
Introduction to Software Engineering – Challenges and
Responses in Course Composition⋆

Petar Rajković1,∗,†, Anđelija Đorđević1,† and Dragan Janković1,†

1 University of Niš, Faculty of Electronic Engineering, Aleksandra Medvedeva 4, 18104 Niš, Serbia

Abstract
Introduction to Software Engineering courses serve as the foundation for preparing future professionals in
a key aspect of the software industry. This study examines the challenges inherent in course composition
and highlights pedagogical responses designed to overcome these obstacles. The course was established in
the Faculty of Electronic Engineering in Niš in 1995 and, due to various influences, underwent numerous
changes. Each influence, ranging from constant updates in technology and theory to reforms in Serbian
higher education, variations in related courses, and adjustments to the course’s position within the
curriculum, requires a timely response that helps students keep pace and creates a solid foundation for
future roles. In our evaluation, the evolution of the course will be presented alongside its current state,
followed by an analysis of students' results, acceptance rates, and a discussion of the feedback they
provided. During this period, the primary focus was on developing pedagogical models that engaged
students and bridged the knowledge gap between fundamental programming courses and advanced topics
in Information Systems and Software Engineering. Project-based learning initiatives involve students in
realistic software development cycles, fostering skills through iterative design, coding, and testing. The case
of the course being moved in the earlier 2021 semester was specifically evaluated. Initial responses were
lower, but through the engagement of the teaching staff and adjustments to the course, the acceptance
numbers and average grades returned to normal within two years. One of the main approaches was the
flipped classroom model, which uses asynchronous online content and interactive in-class sessions to
deepen understanding and facilitate problem-solving. Given the course's position in the curriculum, the
approach is more individualized, aiming to help students enhance their knowledge by providing a
personalized educational experience that supports diverse learning needs and promotes continuous
improvement. By synthesizing all mentioned aspects, this work outlines a comprehensive experience-based
approach for addressing the multifaceted challenges in introductory software engineering courses.

Keywords
Software Engineering, Education, Course Design, Course Evaluation 1

1. Introduction

Software engineering [1] is a dynamic discipline characterized by rapid technological change and
evolving industry practices [2]. Consequently, introductory courses in software engineering face the
dual challenge of delivering robust theoretical foundations while also emphasizing practical,
industry-relevant skills [3]. This work examines key challenges in course design, including
curriculum alignment with industry trends, the course's position within the curriculum, and student
diversity in experience, as well as the balance between theory and practice [4][5][6]. It explores
innovative pedagogical responses, ranging from project-based learning [7] to agile curriculum
updates [8].

The additional challenge is the course's position within the curriculum [9], particularly for
students in the Electrical Engineering and Computer Science program, and the preceding set of
courses is not fully software-oriented [10]. Next, the historical context of the course, dating back to

⋆ NWISEd 2025: 3rd Workshop on Co-Creating New Ways of Information Systems, September 10–11, 2025, Maribor, Slovenia
∗ Corresponding author.
† These authors contributed equally.

 petar.rajkovic@elfak.ni.ac.rs (P. Rajković); andjelija.djordjevic@elfak.ni.ac.rs (A. Đorđević);
dragan.janković@elfak.ni.ac.rs (D. Janković)

 0000-0003-4998-2036 (P. Rajković); 0000-0002-4760-8641(A. Đorđević); 0000-0003-1198-0174 (D. Janković)

 © 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

previous educational programs, also plays a role to some extent – the change in position of such a
course to earlier semesters could also be an administrative struggle, followed by endless discussions.

However, the purpose has always been and will continue to be to provide a solid foundation in
the principles and practices of software engineering [11]. The goal is to equip students with
knowledge of the software development life cycle (SDLC) [12][13] best practices in design and
coding, and collaborative skills essential in modern engineering environments [14]. By the end of
the course, students should be able to articulate fundamental concepts, apply methodologies, and
work effectively in team-based project settings.

The main aim of this paper is to present the experience gained through thirty years of teaching a
course that should act as an introduction to software engineering and to discuss the changes in the
content and overall software development scene when the position within the curriculum and
correlation with prerequisite subjects changed.

