the desired scenarios and vehicle behaviours. We show that using it to convert
utterances to the symbolic program is feasible, despite the very small training dataset. Human experiments
show that dialogue is critical to successful simulation generation, leading to a 4.5 times higher success rate than
generation without engaging in extended conversation.
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1. Introduction

Testing autonomous vehicles exclusively on public roads, especially in near-crash scenarios, is not
feasible [1]. Iterative development and testing in simulation is essential [2], especially in the early
stages of the development process. Simulators like CARLA [3] support this iterative development
process for autonomous vehicles (AVs). Using CARLA, engineers can generate driving scenarios using
Scenic [4]: probabilistic scenario description languages such as Scenic specify a distribution over the
driving scenarios that satisfy the description, and then sample many simulation instances for evaluation.
In this way, challenging driving scenarios can be generated [5, 6], which can then be used for evaluation
of control algorithms for autonomous vehicles without a physical system, safely and cost-effectively.

Writing programs to specify driving scenarios in Scenic, or more generally programming in domain-
specific languages (DSLs), is challenging with steep learning curves. Domain experts with deep knowl-
edge of edge cases and desired driving behaviours may lack proficiency in Scenic or other DSLs, or
even when they do have such proficiency, they may still benefit from some assistance in their workflow.
A natural language interface in the form of a dialogue system in which engineers converse with a
chatbot that knows how to program in Scenic is a useful tool for facilitating this. In this paper, we
aim to develop such a dialogue system, and by doing so increase engineer access to simulation-driven
testing, by allowing them to interactively synthesise scenarios using natural language dialogue.

This is a challenging task for two reasons. Firstly due to data scarcity (only 32 examples of Scenic
programs with natural language descriptions are available online), approaches in developing a dialogue
system using instruction-following large language models (IFLLM) [7] are not directly applicable.
Secondly, the scenario description provided by the user may be underspecified: missing some details
about the desired driving scenario in the description that is only exposed through interaction with
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Figure 1: Dialogue System Overview. It facilitates driving scenario generation using natural language in code
generation (§ 3.1) and conversation (§ 3.2).

the simulator. Figure 1 illustrates this phenomenon. When a user utters “an ego vehicle overtakes
the two adversary vehicles”, the dialogue system can synthesize the simulation instance satisfying the
description, but the description itself does not provide all information about the situation, which in this
case is the manner of overtaking (could be one by one, or both at the same time). The user only becomes
aware of the necessity to provide such details by observing simulation instances. In this context, it
would be helpful for a natural language interface to allow the user to express feedback to the system,
which can then be used to update the program and, in turn, generate simulation instances.

To this end, this paper makes the following contributions: 1) we create a dataset of English description-
Scenic program pairs for a variety of driving scenarios; 2) we investigate how IFLLM can be used to
synthesize Scenic programs from natural language expressions in an embodied conversation where the
user converses with a chatbot and reacts to driving simulation instances; and 3) we conduct human
trials to evaluate the dialogue system, and in particular the value of having multiple dialogue turns.
Our results demonstrate that the dialogue system can be a valuable tool for facilitating the generation
of interactive driving scenarios.

2. Related Work

Code Generation The problem of converting natural language to executable programs has been
widely studied as semantic parsing [8, 9, 10]. Recently, using IFLLMs has been explored for this task
and also the wider problem of arbitrary code generation, including auto-completion [11] to assist the
software development process. In this paper, we concentrate on developing a dialogue system that
generates Scenic programs using LLMs. It is a low-resource domain where only a handful of examples
are available. This is in contrast to other popular programming languages like Python, which benefit
from many code repositories for training [12]. Furthermore, the code for high-resource programming
languages follows style guidelines, making it easier for models to learn generalisations from the well-
structured data. In contrast, the Scenic program repository was written in different styles by different
software engineers.

Testing AVs Testing is a fundamental process within software engineering, which is particularly
important for designing safety-critical systems, such as AVs [13, 14]. There are a variety of methods
for testing and validating AV design, even with black-box components [15]. This paper focuses on
testing by generating driving scenarios as a complementary procedure to formal verification. Such
testing involves interaction with expert users, which is essential for human-centred design [16]. Driving
scenario generation has been explored before: both direct scenario generation [17, 18] or by utilising
Scenic [19, 20]. What is unique about this work is: (i) human experiments; and (ii) utilising dialogue
to align the generated driving scenarios with the user’s intent. We view this latter contribution as
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Figure 2: Dialogue System for Conversational Driving Scenario Generation.

essential, given the ubiquitous phenomenon of natural language pragmatics [21]: speakers of natural
language often intend to convey a meaning that goes beyond what they make linguistically explicit,
relying instead on their interlocutor’s capacity to decode the intended content using the linguistic
and non-linguistic context. There is no guarantee that the sampling processes in Scenic match how
competent interlocutors perform this task, and so errors in decoding the intended message via Scenic
sampling may happen, prompting the need for user feedback.

