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Abstract
We discuss examples of automatically providing feedback on students’ answers to problems that are about real
numbers or integers, but where also logical operators such as “and”, “not” and “there is” are needed. If the answer
is mathematically incorrect, a counter-example is provided (unless the teacher has switched this off). The teacher
may tell our tool to check that the final answer satisfies certain requirements, such as is in a simplified form.
If such a requirement is violated in an otherwise correct answer, the tool tells that. For instance, it accepts
2 ≤ 𝑥 < 7 but rejects 2 ≤ 𝑥 < 5∨ 4 ≤ 𝑥 < 7. Although our tool can only deal with “almost linear” expressions,
we illustrate that versatile problems at different levels of difficulty are possible. Reasonings that follow paths
chosen by students (instead of teachers) can be checked to the extent needed in solving systems of (in)equations.
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1. Introduction

This paper discusses our efforts in advanced automatic feedback on problems that apply logic to real
numbers or integers at the school and early university level. By “automatic” we refer to feedback
generated by the tool and given to the student immediately. So we do not mean, for instance, feedback
provided later by a human teacher based on answers and statistics collected by the tool. Automatic
feedback helps students not to get stuck. As a consequence, they can make more progress at home
before the next meeting with a human teacher. In a self-study course, automatic feedback may be the
only feedback students get.

An automatic assessment tool can check whether the answer is correct. This piece of information can
be given to the student as a simple form of automatic feedback. If the answer is incorrect, the tool may
give a link to a human-written fixed explanation of how to solve the problem correctly. Here “fixed”
means that the explanation does not depend on what was the particular error that the student made
(although it may depend on, for instance, how many times the student has tried). Automatic feedback
of this kind was used in [1]. It discusses teachers’ experiences with a mathematics education tool with
various functionality (assessment, feedback, adaptation to what the student already knows, and so on).

However, in this paper we are interested in automatic feedback that in the case of a wrong answer,
helps the student diagnose the problem with that particular answer. Furthermore, providing the feedback
must not require extensive amounts of human work in advance.

Perhaps the best known tool for checking mathematical answers at the university level is STACK1,
that is, System for Teaching and Assessment using a Computer algebra Kernel [2]. It accepts answers in
the form of expressions on real numbers. Because often the correct answer can be expressed in different
but mathematically equivalent ways, STACK uses Maxima for comparing the student’s answer to the
model answer written by the teacher. STACK has recently [3] been linked with GeoGebra, which is
a well-known interactive pedagogical tool focusing on probability and statistics, geometry, algebra
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Figure 1: An example of feedback by MathCheck to an arithmetic error (layout changed to save space)

and calculus. Another tool with emphasis on assessment of mathematics was discussed in [4]. It used
Mathematica as the computational kernel.

STACK gives answer-specific feedback by checking a wrong answer against a set of likely wrong
answers. In the words of [2]: “Feedback is provided to students using “potential response trees”, written
by the teacher for each question.” Experienced teachers can often anticipate some such answers. When
the problem is in use, commonly occurring wrong answers can be identified and added to the set. This
approach makes very high-quality feedback possible. Unfortunately, it is laborious for the problem
designer [3]: “the feedback feature of STACK needs a differentiated analysis of the mathematical
concepts and procedures addressed in a problem, and of the variety of solving strategies that learners
could follow.” Furthermore, if the answer is outside this set, answer-specific feedback will not be
provided [2]: “It is probably not worthwhile adding nodes to test for strange individual responses.”

A different, pedagocically less ambitious but also much less laborious method of providing feedback
is to provide a counter-example. Figure 1 shows the feedback provided by the arithmetic mode of our
MathCheck tool [5] to log^2(a+b) = (log(a+b))^2 = (log a+b)^2 . It tells that log2(𝑎+𝑏) = (log(𝑎+𝑏))2

is correct but (log(𝑎 + 𝑏))2 = (log 𝑎 + 𝑏)2 is not, gives 𝑎 = 0 and 𝑏 = 1 as an example of a value
combination of variables where the latter two yield different results, and shows a graph of both as a
function of 𝑎 when 𝑏 = 1. The graphs are not always informative, but the student can always use at
least the numeric counter-example as a starting point of diagnosing the error.

Surprisingly, although [6] is based on wide expertise and discusses feedback a lot, it does not mention
providing counter-examples at all. Our guess is that it is not easy enough to make the computer algebra
systems that check the answers to provide counter-examples. The arithmetic mode of MathCheck is not
based on a computer algebra system. Instead, it tests each =, ≤ and so on by assigning a great number
of combinations of values of variables to both sides and computing what they yield. In principle it may
fail to see that two expressions are different, but in practice this is extremely rare (except in special
cases, but then MathCheck warns that it was not able to be careful). It uses precise rational numbers as
long as it can, and then switches to a representation consisting of two approximations, between which
the precise value is. The latter representation is also vulnerable in principle, but not much in practice.

However, the topic of this paper is not the arithmetic mode but three predicate logic modes of
MathCheck. In them, MathCheck applies methods that are unerring in principle. Nevertheless, the
possibility of programming errors in MathCheck cannot of course be ruled out. The domains of discourse
of the modes are real numbers, natural numbers and integers, restricted to expressions that are linear or
“almost linear”. MathCheck also has logic modes for propositional logic, modular arithmetic and arrays
in the sense of programming languages, but they are not discussed in this paper. A major reason for our
emphasis on logic and discrete mathematics is that they are more important to software engineering
and computer science than calculus. For instance, [7, p. 186] has no hours of calculus in its most central
core hours, while it has 29 hours of discrete mathematics including logic.