2. Course Evolution

The introduction of this course in the Faculty of Electronic Engineering in Niš dates to the mid-
1990s. In the initial version, from 1995, the course was titled "Software Development Techniques and
Methods" and was placed in the eighth semester of a 5-year electronic engineering curriculum
(Figure 1). The focus was to introduce students to software development models (like Incremental,
Spiral, Iterative, and Waterfall [15]), and then, through a specific practical lesson, teach them some
technology that they could use to develop their projects. The focus of the projects was to create a
Windows Forms or web-based application by following the process defined by the offered
methodologies and creating proper documentation. All these facts must be considered with the
understanding that thirty years ago, at our university, Software Engineering was a two-semester
course in postgraduate studies, and there was no perception that the topic was suitable for graduate
studies.

All the mentioned problems led to the first course redesign in 1999, when the course was moved
one semester earlier and the name was slightly changed to “Software Development and Design
Methods.” This opens the door to introducing new concepts. Unfortunately, the course remains
relatively late in the curriculum (in the fourth year), with a focus still on electronic engineering. The
first course redesign introduced UML diagrams [17] as the design tool, along with software metrics
such as cyclomatic complexity, lines of code per class, and maintainability index. Application design
patterns such as Windows' two-class and three-class were introduced, marking a slight shift towards
software engineering.

The biggest drawback in the first two versions of the course was that students aimed to complete
the project as quickly as possible and focused on documentation. There was an immense amount of
copied code, and the code quality was very questionable [16]. Notably, there was a tendency among
the students to put everything in one class. Also, the often-repeated remark was, “In PHP, there are
no classes, so do we need them at all?” For reference, PHP was one of the most widely used
technologies among Serbian software companies in the late 1990s and early 2000s. PHP introduced
full object-oriented support starting with version 5, released in 2004.

The next course redesign occurred in 2004, when the Bologna process [18] was adopted in Serbian
universities, and the study was reorganized so that all courses became one-semester courses. The
curriculum underwent a significant shift to a 3-year program with a focus on computer science.
Additionally, software engineering was moved to the sixth semester, creating an ideal opportunity
for us to follow our course. The course is renamed to “Object-Oriented Design”, and the selection of
design patterns is introduced, accounting for one-third of the course topics. Additionally, the
practical part of the exam was revised from a single project to five laboratory exercises. The tasks
within the exercises were to design applications using design templates (such as Model-View-
Controller, or MVC [19]) and to apply various software development patterns (such as the GoF
patterns [20][21]). The course was well-positioned and provided students with sufficient knowledge
for later project-based courses, such as “Information Systems”, “Distributed Systems”, or “Software

Engineering”. Additionally, the course followed courses such as Programming Languages, Data
Structures, and Databases, equipping the students well for the tasks to come.

The following curriculum updates (2007 and 2013) extended bachelor's studies to a 4-year model,
keeping our course in the same place. There was a room to consolidate teaching materials and update
the development environment to newer versions of Qt and Visual Studio, allowing students to create
more visually compelling projects. The number of projects was increased to six, covering a complete
semester with tasks.

The latest curriculum updates (from 2019, as well as the one which is currently “in design”, aimed
to come in 2027) moved “Object Oriented Design” to the fourth semester since it was required to
bring introduction knowledge from software engineering earlier. It was envisioned to be beneficial
for several later project-based courses, especially those in the fifth semester, which require
knowledge from our course (such as Information Systems and Web Development). The major
problem we faced with this change was that students had only completed Object-Oriented
Programming before taking this course, while they were also attending Data Structures and
Programming Languages in parallel. This reduced, to some extent, our ability to choose and suggest
technology, and shifted the focus slightly away from the application design.

