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Abstract

In recent years, topological data analysis has become an important aspect of modern data science. Persistent
homology is one of its popular features, and there are several specialized tools for its calculation. On the other
hand, software reliability can be studied as a time-series of discovered software faults and/or occurrences of
software failures. Topological data analysis of such time-series reduces to calculation of the persistent homology of
certain point-clouds attached to time-series in sufficiently high dimension. The aim of this paper is to investigate
which of the tools for computing persistent homology is the most appropriate for applications in software
reliability analysis.
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1. Introduction

Software becomes a cornerstone of digital society, where software systems are interconnecting in-
frastructure, transportation, healthcare, and many other domains. Failures in such systems can have
far-reaching, even catastrophic, consequences. Software reliability is a crucial system quality attribute,
especially for mission-critical systems where failures can have severe consequences for safety, human
lives, and the operation of vital infrastructure. Moreover, reliability is also becoming increasingly
important for all other domains due to economic, business, and sustainability constraints that may be
affected by system failures.

Reliability modeling plays a pivotal role in managing such systems, enabling engineers to quanti-
tatively analyze past failures, predict future reliability, and help risk management to make informed
decisions about further management decisions like investments, release readiness, and quality assurance.
The current state of the art in software reliability modeling focuses on advanced software reliability
growth models (SRGM) that are essential tools for quantitatively assessing and predicting the reliability
of software systems throughout their lifecycle [1], [2]. These models are based on nonhomogeneous
Poisson processes, such as exponential, logarithmic, and S-shaped models, to analyze the rate of system
failure detection over time and forecast reliability improvements throughout the software lifecycle.
These models, supported by empirical validation and parameter estimation techniques, are increasingly
integrated into modern development workflows, providing a rigorous foundation for managing and
certifying software reliability in complex, safety-critical systems. Recent research in SRGMs reflects a
significant evolution from traditional failure-counting approaches to more sophisticated models that
incorporate real-world operational complexities.

In our previous studies [3], [4], [5], [6], [7], [8], we were motivated from the real industrial context.
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In particular, the increasing frequency of software releases in complex software systems and the
common practice of overlapping multiple projects that present significant challenges for fundamental
assumptions underlying traditionally used SRGMs. When development and maintenance activities for
different versions of a product occur simultaneously, the fault detection rates from previous revisions
can interfere with current reliability measurements, leading to inaccurate predictions if traditional
models are applied. Research has shown that in overlapping project environments, a single reliability
growth model often fails to fit the observed data accurately. Thus, combining multiple distributions
or adapting models becomes necessary to achieve reliable estimations and support effective project
management and planning [3].

Some further studies, such as [9] and [10], introduce coverage-based and multi-release models that
integrate testing effort functions, change-point analysis, and advanced lifetime distributions to better
reflect software behavior over time within a real operational context. The work [11] extended SRGM
applications beyond defect modeling to predict microservices’ performance degradation using growth
theory, highlighting the adaptability of SRGMs to modern architectures.

A comprehensive examination of research trends, model selection practices, and enhancement
techniques in SRGMs is provided in [12]. The authors conducted a systematic mapping and literature
review covering 142 primary studies published between 1992 and 2020. The study categorizes SRGM
selection criteria into model assumptions, application context, and evaluation metrics, and it identifies
various enhancement methods such as hybrid modeling, incorporation of testing effort functions, and
parameter estimation using metaheuristics (e.g. genetic algorithms and particle swarm optimization).
The review reveals a notable shift in research toward more adaptable and context-aware models,
while also highlighting gaps in empirical validation and standardization of evaluation practices. The
authors conclude by recommending more rigorous experimental setups, broader datasets, and consistent
benchmarking to support SRGM reliability and industrial relevance.

Our long term goal is to study software reliability using topological data analysis, as already an-
nounced in [13]. Geometry, and in particular topology, has gained in importance in computer science in
recent years. Among the most prominent research direction are the geometric approaches to artificial
intelligence [14], [15], [16], and the topological approach to quantum computers [17], [18]. The seed of
all these new developments and applications of topology lies in topological data analysis [19], [20]. It
relies on the toolbox of algebraic topology [21], [22], to extract hidden patterns in data that are out
of reach by other, in particular quantitative, methods. Topological data analysis has found several
important applications, see the expository papers [23], [24] for an overview of these.

Our previous work [13] is a preliminary study of the application of topological data analysis to
software failure time-series, using persistent homology to extract qualitative patterns that enhance the
understanding of reliability behaviors and support SRGM selection. Rather than focusing solely on
quantitative measures traditionally used in Software Reliability Growth Models (SRGMs), we explore the
qualitative, shape-based features of failure data to uncover hidden structural patterns across software
versions. Using datasets from two open-source Eclipse projects (JDT and PDE) and an industrial telecom
system (MSC), we demonstrate how topological features in failure data can reveal differences and
similarities in reliability evolution. The analysis suggests that these topological insights can support
early identification of reliability behaviors and inform the selection of appropriate SRGMs, offering a
promising direction for future research into modeling complex, evolving software systems.