Dialogue Systems and Tools Natural language interfaces in the form of a dialogue system have
become a popular means for users to interact with systems without needing to know the underlying
system or how to program it[22, 23]. Broadly, dialogue systems are categorised by their function as
goal-oriented or for chit-chat. We are designing a goal-oriented dialogue system with tool use [24],
which in this case is the CARLA simulator. What is unique about our work is that the driving scenarios
generated by the simulator are not observed in the dialogue system and are latent, with observations
coming only from the user’s feedback after observing simulation instances.

3. The Dialogue System

This section describes the dialogue system for generating driving simulations via conversations. Figure 2
demonstrates the two modes of the system: code generation (§3.1); and conversation (§3.2), in which
the user responds to simulation instances as depicted in Figure 1.

3.1. Code Generation

To generate Scenic programs from natural language descriptions, the dialogue system uses retrieval-
augmented generation (RAG) [25] with in-context learning [26] to construct the CODE prompt.

To generate a program p from natural language description d, we constructed a dataset D =
{(d;, pi)}¥, of size N = 105 description-program pairs', via manual augmentation of the few ex-
emplars available on the web.? Additionally, in our manual augmentation process, we standardise
the codebase to minimise variability and ease the learning process in this low-resource regime. Each
program is standardised in its coding style, with five distinct code blocks—map and model, constants,
agent’s behaviour, spatial relations, and scenario specification—to minimise the variation between the
exemplars. The dataset D is indexed via embeddings of descriptions.’®

'https://huggingface.co/datasets/assistive-autonomy/scenic-driving- scenarios
*https://github.com/BerkeleyLearnVerify/Scenic/tree/2.x/examples
*https://huggingface.co/BAAl/bge-small-en-v1.5
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CODE prompt for code generation.

[INST] You are a helpful assistant that translates English descriptions to Scenic programs. Scenic is a
domain-specific probabilistic programming language for creating distributions over specified scenarios.
For driving scenarios, each program has the following blocks:

« MAP AND MODEL: importing town assets and enabling simulator;

« CONSTANTS: specifying vehicle blueprint and other constants like vehicle speed, brake intensity
and safety distance;

« AGENT’S BEHAVIOUR: describing how individual vehicles behave in the scenario;

« SPATIAL RELATIONS: outlining the type of road the scenario needs to be synthesized in (e.g.
having or not having intersections)

« SCENARIO SPECIFICATION: creating individual vehicles and pedestrians in the specified roads,
together with constraints that are required to be true for the full simulation as well as the
termination condition.

Here are examples of descriptions and programs: {DESCRIPTION-PROGRAM PAIRS}
Now, please translate the following English description to a Scenic program. Just give the program. No
extra information. Description: {DESCRIPTION}[/INST]

SUMM prompt for description update.

[INST] You are a helpful assistant that creates updated driving scenario descriptions. Given a driving
scenario description and corresponding feedback regarding the simulation, your task is to generate an
updated description that incorporates the feedback. Please ensure that the updated description accurately
reflects the intended action based on the feedback received and does not introduce additional information
or lose information, like the number of vehicles or pedestrians in the situation. The description will outline
a specific scenario or context, while the feedback will provide information about how the described
scenario could have been improved or modified. Be sure to maintain the original meaning and intent
of both the initial description and the feedback. Be brief and only return the updated driving scenario
description. Description: {DESCRIPTION} Feedback: {FEEDBACK}[/INST]

Figure 3: Interactive driving simulation generation prompts. Curly brackets denote task-specific information.

At inference time, the embedding d of the user’s description d is used to find the most similar k£ = 3
description-program pairs from D using maximum inner-product search:

Di(d) = {(d,p) € D | (d,p) € top(k,d, D)} (1)

The description with the retrieved exemplars are then used to create the CODE prompt (see Figure 3 for
the prompt specification) which is then used to generate the program p using an IFLLM:

p = IFLLM(CODE(Dy(d), d)) (2)

There is no guarantee that the program p will execute. To fix this, we perform error feeding: the
program D is passed to the simulator to attempt to create simulation instances; and if an error occurs,
the natural language description, p and its errors are passed back to the IFLLV, to attempt to self-correct
the output. If, after three attempts of error feeding, the generated program doesn’t execute, the user is
asked to provide an alternative description.