Figure 1: Change in course position over the years

3. Current Course Composition

The current course composition has been revised and updated to serve as a bridge to Object-Oriented
Programming and Software Engineering. As mentioned, the course is now in the fourth semester
and runs in parallel with Programming Languages and Data Structures. For this reason, we cannot
rely any longer on the programming experience our students had before, but need to adapt to help
them even with the two mentioned courses. Due to this request, the course is organized around
lectures, practical and laboratory exercises, evaluating the necessary student’s effort with 6 ECTS

!"#$%&
'()*+,-.&
I%$-0%-

123-%,&1.$-0,-4&
5.(6."))$06

748"0%-4&
9-:",-4&
'(+.#-#

123-%,&
1.$-0,-4&
;-#$60

<

<<

<<<

<=

=

=<

=<<

=<<<

>?@A&B&CDE-".&
!"%F-:(.&$0&'()*+,-.&

I%$-0%-

<

<<

<<<

<=

=

=<

=<<

=<<<

>??GH&>?@I&B&CDE-".&
!"%F-:(.&$0&'()*+,-.&

I%$-0%-

<

<<

<<<

<=

=

=<

>??C&B&IDE-".&
!"%F-:(.&$0&'()*+,-.&

I%$-0%-

<

<<

<<<

<=

=

=<

=<<

=<<<

<J

J

@AAA&B&9-O(.)-4&
;$*:()"&L:-%,.$%&
L06$0--.$06&O(.&

'()*+,-.&I%$-0%-&

<

<<

<<<

<=

=

=<

=<<

=<<<

<J

J

@AAM&B&&MDE-".&
;$*:()"&L:-%,.$%&

L06$0--.$06&#,+4$-#

(European Credit Transfer and Accumulation System) credits. This value has not changed since the
course's foundation.

The course is running in the fourth semester alongside Data Structures, Programming Language
Foundations, Computer architectures, as well as chosen topics from supporting areas of
Mathematics. It comes after courses (third semester) covering databases and object-oriented
programming, and before Information Systems (fifth semester) and Software Engineering (sixth
semester).

Figure 2: Main elements of the current course composition

The design of our course follows the general recommendations for introductory software
engineering courses (such as [23]), but it is also based on previous experience, requests, and insights
that come from the industry. Compared to the current recommendations for computer science
curricula [23], this course predominantly covers topics from the software engineering and design
(chapter: SE-Design: Software Design), enriched with coding styles, practical usage of advanced
debuggers, and best practices from SE-Construction: Software Construction, and SDF-Practices:
Software Development Practices. Overall, within the course, the following content areas are covered
(Figure 2):

A. Fundamental Concepts and History. Definition, scope, and importance in today’s
technology landscape. Historical evolution and emerging roles within the field.

B. Software Development Life Cycle (SDLC) and major models – Waterfall, iterative, agile
(Scrum, Kanban), and spiral models. Phases: requirement analysis, design,
implementation (coding), testing, deployment, and maintenance. Comparative Analysis:
situations for optimal use of each model, with examples from industry case studies.

C. Software Design and Architecture. Design Principles: Modularity, encapsulation,
abstraction, reusability, and scalability. SOLID principles. Use of UML diagrams for
representing system components and interactions.

D. Design Patterns: Basic patterns, Common patterns (e.g., Singleton, Observer, MVC), and
their applicability.

E. Implementation and Coding Practices. Coding Standards: Best practices for readable,
maintainable, and efficient code. Use of IDEs and Collaboration Tools (such as QT and
Visual Studio). Practical labs on coding, code reviews, and debugging techniques.

F. Software Testing and Quality Assurance. Introduction to testing frameworks used within
IDEs. Quality Metrics: Techniques to measure and ensure software quality.

G. Emerging Trends and Technologies: Artificial Intelligence and Software Engineering: The
impact of AI-driven tools like code assistants, automated testing solutions, and intelligent
debugging.

H. Practical, Hands-On Projects and Case Studies. Real-World Scenarios: Projects that
simulate complete software development cycles.

I. Case Studies: Analysis of successful and failed projects to extract lessons on best practices
and common pitfalls.

The initial lectures cover the basics of UML. The start is with a class, sequence, and state diagram.
The intention is that through drawing basic integrations between objects, static class structure, and
defining states of the object, our student improve their understanding of classes and relations
between them. Each lecture is followed by homework, which enables students to assess their
knowledge immediately. Homework acts as a preparation for the lab exercise.