By linear expressions we mean those that can be easily reduced to the form 𝑐0 + 𝑐1𝑥1 + . . .+ 𝑐𝑛𝑥𝑛,
where the 𝑐𝑖 are constants and the 𝑥𝑖 are variables. By “almost linear” we refer to the fact that claims
on other kinds of expressions can in some cases be reduced to Boolean combinations of claims on
linear expressions. For instance, 3|𝑥| ≥ |𝑥− 3|+ 5 can be reduced to 𝑥 < 0 ∧ −3𝑥 ≥ −(𝑥− 3) + 5 ∨
0 ≤ 𝑥 < 3 ∧ 3𝑥 ≥ −(𝑥 − 3) + 5 ∨ 𝑥 ≥ 3 ∧ 3𝑥 ≥ (𝑥 − 3) + 5, and 𝑥+1

𝑥−1 = 2 can be reduced to
𝑥 ̸= 1∧𝑥+1 = 2(𝑥− 1). The restriction to almost linear expressions is because they can be dealt with
much more easily than more general expressions. Even so, versatile automatically assessable problems



can be designed using them, as this paper tries to demonstrate.
Section 2 tells a little more about MathCheck in general. Sections 3 and 4 illustrate problems that

can be dealt with the real logic and integer logic modes, respectively, with comments on the natural
number logic mode. The implementation of the integer logic mode exploits concepts from basic courses
on theoretical computer science and advanced courses on data structures and algorithms. It can thus
serve as an example in teaching such topics. This is discussed in Section 5. A couple of suggestions for
future improvements are made in Section 6.

2. About MathCheck in General

When developing MathCheck, our emphasis has been on supporting homework, and less in assessment
in the sense of giving or not giving points. We want MathCheck to be useful both for developing
routine in solving simple problems and practicing bigger problems that consist of many steps. We want
MathCheck not only check and give feedback on the final answer, but also help finding it, by making
it easy to write intermediate results and test them before continuing. The first examples in Section 3
illustrate what me mean by this. There the student first has to solve a number of simple formula writing
problems, and then a much bigger problem where formula-writing skills must be applied many times
and the pieces have to be put together in a not entirely trivial way.

The first version of MathCheck only had the arithmetic mode briefly illustrated in Figure 1. It lacked
the graph drawing functionality exemplified by the right hand side of the figure. Terhi Kaarakka
conducted an experiment [8, 5], where it was compared to Wolfram Alpha. While the latter is not a
pedagogical tool, at that time students used it a lot when doing homework. The participants (𝑛 = 106)
did a set of 10 problems using either MathCheck or Wolfram Alpha. Then they participated in a small
examination whose maximum was 16 points. Those who had used MathCheck at least one hour (𝑛 = 30)
got 9.7 points on the average, while users of Wolfram Alpha (𝑛 = 31) got 8.2. Those who were told
to use MathCheck but used it less than 1 hour (𝑛 = 26) got 7.1, and the similar number for Wolfram
Alpha (𝑛 = 19) was 7.2. The difference between the two MathCheck user groups was significant with
𝑝 = 0.02. The paper [8] discusses also other early experiments.

The equation chain 𝑥2−7𝑥+10
𝑥−5 = (𝑥−2)(𝑥−5)

𝑥−5 = 𝑥 − 2 is not correct, because when 𝑥 = 5, the last

expression yields 3 but the other two expressions are undefined. With
√
𝑥

𝑥−5 we have to assume that 𝑥 is
neither negative nor 5. This phenomenon forced us to implement a mechanism for stating assumptions
containing some logic.

Computer science is full of undefined expressions, such as the value of a non-existing array entry (for
instance, 𝐴[−1] when the legal indices of 𝐴 start from 0), and the result of a function subroutine when
it fails to terminate. Intuition suggests, for instance, that neither 1

0 < 0 nor 1
0 ≥ 0 should be true. But if

we declare both of them false, then we lose the handy principle that 𝑎 ≥ 𝑏 means the same as ¬(𝑎 < 𝑏).
And what should be the truth value of 1

0 = 1
0? This has been a big problem for the developers of formal

software specification methods for decades, and many approaches have been suggested. Perhaps the
most widely used is underspecification [9], where every expression always has a value, but nothing is
told about the value when it is undefined in the mainstream mathematics sense. While this approach
has unintuitive consequences (for instance, 𝑥 = 0 is a root of 1+𝑥

𝑥 + 𝑥 = 1
2𝑥 ), it can be used in practice.

We faced this problem when implementing the array claim and real logic modes of MathCheck.
Unhappy with the oddities of earlier approaches, we developed our own based on three-valued logic.
Then we learnt (to our great pleasure) that in the survey [10], the majority of participants considered
the third truth value “undefined” more natural than other alternatives. To convince ourselves that our
approach is on healthy basis, we proved that it is complete in the sense of Gödel’s famous completeness
theorem. We succeeded in publishing this result in a high-quality journal on mathematical logic [11].

To develop the representation of reasonings used by the logic modes of MathCheck, we had to consider
the difference between implication and equivalence as logical operators and as notation for expressing
reasoning [12]. Because of cases like sin 2𝑥 = 2 sin𝑥 cos𝑥, developing the syntax for arithmetic
expressions was a surprisingly big problem. We are aware of no other program than MathCheck that



interprets sin 2𝑥 = 2 sin𝑥 cos𝑥 correctly in the absence of additional parentheses.
Technically, MathCheck problem pages are ordinary web pages and the MathCheck program just

inputs whatever those pages send to it and then sends something as a response. The MathCheck
program does not store any information whatsoever. In addition to being able to deal with expressions,
formulas and reasonings, the program also recognizes various commands that the web pages send to it.
By writing those commands, teachers tell MathCheck what it should do. For instance, if the teacher
wrote f_polynomial; n(2n-1)(2n+1)= , then MathCheck accepts 𝑛(4𝑛2 − 1) as an intermediate but
not as the final result, and accepts 4𝑛3 − 𝑛 as the final result.