3.2. Conversation

When D executes, n = 3 instances of the driving scenario simulations are shown to the user, who
is given the opportunity to react to these, either by indicating successful generation or by providing
natural language feedback f that corrects or refines the results, in an attempt to provide simulations
that better align with the user’s communicative intent.



Feedback is a response to the simulations and not to p (which is not observable to the user): it can
feature and refer to information that is not present in the Scenic program but is present in the simulation
due to the nature of random sampling. Because of this, feeding only f to IFLLM is suboptimal due to
its missing context, which cannot be given in a principled way (e.g. conditioning on the simulation
video or some domain-specific trace would lead to further data scarcity, which is already problematic
in this domain). To alleviate this issue, we feedback an updated description by summarising d and f,
using a SUMM prompt (see the Figure 3 for prompt specification), to generate the updated description
dy. With this description, our aim is to guide IFLLM, minimise the overall context, and not introduce
hallucinations and unwanted behaviours.

dy = IFLLM(SUMM(d, f)) (3)

The updated description d; is used to generate the updated program p; following the previously
described code generation procedure.

Py = IFLLM(CODE(Dy(d1), d1)) (4)

The conversation continues up to m = 4 turns. If the user remains unsatisfied with the simulations, the
conversation is deemed unsuccessful.

4. Experiments

We conduct experiments for code generation and human evaluation for the overall dialogue system.
NVIDIA RTX A6000 is used for serving IFLLM via a text generation inference server. For human trials,
we use an Alienware Area-51m laptop with NVIDIA RGX 2080 to generate simulation instances in
CARLA.

4.1. Code Generation Experiments
4.1.1. Experimental Setup

We experiment with several open-source IFLLMs with 7B parameters: Mistral [27], Gemma [28], and
CodeLlama [29] that used k& = 3 exemplars to construct CODE that’s retrieved using RAG, or at random
with and without error feeding. To cope with the small dataset bias when evaluating different IFLLMs,
we perform leave-one-out validation [30]. We record three metrics: (a) BLEU [31, 32] to measure
generation precision; (b) ROUGE-L [33] to measure generation recall; and (c) Execution (EXEC) to
measure the percentage of the generated code that is executable, all measured with error feeding (if
required). More sophisticated code generation evaluation metrics like CodeBLEU [34], to abstract
away from the surface form and focus on the syntactic similarity, are not considered because such
metrics require adaptation of the parser to Scenic programs. This is partially circumvented by program
standardisation performed in the dataset construction.

4.1.2. Results and Discussion

Table 1 records the results for code generation. We observe that IFLLM that uses CODE prompt con-
structed using RAG is better than a random selection, which most of the time results in non-executable
programs. Error feeding boosts performance for IFLMM that are not fine-tuned on code (Mistral and
Gemma ), yet it does increase inference time, which for Gemma leads to non-termination in a reasonable
time. High BLEU and ROUGE-L indicate a high correspondence between prediction and reference,
as expected after program standardisation. For EXEC, CodeLlama is better than Mistral and Gemma,
which is as expected due to the supervised fine-tuning on code. Based on code generation experiments,
we chose CodeLlama with RAG and error feeding to use for human evaluation.



Table 1

Code generation evaluation. RAG notes that CODE prompt was constructed using RAG while RAND notes it was
constructed using random exemplars. EF notes error feedback while symbol - denotes cases when IFLLM did not
terminate in a reasonable time (more than 10 min.).

CodelLlama BLEU ROUGE-L EXEC ‘ Gemma BLEU ROUGE-L EXEC ‘ Mistral BLEU ROUGE-L EXEC
RAG+EF 64.32 63.23 71.43 | RAG+EF 56.86 55.86 40.95 RAG+EF 84.54 79.94 41.90
RAG 89.66 85.96 70.48 RAG 10.44 16.79 0.00 RAG 87.80 84.03 37.14
RAND+EF 0.09 5.80 0.00 RAND+EF - - - RAND+EF 10.41 30.74 1.90
RAND 0.45 17.29 0.00 RAND - - - RAND 4.46 23.05 0.00
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Figure 4: Visual stimuli for generating driving scenarios using dialogue system in human evaluation. In each
stimulus, blue elements denote an ego vehicle, red elements denote adversary vehicles, and green elements
denote pedestrians.