The following section introduces the SOLID principles and basic design patterns [22]. SOLID
principles are intended to help students gain a better understanding of essential UML diagrams they
have already learned, and to improve their knowledge of relations between interfaces, classes, and
objects, method calls, and how to define a combination of property values that would act as the state
for the object. Basic design patterns, such as the factory method, null object, and composite method,
are covered in the first part of the course. The goal of this part is to develop a simple board game,
such as Minesweeper, incorporating the elements learned so far.

The next part of the course focuses on further developing the students' ability to analyze problems
and provide structured solutions. It consists of UML-related lectures and demonstrations of IDE
capabilities that students can use to execute the following lab exercises. The students will be
introduced to additional UML diagrams (excluding the initial three types) and learn how to use QT
or Visual Studio as the appropriate environments for C++. At this stage of the course, students will
continue to use C++ as the coding language, as previously introduced in classes such as Object-
Oriented Programming. It must be noted that there is considerable room for discussion regarding
whether C++ is the best choice at this stage of programming. However, since it was used in a
previous course and also demonstrated in Data Structures, the course that runs in parallel is an
obvious choice. It is also worth mentioning that in the practical part of the Programming Languages
course, students use Java or C# as examples of languages that run on the software virtual machine.
As a result of the second part of the course, the students will have two programming projects to
complete. The projects are based on understanding well-known processes (such as libraries and
driver's licenses) and implementing a simple software solution that yields results in the form of a
Windows Forms application.

In the final part, students are taught various design patterns, starting with organizational patterns
such as MVC, and progressing to Abstract Factory, Bridge, Command, Observer, Decorator, and
others. Up to this point, we have utilized their progress in Java and C# to assign tasks that will enable
them to develop the application with a more vivid graphical interface, which will have multiple
layers, making the implementation challenges more interesting.

4. Pedagogical Approaches and Assessment Strategies

Along with standard lectures covering theoretical aspects, the primary approach employed in the
course is Project-Based Learning (PBL). It is essentially applied through five to six projects that
should be completed throughout the semester. Mentioned projects are defined to mimic the almost
complete software development life cycle (excluding maintenance). Students begin with a basic set
of requirements and must complete them through a series of requirements gathering sessions. After
that, they move through design, implementation, testing, and creation of basic documentation.
Documentation sets are not equal for each project, but they slightly change throughout the semester.
The constant focus is on modeling, but in some projects, the emphasis is more on the end user, while
in others, it is on technical implementation documents.

Since this course serves as a bridge from object-oriented programming to later engineering-
intensive courses, a few key points, such as iterative development and interdisciplinary integration,
were not in focus. Besides these two points, which are essential to software engineering, they have
been left to Information Systems and Software Engineering. The main goal of our course is to move
students’ mindset from “I’m typing a code and creating a program” to “I’m designing a software
project which will be implemented and documented with proper industry standards”.

The general approach for the course is based on “Flipped and Blended Classroom” models. They
include pre-class engagement, active in-class sessions, and post-class assignments (such as projects).
Unlike the preceding courses, which were usually designed more strictly and classically, the
introduction to software engineering requires a higher student involvement. In a flipped classroom
approach, students review lecture material, tutorials, or short videos before coming to class, freeing
in-class time for discussions, coding challenges, and collaborative problem-solving. Our teaching is
based on the Microsoft Teams platform, which integrates all necessary elements and provides
students with good collaborative tools.

Class preparation helps better organize active in-class sessions, which utilize class time for hands-
on activities—such as coding exercises and debugging sessions—and reinforce theoretical concepts
while catering to diverse learning speeds. Luckily, software engineering itself is primarily practical,
which drives the course definition.

Since we are focused on improving students' programming and design skills, all projects are based
on a one-man-only setup. In this sense, we support digital integration by facilitating face-to-face
interactions, which can be further extended through online forums and discussion groups, thereby
enhancing learning beyond the classroom. Collaborative and Team-Based Learning is reduced to
peer discussions and code reviews, which we see as the weakest point in the course. Eventually, the
focus on this topic will be addressed in later courses, which should further enhance students’ team-
based skills.