This design has proven very flexible and easy to extend. Its perhaps biggest drawback is that each
submit takes place in isolation from earlier submits. As a consequence, some problem pages ask the
user to copy an answer from one answer box to another, so that it can be used as a component in the
next stage of a multi-stage problem.

In 2017–2018 we wrote a problem authoring tool for MathCheck, but it quickly went out of date. All
recent MathCheck problem pages have been hand-written. Many web browsers show the source code
of the web page, if the user presses ⟨CTRL⟩-U. Using this feature and the link mentioned below, you
may read the source code of all problems discussed in this paper. Feel free to do so, if you want! If
MathCheck ever gains more problem designers, writing a new authoring tool becomes necessary.

Although the present author does not use MathCheck as an examination tool, two different mecha-
nisms for that purpose have been implemented. First, MathCheck can be and has been used through a
learning environment that keeps track of the identity of the students, sends their answers to MathCheck,
and gets the numbers of points from the feedback by MathCheck. Second, MathCheck can also be
compiled in an examination mode that does not check the semantics of the answer, but does check the
syntax and that those format requirements are satisfied that the teacher has chosen. In the simplest
version of this kind of use, the student can then email the answer to the teacher. In these uses, the
student either cannot see the source code, or the correct answers are not there. (Because of the author’s
own experiences and those reported in [13], he believes that feedback should be given without points.
Points belong only to the examination at the end.)

Depending on the problem, a correct solution may be explicit in the source code of the problem web
page. At one point we added an obfuscation mechanism to prevent students from reading answers from
the source code, but soon stopped using it. As was explained above, our philosophy is to use MathCheck
only for learning, and not for distributing points. So keeping correct answers in great secrecy is not
important to us. The examination version of MathCheck can be used such that no solution is present in
the source code.

A weak point of our research is that no other well-organized pedagogical experiments have been
made than those reported in [8]. As part of turbulent re-organization of the university where the author
then worked, he was ordered to move from Mathematics department to Information Technology. The
latter made it clear that developing educational tools has no place in its strategy.

The University of Jyväskylä offered more freedom of teaching and research, so he moved there in 2018.
There he has used MathCheck in his own courses. Until Covid-19 MathCheck got some positive and
very little negative feedback from students. Since then, it has been next to impossible to get feedback of
any kind. Recently the teacher of “Introductory course to mathematics in engineering” started using
MathCheck. Perhaps one quarter of the problems in the course are MathCheck problems. He likes
especially problems of the kind in Figures 2 and 3, because they provide a natural environment for
practicing set theory and logic. Unfortunately, neither of us has had sufficient time and skills to gather
systematic experience, let alone design and organize pedagogical experiments.

The paper [2] discusses “updating STACK potential response tree based on students’ concerns in
learning induction proofs”. As an example, it uses some tasks related to proving

∑︀𝑛
𝑘=1(2𝑘 − 1)2 =

𝑛(2𝑛−1)(2𝑛+1)
3 . A MathCheck problem page version of the same problem, with a comparison to [2], is

at https://users.jyu.fi/~ava/induction_problem_AS.html. By reading [2] and reading and solving the
problems on the web page, it is possible to get some idea of the differences between the two tools.
However, one must take into account that while our web page covers the proof as a whole, the goal of
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Figure 2: Formula writing problems on 𝑥-axis

the example in [2] is different. It is to illustrate how feedback by STACK can be improved based on
students’ answers.

3. “Almost Linear” Real Number Logic Problems

In this and the next section we discuss examples of logic problems. All of them are available at
https://users.jyu.fi/~ava/number_logic.html (as long as the university lets them be there). No registration
is required. The tool does not collect any information whatsoever about the user. Feel free to try! You
may also try wrong answers, to see the feedback.

Figure 2 shows problems where the student should write formulas that correspond to points, line
segments and half-lines on the 𝑥-axis. The student has solved the first problem correctly.

In the second problem, the student failed to take into account the isolated point. So MathCheck
gave a counter-example to the answer. In this case, there is only one possible counter-example to
choose from. By presenting it, MathCheck reveals the precise location of the isolated point. It may be
considered a disadvantage. On the other hand, it is also helpful for those students who fail to read the
precise location from the picture, but who are smart enough to try an answer where nothing represents
that point. To an answer that contains the isolated point at a wrong location, the current version
of MathCheck gives that location as a counter-example, thus not revealing the correct location. For
instance, to −2 ≤ 𝑥 < −1

2 ∨ 𝑥 = 31
2 ∨ 𝑥 > 5 it gives 𝑥 = 7

2 ≈ 3.5.
In general, instead of trying to prevent the students from misusing MathCheck, we encourage to

think out of the box and intentionally try also incorrect answers to gain more understanding of the
problem and answer. On the other hand, we remind the students that ultimately they will have to be
able to solve problems without MathCheck. In the end of the courses by the author, there is a paper and
pencil exam where neither MathCheck nor a calculator nor other tools are available.