4.2. Human Evaluation
4.2.1. Experimental Setup

We perform a human evaluation of the dialogue system. Visual stimuli used for human trials are given
in Figure 4. The user is presented with a (diagrammatic) stimulus and asked to describe it. After that,
CARLA is run to produce 3 simulation instances.* After observing it, the user may respond with further
natural language input to what they see, or check “satisfied with the scenario produced” and move to
the next stimulus. The user can have up to m = 4 dialogue turns. If code generation does not produce
executable code, the user is asked to paraphrase their description as if it is a fresh interaction. The
stimuli are categorised into three types: bypassing (e.g. the user stimulus may yield the user description
“an ego overtakes an adversary”), intersections (e.g. “an ego goes left at a 4-way intersection while the
adversary approaches from behind””), and pedestrians (e.g.“an ego goes left and yields to the pedestrian”).
The experiments were conducted with 20 users who have a driving license (as a proxy for domain
proficiency), with each asked to describe 5 of the 25 stimuli. In total, 100 conversations were recorded:
44 intersections, 19 bypassing, and 37 pedestrian scenarios.

*The dialogue system can produce many (different) instances, but to keep the stimuli contained, we limit it to 3.
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Figure 5: Commutative scenario generation success over the number of dialogue turns in human evaluation with
(5a) and without (5b) execution errors. For example, if, on the 3rd turn, the system fails to produce executable
code and the user is asked to paraphrase, leading to successful scenario generation, we count this as success
on 4 dialogue turns with execution errors and 3 dialogue turns without execution errors. The results show a
positive correlation between the successful scenario generation and the number of dialogue turns for all types of
scenarios considered.

4.2.2. Results and Discussion

Figure 5 outlines the results of human evaluation. As the number of dialogue turns increases, so does
the percentage of successfully generated scenarios: without dialogue, only 6% of the code generations
were successful, while conversations of up to four turns raise this to 28%. This holds per scenario type,
with or without execution errors. This suggests that the extended conversation enables successful scenario
generation. Table 2 gives examples of a successful and failed scenario generation. Error analysis shows
that failed scenario generation conversations had one or more of these errors:

« Execution error (62.5%): the code produced does not execute, and the user is asked to paraphrase
one or more times. This happens due to a missing correspondence between Scenic API and the
description. E.g. the description features “T-junction”, while the Scenic API would expect 3-way
intersection, and the code features junction as a primitive rather than intersection.

« Pass error (82%): the code executes but does not pass as a correct simulation. It is because the user’s
description diverges from descriptions in the dataset: in length (training data descriptions were
30-50 tokens while user descriptions were up to 200 tokens); in syntax (training data descriptions
were single sentences while users expressed multiple sentences and fragments); and in narrative
style (training data descriptions were ego-centric while users expressed other perspectives).

« Summarization error (27.8%): errors arising due to summarization (§3.2) like failure to include
the feedback in the description or the updated description has extra information.

5. Conclusions

We have presented a dialogue system for generating conversational driving scenarios. Our results show
that users can, in principle, generate desired driving scenarios with conversation being a crucial element
in reducing scenario generation errors.

For future work, we envision several developments. Firstly, there is a gap in generating scenarios,
despite the extended conversation. To address this, further techniques could be considered, including
data augmentation [35], constrained decoding [36], prompt engineering [37], and memory-based
techniques for explicit state tracking [38]. Second, the current setup does not dynamically change the
controller and use the interface to test it. This should be evaluated and considered testing of such new
controllers in tandem with formal verification methods [39].



Table 2
Example conversation from human trials (§4.2). Description in red signified that it was generated using previous
description and the user’s feedback using SUMM prompt (§3.2)

j@j’?—

Turn Feedback f Description d Simulation

at a 3-way intersection, a pedestrian crosses

1 - . .
the road. An ego vehicle waits to make a left turn.
. . At a 3-way intersection, a pedestrian crosses
first the pedestrian crosses, . .
2 . the road and an ego vehicle waits to make
then ego vehicle moves.
a left turn.
the pedestrian crosses the At a 3-way intersection, an ego vehicle waits
3 road on which the ego to make a left turn, and a pedestrian
vehicle enters crosses the road.
. At a 3-way intersection, an ego vehicle waits to
the pedestrian is to the .
4 make a left turn, and a pedestrian crosses

right of the vehicle the road to the right.

Outcome: simulation generated successfully

Turn Feedback f Description d Simulation

An ego vehicle overtakes an adversary vehicle,
then overtakes another adversary vehicle

An ego vehicle overtakes an adversary vehicle,
then overtakes another adversary vehicle on a
dual carriageway behind two adversary vehicles
in the left lane.

The ego vehicle is on a dual
2 carriageway behind two
adversary vehicles in the left lane

An ego vehicle overtakes an

3 The road has two lanes and all adversary vehicle, then overtakes another adversary
vehicles begin in the left lane vehicle on a dual carriageway behind
two adversary vehicles in the left lane.
An ego vehicle overtakes an adversary vehicle,
then overtakes another adversary vehicle on a
4 The road only has two lanes

dual carriageway behind two adversary vehicles
in the left lane.
Outcome: failed to generate the simulation
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