The next point that we plan to integrate into the course is Technology-Enhanced Learning (TEL),
which means that this should include adaptive learning platforms, virtual labs, and simulations, and
possibly start using more options of the already used interactive development tools (integration with
Visual Studio and Git, i.e.). Leveraging AI-driven learning platforms can offer personalized content
delivery and real-time feedback, ensuring that all students—from beginners to those with advanced
backgrounds—remain engaged and challenged. Utilizing virtual lab and simulation environments,
container orchestration simulations, or cloud-based labs enables students to gain practical skills in a
controlled, reproducible setting. Tools such as collaborative coding environments, real-time
debugging sessions, and version control simulations (e.g., using Git in a classroom setting) enhance
experiential learning.

Assessment strategies are based on formative and summative assessments. Formative
assessments are done through regular quizzes and assignments. During the semester, the goal is to
take frequent, low-stakes quizzes to reinforce key concepts and reinforce learning. Small software
design and development tasks serve as checkpoints that enable both students and instructors to
assess ongoing progress. Not to forget, but one of the most essential parts that helps with better
understanding is in-class participation. Activities such as live coding sessions, group discussions, and
in-class problem-solving exercises provide immediate feedback and encourage active participation.

Summative Assessments are done through capstone projects and a final exam, as mentioned.
Comprehensive projects that require students to apply most of the software development cycle assess
their ability to integrate learned concepts into a cohesive product. The final exam, which combines
theoretical questions (typically 6) with practical problem-solving scenarios (usually 2), assesses
overall understanding.

5. Results and Discussion

This section is intended to present the results of the study (Table 1). Since our research is related to
the course adaptation, we chose a particular moment to discuss the students' achievement on the

exam. This specific moment dates to 2021, when the new curriculum was approved, and it should be
fully in force starting from 2022. The significant change for our exam is that the course was moved
from the fifth to the fourth semester. Within the same school year, we offered the same course in
both semesters – for students in the fifth semester in the winter and for those in the fourth semester
in the summer.

After that, we had new students only for the fourth-semester curriculum, while in the fifth
semester, the course was organized only for students who, for any reason, had not yet completed
their third year. For example, in the actual school year (2024/2025), 42 students are still enrolled in
the course in the fifth semester, while the regular class of the summer semester has 245 students.

Between 2013 and 2020, the course was only offered in the fifth semester, and the acceptance rate
among students was exceptionally high by local standards. Since it is an obligatory course, the
number of students is determined by the quota for third-year students, which has varied between
180 and 240 over the years. The average grade was 7.65 out of 10, and the average result for the in-
semester project completion was 60,58% of the total points. The number of students who managed
to complete the course and pass the exam in the same year was 71,89% on average.

Considering all the reasons mentioned above, we recognized that the transition to the fourth
semester could be a source of stress for new students. The biggest problem seemed to be a lack of
programming experience that previous generations had gained through lab exercises in Data
Structures and Programming Languages. To prepare for the new setup, we held several promotional
lectures during the winter semester and adapted some of the examples, retaining the well-known
C++ as much as possible.

In the 2021/2022 school year, we had the opportunity to have two generations in parallel. The
older (third-year, winter semester) and younger generation (second-year, summer semester) had a
similar setup. The adaptation was made according to the recommendations we received from the
Department, and the result was satisfactory. The additional programming experience of one more
semester yielded significantly better results for older students. There were 173 students in the older
generation, compared to 233 in the new generation. Additionally, there was no indication that the
younger generation is in any way worse; however, the results were significantly different. The
course was completed by 76.30% of students in the older generation, compared to 62.66% in the
younger generation. The number of students who completed all programming tasks was 78.61% in
the older group, compared to 54.94% in the younger group. An additional two parameters favored
the older generation – average points in projects (58.25% vs. 50.40%) and average grade (7.82 vs. 7.21).