In the third problem, MathCheck has declared the answer 2 ≤ 𝑥 < 5 ∨ 𝑥 > 5 as mathematically
correct but too long. The pedagogical goal is to make the student think about other possibilities of
expressing the same claim. To help the student, there is a hint that becomes visible when the mouse
pointer is moved on top of the brown word “Hint”. The intended answer is 𝑥 ≥ 2 ∧ 𝑥 ̸= 5.

Figure 3 shows a problem where a formula must be written that represents a green-and-white picture
of a cottage on 𝑥–𝑦-coordinates. To make it easier to solve, auxiliary answer boxes are given where
the student may design and check the wall, window, chimney and roof separately. The wall, roof
and chimney are allowed to overlap. In particular, MathCheck checks the chimney by checking that
3 ≤ 𝑥 ≤ 7

2 ∧ 6− 𝑥
2 < 𝑦 ≤ 5 ⇒ chimney ⇒ 3 ≤ 𝑥 ≤ 7

2 ∧ 5
2 ≤ 𝑦 ≤ 5.

Writing a formula for the roof involves finding equations of the sloping lines. When combining the
parts, the formula for the window must be used differently from the others. So the student must get
many details right. The feedback by MathCheck helps in this. For instance, if the student writes a
formula that corresponds to wall ∨ window ∨ chimney ∨ roof, MathCheck tells that when 𝑦 = 2 and
𝑥 = 2, the model answer yields false but the student’s answer yields true. The point (2, 2) is inside the

https://users.jyu.fi/~ava/number_logic.html


Figure 3: A formula writing problem about 𝑥-𝑦–coordinates (layout changed to save space)

window, so the counter-example reveals that the window should have been negated. If the student then
just negates the window without changing how it is connected to the rest of the formula, MathCheck
gives a point outside the green area as a counter-example. In this way the student can fix the answer
step by step helped by the feedback.

The teacher can write the message that tells that the reply is correct separately for each problem.
For this problem group, the following messages were chosen: Yes, that is a correct wall!, You got the
window right!, That is an okay chimney! You can use it as part of the final answer., You got the most
difficult part of the cottage right, the roof! and The cottage is now correct. Congratulations!. Also
messages for incorrect answers can be written problem by problem. Colours and fonts can be changed
with usual World Wide Web commands (HTML and CSS).

The next problem is much easier. It starts by asking to write a formula that says that 𝑥 is one of 𝑎 and
𝑏. Then the student should write a formula saying that 𝑥 is at most as big as 𝑎 and 𝑏. The last task is to
write, without using “min” or “max”, a formula that says that 𝑥 is the minimum of 𝑎 and 𝑏. The first
two questions encourage the student to write (𝑥 = 𝑎 ∨ 𝑥 = 𝑏) ∧ 𝑥 ≤ 𝑎 ∧ 𝑥 ≤ 𝑏. There are brown hints
of the kind in Figure 2 that suggest combining the previous answers and adding parentheses around
the ∨-subformula. Then the problem encourages more ambitious students to find a shorter formula.
Via radio buttons, the student can choose between two maximum lengths. The answer mentioned
above consists of 15 tokens (that is, basic elements; parentheses are not counted), but the shorter one is
allowed to contain at most 11.

The logic modes of MathCheck actually check reasonings and not formulas. The checking is semantic.
Thus no knowledge of any formal proof system is required. The operators ⇔, ⇒, ⇐ and ≡ can be used
to relate formulas to each other, analogously to how =, ≥ and so on can be used to relate numbers to
each other. (Material equivalence and implication, that is, equivalence and implication within formulas
instead of between formulas, are expressed as ↔ and →.) The difference between ⇔ and ≡ is that the
former treats the undefined truth value as equivalent to false. This is necessary to express roots of
(in)equations. For instance, 𝑥+1

𝑥−1 = 2⇔ 𝑥 = 3 is valid, but the same with ≡ in the place of ⇔ is invalid,
because its left hand side is undefined but right hand side false when 𝑥 = 1.

Problems where the student must write a formula are typically implemented as reasonings where
a model formula and ⇔ or ≡ have been pre-programmed by the teacher together with a command
which makes MathCheck write “model-answer” in the place of the teacher’s formula. This implies that
the student may develop the answer step by step in the answer box. For instance, MathCheck accepts
(𝑥 = 𝑎 ∨ 𝑥 = 𝑏) ∧ 𝑥 ≤ 𝑎 ∧ 𝑥 ≤ 𝑏⇔ 𝑥 = 𝑎 ≤ 𝑏 ∨ 𝑥 = 𝑏 ≤ 𝑎 as a correct answer to the above problem
with the strict length requirement.

In some cases the model answer may be left visible. For instance, while the above problem uses the
real logic mode, it could have used the integer logic mode. The latter has but the former currently lacks
a min operator. However, the teacher may ban its use. Then, in the integer logic mode, x = a <= b



Figure 4: A problem about the indices of an array

\/ x = b <= a elicits the feedback 𝑥 = min(𝑎, 𝑏) ⇔ 𝑥 = 𝑎 ≤ 𝑏 ∨ 𝑥 = 𝑏 ≤ 𝑎 That is right!, but x =

min(a,b) elicits 𝑥 = min(𝑎, 𝑏)⇔ 𝑥 = min(𝑎, 𝑏) The final expression must not contain min.
A pair of equations can be solved in many different ways: a variable may be solved from one equation

and the solution assigned to the other, or the same with the other variable, or the equations may be
multiplied by suitable numbers and then added in such a way that one variable disappears. To make
it possible for the student to choose the solution path, MathCheck allows writing subproofs within a
reasoning. The example web page of this paper contains a commented solution to 𝑥+7𝑦+3𝑣+5𝑢 = 16
∧ 8𝑥+ 4𝑦 + 6𝑣 + 2𝑢 = −16 ∧ 2𝑥+ 6𝑦 + 4𝑣 + 8𝑢 = 16 ∧ 5𝑥+ 3𝑦 + 7𝑣 + 𝑢 = −16. The problem is
from Pólya’s famous book [14]. This story has been told in [15], so we do not go into the details here.