Table 1
Student achievement by year and semester

This does not look like a too dramatic change, but the general feeling was that many students
decided to take the exam in the next year, and that a significant number struggle with the tasks.

Year-semester Total
students

Passed exam (%) Finish projects
(%)

Average project
points (%)

Average grade

2013-2019 avg. 208 149.43 (71.89) 154.57 (74.31) 60.58 7.65
20/21-winter 218 153 (70.18) 135 (61.93) 61.65 7.82

20/21-summer - - - - -
21/22-winter 173 132 (76.30) 136 (78.61) 58.25 7.63

21/22-summer 233 146 (62.66) 128 (54.94) 50.40 7.21
22/23-winter 87 32 (36.78) 6 (6.90) 43.30 6.53

22/23-summer 213 145 (68.08) 124 (58.22) 54.90 7.61
23/24-winter 55 10 (18.18) 2 (3.64) 37.50 7.00

23/24-summer 255 173 (67.84) 170 (66.67) 60.75 8.05
24/25-winter 42 - - - -

24/25-summer 242 - - - -

Additionally, it is worth noting that the previous generation informed them that the course is
“interesting, but lab-intensive,” as it should be. There were not many warnings that it could be
challenging to follow, again, because the students from the 2013-2021 generation had more
experience when they started our course.

What we immediately decided was to review the projects (6 of them) that students must deliver
throughout the semester. The project definition was broken down into detailed tasks and structured
into phases with clearly defined deliverables and deadlines, ensuring that students are always clear
about what needs to be done and how this will affect their grades. Next, projects are modified to
yield more interesting results and are shifted more towards entirely visual (Windows Forms)
applications. For students, it is more interesting to develop simple games, such as Memory or
Minesweeper, rather than perform, for example, some text evaluation of the same computational
complexity.

In the years to come, we restructured the course in a way that immediately began with more, but
simpler, programming tasks. Students received weekly assignments along with regular projects to
complete. Due to the reaction, in the 2022/2023 school year, the percentage of students who passed
the exam increased to 68.08%, which is much closer to the results from previous years. Average grade
rose to 7.61, which is almost at the level of pre-curriculum change (7.65). Looking at the table, one
can see that the data for the students remaining for the winter semester has dropped, but it must be
noted that they are leftovers from the 2021 generation and older. In the current year, we still have
42 of them.

In the last completed year, 2023/2023, we added more consultative lectures and increased the time
needed to explain and understand the development environment and debugging process.
Additionally, we have added a few invited talks (outside of the lectures) from industry professionals
who should promote software engineering in general. The numbers were improved compared to the
previous years. The number of students who finished projects rose by two-thirds, and the average
success rate was again more than 60%. One interesting fact was that the average grade on the final
exam rose to 8.05, which is one of the best results ever.

The most significant change that we noticed is that students with better previous academic
achievement rates put in more effort for this exam. Consultations helped students understand the
theory more effectively, and the lectures from the external lecturer served as an invitation to those
interested in software engineering. For the year to come, we expect better results, since some basic
parts of UML and improved debugging techniques are moved to courses from previous semesters
(Programming and Object-Oriented Programming). Additionally, we unified programming tools and
IDEs, which provide the necessary foundation for the students' personal development.

At this moment, it seems that we are on the way to match pre-curriculum change numbers.
However, since we continually promote software engineering, we plan to incorporate additional
elements into the course in the years to come. Initially, we consider presentations and
demonstrations. Oral presentations or software demonstrations, often accompanied by technical
documentation, assess a student’s ability to communicate complex ideas and defend their design
choices. The idea is to replace one or two of the current projects with one presentation and
demonstration.

Overall, the course itself cannot be viewed as disconnected from the rest of the curriculum, but
needs to be carefully positioned not only within it, but also in the broader scientific context, and its
goals need to be clearly defined. If all these aspects are well-defined, the course can run successfully
with a high acceptance rate. However, during evolution, various potential challenges may arise. In
the case of the course we presented, which should serve as an introduction to software engineering,
we described the response to a situation where the course significantly changed its position,
requiring students to work harder. As a response, we restructured the course and adapted the
evaluation scheme, which gave results after a period.