The example web page also asks to solve 3|𝑥| ≥ |𝑥− 3|+ 5. The following solution illustrates three
different ways of using subproofs. If <=> x <= -4 \/ x >= 2 is removed, then MathCheck replies The
final answer is not fully explicit: 𝑥 ≥ 3 ∧ 𝑥 ≥ 1, to tell the student to simplify the final answer further.

subproof x < 0 /\ -3x >= -x+3 + 5 <=> x < 0 /\ x <= -4 <=> x <= -4 subend
subproof assume 0 <= x < 3; 3x >= -x+3 + 5 <=> x >= 2 <=> 2 <= x < 3 subend
subproof 3x >= x-3 + 5 <=> x >= 1 subend
original <=> x <= -4 \/ 2 <= x < 3 \/ x >= 3 /\ x >= 1 <=> x <= -4 \/ x >= 2

4. “Almost Linear” Integer Logic Problems

While real number logic proved very useful, two reasons emerged to also implement integer logic.
First, in programming there are situations where numbers are definitely integers. Loop variables

of for -loops, often used as indices to arrays, are an example. In the case of integers, 𝑖 < 𝑛 means
the same as 𝑖+ 1 ≤ 𝑛, but with real numbers it does not. Therefore, use of real number logic in such
applications would unduly reject perfectly correct answers.

Figure 4 shows an example of such a problem. Both 0 ≤ 𝑖 < 𝑛− 1 and 0 ≤ 𝑖 ≤ 𝑛− 2 are correct
for the first question, and there is no reason to teach the students to favour one over the other. When
in the integer logic mode, MathCheck accepts both as correct. Because MathCheck accepts not only
final answers but also reasonings that lead to them, it even accepts the answer shown in the figure that
presents both options. However, it rejects 0 ≤ 𝑖 < 𝑛− 1 ⇒ 0 ≤ 𝑖 ≤ 𝑛− 2, because it does not claim
that 0 ≤ 𝑖 ≤ 𝑛− 2 is a correct answer; it only claims that it is implied by the correct answer.

While first-order logic on integers or natural numbers with 0, 1, + and · is undecidable in the
sense of computability theory, it becomes decidable if · is dropped. The result is known as Presburger
arithmetic [16]. We implemented Presburger arithmetic for natural numbers in 2020, with applications
of the above kind in mind. Unfortunately, because of the absence of negative integers, almost all teaching
applications that we thought about seemed misleading. With natural numbers, 𝑛 > 0 is equivalent to
𝑛 ̸= 0. Of course, we did not want MathCheck to encourage students to think of them as equivalent,
because they are not equivalent in mainstream mathematics. Also subtraction of a bigger number from
a smaller number could not work like in mainstream mathematics. So we did not implement subtraction
at all.

It took until 2024 before we had the chance to implement Presburger arithmetic for integers. For this



Figure 5: A volleyball points problem

discussion it is important to be aware that making either kind of Presburger arithmetic work fast is
challenging [16]. Because of earlier experience with the natural number implementation, we were able
to design some details better. With integers, it was reasonable to implement subtraction and absolute
value. While writing this paper, we implemented “min” and “max”. We also found a reasonably simple
and efficient way to implement subroutine-like subformulas that have a name and parameter list, and
can be used as components of bigger formulas. For these reasons, the integer logic mode offers features
that the natural number logic and real number logic modes do not offer, although they could.

Consider Figure 4 again. In https://en.wikipedia.org/wiki/Selection_sort#Implementations (accessed
2025-05-26), instead of the condition on line 2 there is (in essence) i < A.size()-1 . It is correct there,
because there i is of type int . However, A.size() is of some unsigned type in C++. This makes it
natural (albeit not obligatory) to use an unsigned type for i . (Otherwise, depending on its settings, the
compiler may give a warning of a type mismatch.) Then the algorithm fails with empty A , because
A.size()-1 becomes 0− 1, which yields a very big positive integer in the case of unsigned types. This
causes the loop to continue past the end of the array. The difference between signed and unsigned
types is thus important. As a consequence, it would be beneficial to bring the existence of the difference
forward in the teaching of mathematics and logic for software students.

Figure 5 shows an example that serves this purpose. The student has to choose among natural
numbers, integers and real numbers. This is hoped to increase awareness that they are different
mathematical systems with different operations and properties (or, in computer jargon, different data
types). The student can also choose a length limit so that more ambitious students are given a challenge
while not frustrating less ambitious students with too difficult a problem. Of course, the student is free
to try more than one option.

A straightforward lengthy answer using natural numbers is 𝑝 ≤ 25∧ 𝑞 ≤ 25∨ 𝑝 ≤ 𝑞+2∧ 𝑞 ≤ 𝑝+2.
To make it shorter, it may be tempting to modify its latter part to 𝑞 − 2 ≤ 𝑝 ≤ 𝑞 + 2. However,
MathCheck rejects it, because subtraction is not available in the natural number logic mode, because in
the absence of negative numbers it is impossible to subtract a bigger number from a smaller one. On
the other hand, 𝑝 ≤ 25 ∧ 𝑞 ≤ 25 ∨ 𝑞 ≤ 𝑝+ 2 ≤ 𝑞 + 4 works and meets the middle difficulty limit. To
also meet the most difficult limit, 𝑝 ≤ 25 ∧ 𝑞 ≤ 25 can be replaced by 𝑝 ≤ 25 ≥ 𝑞.

The formula 𝑝 ≤ 25 ≥ 𝑞 ∨ 𝑞 ≤ 𝑝 + 2 ≤ 𝑞 + 4 fails with integers, because it does not rule out
negative points. MathCheck gives 𝑝 = −1 and 𝑞 = 0 as a counter-example. So we try 𝑝 ≥ 0 ≤ 𝑞 ∧
(𝑝 ≤ 25 ≥ 𝑞 ∨ 𝑞 ≤ 𝑝+ 2 ≤ 𝑞 + 4). It is mathematically correct and meets the middle limit. The most
difficult limit is met by 𝑝 ≥ 0 ≤ 𝑞 ∧ (𝑝 ≤ 25 ≥ 𝑞 ∨ |𝑝− 𝑞| ≤ 2). These answers work also with real
numbers. Currently 0 ≤ min(𝑝, 𝑞) ∧ (max(𝑝, 𝑞) ≤ 25 ∨ |𝑝− 𝑞| ≤ 2) works only with integers.

We emphasize to the students that the goal is not to learn to write 𝑝 ≤ 25 ≥ 𝑞 instead of 𝑝 ≤ 25 ∧
𝑞 ≤ 25. We recommend them to in general favour easily understandable formulas over shorter but
trickier ones. We tell them that the purpose of asking to write short but tricky formulas is to develop
their problem solving and logical thinking skills, by encouraging them to try and find alternative ways
of formulating the same claim.

https://en.wikipedia.org/wiki/Selection_sort#Implementations


Our second reason for implementing Presburger arithmetic is the following. When implementing
linear real number logic, we hoped also that it could be used for teaching quantifiers, that is, the symbols
“∀” and “∃” that mean “for every” and “there is”. But it failed. Any linear real number formula with
quantifiers is equivalent to some linear real number formula without. (Actually, our implementation of
quantifiers in the real logic mode is based on this fact.) For instance, “there is a positive number that
is less than 𝑥” is equivalent to “𝑥 > 0”. As a consequence, almost any problem we considered had an
unintended mathematically equivalent but pedagogically meaningless answer. Quantifiers are used in a
meaningful way in the definition of limits. Unfortunately, designing problems about limits would have
mostly required that the logic can handle non-linear expressions.

The situation is better with Presburger arithmetic. That 𝑛 is divisible by 7 can be expressed as
∃𝑘 : 𝑛 = 7𝑘. Also 𝑛 mod 7 = 0 says so, but the teacher can rule it out by telling MathCheck to not
allow “div” and “mod” in the final answer. In the web page containing the MathCheck examples of this
paper, the model answer is 𝑛 mod 7 = 0 and it is not hidden in the feedback. Therefore, if the student
answers EE k: n = 7k , then MathCheck replies 𝑛 mod 7 = 0 ⇔ ∃𝑘 : 𝑛 = 7𝑘 Correct! Your answer is
excellent!. But if the answer is n mod 7 = 0 , then MathCheck replies 𝑛 mod 7 = 0 ⇔ 𝑛 mod 7 = 0
The final expression must not contain mod .

In our experience, many students have problems with understanding the notion of free variables.
(We do not know why.) To 𝑛 = 7𝑘 MathCheck gives the counter-example 𝑛 = 0 and 𝑘 = −1. The
presence of 𝑘 in it reveals that the error is that 𝑘 has not been quantified. While this feedback is not
straight to the point, at least it brings the issue forward.

A much more challenging problem asks to misuse MathCheck to find the smallest natural number
that can be expressed as a sum of two cubes of natural numbers in two different ways. It is known as the
second taxicab number. The mathematician Hardy had ridden in a taxi-cab with that number, to which
his friend Ramanujan replied that it has the above-mentioned property. The student is told that to the
extent needed in the problem, 𝐶(𝑥, 𝑦) yields true if and only if 𝑦 = 𝑥3 ≥ 0; and other expressions may
be written in the places of 𝑥 and 𝑦. (Because of limitations of Presburger arithmetic, MathCheck cannot
deal with cubes in general in this mode. Therefore, using the above-mentioned subformula mechanism,
𝐶(𝑛,𝑚) has been defined as 𝑛 = 𝑚 = 0 ∨ 𝑛 = 𝑚 = 1 ∨ 𝑛 = 2 ∧𝑚 = 8 ∨ . . . ∨ 𝑛 = 16 ∧𝑚 = 4096.)

The first task is to write a formula that says that 𝑥 is the sum of the cubes of𝑛 and𝑚. A straightforward
answer is ∃𝑐 : ∃𝑑 : 𝐶(𝑛, 𝑐) ∧ 𝐶(𝑚, 𝑑) ∧ 𝑥 = 𝑐+ 𝑑, but also ∃𝑐 : 𝐶(𝑛, 𝑐) ∧ 𝐶(𝑚,𝑥− 𝑐) works.

The student is then told to copy the previous answer to the next box. That makes it possible to refer
to it in answers to the next problem as 𝑆(𝑛,𝑚, 𝑥). That problem asks to write a formula that says that
𝑥 cannot be represented both as 𝑛3 +𝑚3 and 𝑘3 + ℎ3, where these two are different. The idea is that
because it is not true for the 𝑥 that we are after, MathCheck will give a counter-example that shows
𝑥, 𝑛, 𝑚, 𝑘 and ℎ. Therefore, by writing the right formula and clicking the button the student can fool
MathCheck to reveal some solution to the taxicab number problem. A wrong formula either yields
wrong numbers or no numbers at all. There are answer boxes where the student may test the numbers.