For a design of such a course, extra effort is needed to follow recommendations from the reference
international organizations, such as ACM (Association for Computing Machinery). Besides the
course's primary role of introducing software engineering, it also needs to cover a practical part, and

its outcome must also be on the improvement of software design and development skills that students
need to develop. For this reason, we try to add all necessary elements of software design practices to
allow students to create more interesting pieces of software and to further promote software
engineering as a discipline that connects all aspects of computer science.

6. Conclusion and Future Work

Effective course design in the introduction of software engineering relies on a continuous alignment
between teaching methods and assessment strategies, taking into account the course's position in
the curriculum. For example, a project- or task-based learning approach should incorporate both
formative assessments that monitor the students’ progress and summative assessments that evaluate
the final level of understanding of all course elements. Additional challenges arise when the course
environment changes. In our study, we presented a scenario in which our course was moved earlier
into the curriculum and examined the resulting reactions. After two years, we are on the way to
returning to the goals that we were able to achieve in previous years.

Due to the new position, students start the course with less experience in general programming.
As a response, we restructured the course and adapted the evaluation scheme, which gave results
after a period. For the future, we plan to focus on technology-enhanced learning tools that can
simultaneously deliver personalized content and track individual contributions, supporting both
teaching and assessment. This holistic approach ensures that all aspects of a student’s learning
experience—technical knowledge, practical implementation, and ethical considerations—are covered
up to the expected level.

Next steps could include further incorporating emerging trends, such as gamification elements,
into both teaching and assessments to boost engagement. Additionally, consider integrating AI and
data analytics to personalize learning paths further and provide targeted interventions based on
student performance data.

The main guidelines that we can state here are to come as close as possible to the students, try to
understand their point of view, promote the course using all possible means, emphasize periodic
checks, and keep students constantly active. All these aspects, together with joint student and teacher
endeavor, could bring the best possible results.

Acknowledgements
The Ministry of Science, Technological Development and Innovation of the Republic of Serbia
supported this work [grant number 451-03-137/2025-03/200102].

Declaration on Generative AI

During the preparation of this work, the author(s) used Grammarly to improve Grammar and for
spelling checks.

References

[1] I. Sommerville, Software Engineering, 10th Edition, Pearson, 2015.
[2] O. Cico, L. Jaccheri, A. Nguyen-Duc, H. Zhang, Exploring the intersection between software

industry and Software Engineering education - A systematic mapping of Software Engineering
Trends, J. Syst. Softw. 172 (2021) 110736. doi:10.1016/j.jss.2020.110736.

[3] S. Tenhunen, T. Männistö, M. Luukkainen, P. Ihantola, A systematic literature review of
capstone courses in software engineering, Inf. Softw. Technol. (2023) 107191.
doi:10.1016/j.infsof.2023.107191.

[4] S. Ouhbi, N. Pombo, Software Engineering Education: Challenges and Perspectives, in: 2020
IEEE Global Engineering Education Conference (EDUCON), IEEE, 2020.
doi:10.1109/educon45650.2020.9125353.

[5] V. D. V David, Software Engineering: A Roadmap, J. Sci. Technol. 7.10 (2022) 86–92.
doi:10.46243/jst.2022.v7.i10.pp86-92.

[6] G. Regev, D. C. Gause, A. Wegmann, Experiential learning approach for requirements
engineering education, Requir. Eng. 14.4 (2009) 269–287. doi:10.1007/s00766-009-0084-x.

[7] P. Morais, M. J. Ferreira, B. Veloso, Improving Student Engagement With Project-Based
Learning: A Case Study in Software Engineering, IEEE Rev. Iberoam. Tecnol. Del Aprendiz. 16.1
(2021) 21–28. doi:10.1109/rita.2021.3052677.

[8] A. Saad, The Effectiveness of Project Based Learning with Computational Thinking Techniques
in a Software Engineering Project Course, J. Contemp. Issues 12.1 (2022) 65–79.
doi:10.37134/jcit.vol12.1.6.2022.

[9] A. Holland-Minkley, J. E. Barnard, V. Barr, G. Braught, J. Davis, D. Reed, K. Schmitt, A. Tartaro,
J. D. Teresco, CS2023: Computer Science Curriculum Guidelines: A New Liberal Arts
Perspective, ACM Inroads 16.1 (2025) 40–52. doi:10.1145/3700773.

[10] I. Trunova, S. Arhun, A. Hnatov, P. Apse-Apsitis, N. Kunicina, V. Myhal, Sustainable Approach
Development for Education of Electrical Engineers in Long-Term Online Education Conditions,
Sustainability 15.18 (2023) 13289. doi:10.3390/su151813289.

[11] V. Garousi, G. Giray, E. Tüzün, C. Catal, M. Felderer, Aligning software engineering education
with industrial needs: A meta-analysis, J. Syst. Softw. 156 (2019) 65–83.
doi:10.1016/j.jss.2019.06.044.

[12] O. E. Olorunshola, F. N. Ogwueleka, Review of System Development Life Cycle (SDLC) Models
for Effective Application Delivery, in: Information and Communication Technology for
Competitive Strategies (ICTCS 2020), Springer Singapore, Singapore, 2021, pp. 281–289.
doi:10.1007/978-981-16-0739-4_28.

[13] G. Sawarkar, D. Rajput, Comparative Analysis of Various Software Development Life Cycle, Int.
J. Comput. Sci. Mob. Comput. 11.8 (2022) 1–8. doi:10.47760/ijcsmc.2022.v11i08.001.

[14] A. Kovari, J. Katona, Effect of software development course on programming self-efficacy, Educ.
Inf. Technol. (2023). doi:10.1007/s10639-023-11617-8.

[15] I. Trunova, S. Arhun, A. Hnatov, P. Apse-Apsitis, N. Kunicina, V. Myhal, Sustainable Approach
Development for Education of Electrical Engineers in Long-Term Online Education Conditions,
Sustainability 15.18 (2023) 13289. doi:10.3390/su151813289.

[16] H. Keuning, B. Heeren, J. Jeuring, Code Quality Issues in Student Programs, in: ITiCSE '17:
Innovation and Technology in Computer Science Education, ACM, New York, NY, USA, 2017.
doi:10.1145/3059009.3059061.

[17] H. Koç, A. M. Erdoğan, Y. Barjakly, S. Peker, UML Diagrams in Software Engineering Research:
A Systematic Literature Review, Proceedings 74.1 (2021) 13. doi:10.3390/proceedings2021074013.

[18] B. WACHTER, The Bologna Process: developments and prospects, Eur. J. Educ. 39.3 (2004) 265–
273. doi:10.1111/j.1465-3435.2004.00182.x.

[19] K. Sharan, Model-View-Controller Pattern, in: Learn JavaFX 8, Apress, Berkeley, CA, 2015,
pp. 419–434. doi:10.1007/978-1-4842-1142-7_11.

[20] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Abstraction and Reuse of Object-
Oriented Design, in: ECOOP’ 93 — Object-Oriented Programming, Springer Berlin Heidelberg,
Berlin, Heidelberg, 1993, pp. 406–431. doi:10.1007/3-540-47910-4_21.

[21] R. Martin, Functional Design: Principles, Patterns, and Practices, Addison Wesley Professional,
2023.

[22] B. Joshi, SOLID Principles, in: Beginning SOLID Principles and Design Patterns for ASP.NET
Developers, Apress, Berkeley, CA, 2016, pp. 45–85. doi:10.1007/978-1-4842-1848-8_2.

[23] A. N. Kumar, R. K. Raj, Computer Science Curricula 2023 (CS2023): The Final Report, in: SIGCSE
2024: The 55th ACM Technical Symposium on Computer Science Education, ACM, New York,
NY, USA, 2024. doi:10.1145/3626253.3633405. https://dl.acm.org/doi/pdf/10.1145/3664191