In general, a counter-example that MathCheck yields is not necessarily the smallest. The students are
told that in this problem it is. However, to teach to test counter-examples in this respect, they are asked
to find also the next natural number that can be represented as a sum of two non-negative cubes in two
different ways, and test the corresponding numbers in the final answer boxes. A hint is available saying
“Change the previous formula so that the original counter-example no longer is a counter-example.”

If 𝑥 does not occur free in 𝑃 , then ∃𝑥 : 𝑃 ∧𝑄(𝑥)⇔ 𝑃 ∧∃𝑥 : 𝑄(𝑥). This law can be proven by letting
𝑃 ≡ F, simplifying both sides, detecting that they yield the same result, and then doing the same with
𝑃 ≡ T. The next problem on our example web page asks the student to do these simplifications. When
checking the answers, MathCheck uses a 𝑄(𝑥) designed by the teacher so that it depends not only on 𝑥,
but also on another variable 𝑞 in such a way that the answer becomes tested with F, T, 𝑥 < 1 and 𝑥 ≥ 1
in the place of 𝑄(𝑥). Not all of this is told to the students, but they are told that some trickery has been
used and the values of 𝑥 and 𝑞 in the feedback are useless to them. So this problem is not fully elegant.
Nevertheless, it is a meaningful problem about an advanced topic, namely proving quantifier laws. This
problem does not require integers, but does require the subformula mechanism that is currently not
available in any other mode of MathCheck.



Figure 6: A DFA that represents the formula (left) 𝑥 mod 5 = 0 (middle) 𝑥 = 𝑦 (right) 𝑥 < 𝑦 about integers

A related advanced skill is disproving alleged quantifier laws by providing counter-examples. So
we designed a problem that asks students to write 𝑃 (𝑥) and 𝑄(𝑥) such that ∀𝑥 : (𝑃 (𝑥) ∨𝑄(𝑥)) ⇔
(∀𝑥 : 𝑃 (𝑥))∨ (∀𝑥 : 𝑄(𝑥)) does not hold. One way of finding a correct answer is as follows. If ∀𝑥 : 𝑃 (𝑥)
is true, then it is simple to see that also ∀𝑥 : (𝑃 (𝑥) ∨𝑄(𝑥)) is true, and similarly if ∀𝑥 : 𝑄(𝑥) is true.
Thus 𝑃 (𝑥) and 𝑄(𝑥) must be chosen so that neither is true for all integers, but for any integer, at least
one of them is true. There are numerous possibilities: 𝑥 > 2 and 𝑥 < 5, 𝑥 = 0 and 𝑥 ̸= 0 and so on.

5. The Implementation as a Source of Computer Science Examples

The implementation of the integer Presburger arithmetic utilizes many basic and advanced ideas of
computer science: binary representation of integers, the relationship between sets and the corresponding
formulas, deterministic finite automata, and certain efficient advanced algoritms and data structures.
It can thus serve as an example that illustrates many concepts. It is widely believed that real-life
applications help students get motivated. Unfortunately, real-life applications of more theoretical topics
are often hard to find. While the integer logic mode of MathCheck is perhaps not quite real life, for our
students it is at least student life.

The implementation represents a formula as a list of variables together with a certain kind of edge-
labelled directed graph called deterministic finite automaton or DFA. The list must be in strictly increasing
order and it must contain at least the free variables of the formula.

Assuming that the list consist of just 𝑥, the DFA on the left hand side of Figure 6 represents the formula
𝑥 mod 5 = 0. The circles are states and the arrows are transitions. One of the states is designated as
the initial state with a short arrow that ends at it and starts at no state. Each state is the tail state of
precisely two transitions, one labelled with 0 and the other with 1. The DFA reads a sequence of 0’s
and/or 1’s by starting at the initial state and then, for each bit in the sequence in turn, choosing the
next transition according to the next bit in the sequence. If the reading ends at a doubly circled state,
then the DFA accepts the sequence, and otherwise rejects it. For instance, our example DFA accepts the
empty sequence, 0 and 0101, but rejects 01. Doubly circled states are final states.

Each sequence of bits represents an integer. The integer is negative if and only if the first bit is 1.
The empty sequence represents 0, and the sequence 1 represents −1. For 𝑖 > 1, if the 𝑖th bit of the
sequence is 1, then it adds (if the first bit is 0) or subtracts (if the first bit is 1) 2𝑖−2 to the integer. The
representation is thus otherwise standard, but the sign bit is at the beginning, the other bits are least
significant first, there is no limit to the number of bits in the sequence, and the other than the first
bits of a negative integer are opposite to what they are in two’s complement. The absence of the limit
is crucial because unlike typical computer integers, there is no maximal integer in mathematics. The
reasons for the other three deviations will be explained below.

Our example DFA accepts precisely those bit strings which represent the integers . . ., −10, −5, 0, 5,
10, . . .. Those students who are strong in modular arithmetic and invariant proofs can verify this fact
by checking that for each state with blue number 𝑘 in the figure we have (𝑘2𝑖) mod 5 = |𝑥| mod 5,
where 𝑖 is the number of bits that have been read after the sign bit. (The brown numbers inside the
states were chosen by MathCheck when it constructed the DFA. They have no special significance.) At



the opposite end, some of our students have difficulties in distinguishing between an integer and a set
of integers, and with the fact that a set may be infinite even if all of its elements are finite. It is hoped
that seeing a rigorous finite representation of an infinite set of integers helps them.

Assume that the representation of 𝑥 as a bit string is 𝑥±𝑥0𝑥1 · · ·𝑥𝑛, and similarly with 𝑦 and 𝑧. Then
𝑥±𝑦±𝑧±𝑥0𝑦0𝑧0𝑥1𝑦1𝑧1 · · · 𝑧𝑛 represents the triple (𝑥, 𝑦, 𝑧). To make this work also if the original bit
strings are of different lengths, the DFAs representing MathCheck integer logic formulas have the
special property that if the state on one end of any 0-transition is a final state, then also the state on the
opposite end is a final state. As a consequence, any bit string extended with 0 represents the same value
combination as the bit string without the extra 0. If two’s complement were used for negative integers,
then extending the bit string without changing the represented value combination would require 0 or 1
depending on the sign of the corresponding integer. It would be much more complicated.

Figure 6 (middle) and (right) show DFAs that represent 𝑥 = 𝑦 and 𝑥 < 𝑦. For instance, the self-loops
of the state number 1 in the latter reflect the fact that if 𝑥 is negative (the transition 2

1→ 3) but 𝑦 is not
(3 0→ 1), then no matter what the remaining bits are, we have 𝑥 < 𝑦.

A DFA for 𝑥+ 𝑦 = 𝑧 can be constructed that mimics how natural numbers are added at elementary
schools. It adds the least significant bits first, then the second least significant and so on, and uses
a so-called “carry” when the result at some position affects the next position. For this to work, it is
essential that the bits come least significant first. The sign bit is at the front so that it is easy to tell
which bit is the sign bit. The DFA for 𝑥+𝑦 = 𝑧 has 33 states. The link https://users.jyu.fi/~ava/number_
logic.html#printDFA leads to a box where you can write an integer Presburger expression or formula,
and ask MathCheck to construct a corresponding DFA and present it in list form.

There is no DFA for multiplication with this representation of triples of integers because, roughly
speaking, the amount of information that has to be remembered grows without limit when moving
from less significant to more significant bits. (In the case of addition the carry suffices, and it is just one
bit of information.) One of the important facts in the theory of DFAs is called “pumping lemma”. If it
belongs to the curriculum, then here we have an excellent application illustrating it, because it makes
the rough argument above precise. Changing the representation would not help, because of Gödel’s
famous incompleteness theorem. Namely, if both addition and multiplication were representable, then
we would have a decision algorithm for integer arithmetic of the kind that the theorem rules out.

The implementation of “¬” is trivial: just convert every final state to non-final and vice versa.
The implementation of “∧”, “∨”, “→” and “↔” is based on a construction known as “product”, with
additional functionality to deal with the facts that the lists of the variables of the participating DFAs
may differ from each other, and the same original transition may correspond to more than variable. Its
implementation in MathCheck consists of about 150 lines of code. It performs a breadth-first search on
the implicitly represented product DFA, constructing an explicit representation for those of its states
and transitions that it encounters. It contains a hash table, memory-efficient packing of information
using modular arithmetic, a generic implementation of binary Boolean operators (it actually implements
all the 16 distinct binary Boolean functions), and some speed-up heuristics. So it can be used to illustrate
non-trivial application of many programming and algorithm topics.

The product automaton may be much bigger than the smallest possible DFA for the same set of
bit strings, even if the original DFAs are smallest possible. Fortunately, there is a fast algorithm
for minimizing DFAs [17] with improvements [18]. Its implementation (together with backwards-
propagation of final state status along 0-transitions) consists of about 180 lines.

Reasonably efficient implementation of the quantifiers is a challenge. Results from computational
complexity theory [19, 16] imply that there cannot be a solution that is never woefully slow. If
an implementation of “∃” is available, then “∀” can be implemented as “¬∃¬”. The former can be
implemented by using the so-called subset construction. Transitions that correspond to the quantified
variable are treated as 𝜀-transitions in the sense of nondeterministic finite automata. As a consequence,
the state of the result DFA may correspond to more than one state of the input DFA. The result DFA is
constructed similarly to the product DFA, but in this case the constructed states are subsets of the set of
the original states. Therefore, a good data structure for dealing with subsets is needed. MathCheck uses

https://users.jyu.fi/~ava/number_logic.html#printDFA
https://users.jyu.fi/~ava/number_logic.html#printDFA


first an ordered sequence, but switches to a bit set when that becomes equally memory-efficient. This
data structure uses about 150 lines of code, and the rest of the implementation of “∃” 90 lines.

Altogether the integer Presburger module consists of about 1500 lines of code.

6. A Couple of Concluding Remarks

When encountering a syntax error, MathCheck typically lists at most 30 tokens that would be correct in
that place. At the time of designing the parser of MathCheck, this was believed to be a good idea. But
it eventually became a nuisance. Upon arrival of new modes with slightly different syntax, it became
better to give error messages of the kind “div is not available in real logic mode”.

While the possibility of issuing various format checking commands separately is flexible, it is also
prone to the risk that the teacher forgets a command that should be there and writes another command
that should be not. The technical rules of the World Wide Web dictate that each answer box has
an internal name. This name is currently irrelevant for MathCheck, except that if it is “exam”, then
MathCheck rejects many commands, including those that are intended to be written only by teachers.
Using more names, each with its own default setting of format checking commands, writing commonly
occurring combinations of commands could be made easier for teachers.
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