As the first step in that endeavor, we explore in this paper different tools available for computing
the persistent homology of time-series using the Vietoris—Rips simplicial complexes obtained by the
sliding window approach to construct the point-clouds in higher dimensions from a given time-series.
Although a detailed analysis of the most important tools has already been reported in [25], [26], we
undertake here an assessment of computation time of these tools in view of the application in software
reliability analysis. The motivation is that the general results reported in the literature may not be
appropriate for the special type of time-series arising from the software reliability analysis.

The assessment of the persistent homology tools is performed on 60 simulated software fault time-
series. The simulations are made following four different classical reliability growth models, and 120
point clouds are constructed using two different widths of the sliding window. The size of the dataset



and the variability in models and sliding window, allows us to evaluate the considered tools in regard
to the software reliability analysis.

The paper is organized as follows. In Section 2, the reliability growth models are recalled and the
simulation of software fault time-series is explained. A brief and rough overview of persistent homology
and tools for its calculations are the subject of Section 3. The conducted experiment is described and
the results are reported in Section 4. Section 5 concludes the paper.

2. Reliability Growth Models

In this section we recall the classical reliability growth models for software reliability modeling. The
main reference for these matters are still the books [1], [2]. Although there is a plethora of new models
for reliability behavior of software and systems, we prefer to stick with the classical SRGMs for two
reasons. Firstly, these models are of general applicability even beyond software reliability, perhaps not
the best performing in some special circumstances, but very robust to environmental changes. Secondly,
there are analytic expressions for their behavior in time, so that the time-series data can be simulated,
which is not the case for many of the modern models.

We use the standard notation, that is, 1(¢) represents the number of faults discovered in a software
system from the beginning of testing or operation up to time ¢ > 0. Here ¢ = 0 represents the moment
when the testing or operation starts. The four SRGMs considered in this paper are the same as in the
papers [27], [28]. These are recalled in the following list with the formula for ;(t) and the bounds for
their parameters:

« Goel-Okumoto or basic Musa model [29]

pco(t) =a (1 - e_bt) ,

wherea > 0,b > 0,
+ Delayed S-shaped model [30]

pos(t) = a |1 = (1+bt) ™|

wherea > 0,b > 0,
« Gompertz model [31]

wherea > 0,0<b<1,0<c< 1,
+ Yamada model [32]
py(t) = a[1 = O]

wherea > 0,bc > 0,d > 0.

All these models are based on the nonhomogeneous Poisson process with different distributions of
inter-arrival times of faults. The Goel-Okumoto and Yamada models are concave, that is, the curve p(t)
is concave. The delayed S-shaped and Gompertz model are S-shaped, which means that the curve ()
exhibits an inflection point at which it changes from convex to concave.

The parameter a represents the total number of faults in the system. In all the models except the
Yamada model, this is the same as the number of faults that would be detected as the testing proceeds
infinitely. The Yamada model assumes that even if the testing proceeds forever, there would still be
some faults left in the system. This fact is taken into account when making simulations of fault counts.

There is an additional subtlety with the Gompertz model, as the faults can be detected at negative
time, i.e., for t < 0. This happens because the Gompertz model assumes that some faults are detected
before the actual testing started.



The simulated time-series following the considered SRGMs are constructed from a uniformly dis-
tributed random numbers in the unit interval using the transformations arising from the formulas for
(1(t). The problem with possibly negative values of ¢ in the case of the Gompertz model is resolved in
three different ways, thus producing three different types of time-series for the Gompertz model.

To ensure that the simulated time-series exhibit the fault behavior of real world software, and
thus increase the generalizability of the findings, the parameters of SRGMs that are used in simula-
tions are estimated from fault data of five industrial large-scale software development projects in the
telecommunication domain.

In summary, we constructed the input for the experiment with persistent homology tools of Section
3. It is a dataset with 60 simulated time-series of software fault counts. There are 10 time-series that
follow each of the considered SRGMs, including three different types of the Gompertz model.

3. Persistent Homology Tools

This section begins with a very rough overview of persistent homology. The overview is included for
completeness, and the reader interested only in applications to software engineering can safely skip
this part and consider it as a black box. Due to limited space and the complexity of the subject, we are
not in position to provide a complete self-contained account of the topic with examples and/or simple
cases to demonstrate the theory. An example of topological analysis of higher dimensional structures in
software systems is already published in this conference [33]. For the interested reader, we refer to the
comprehensive standard reference [21], in which persistent homology is discussed in detail in Chapter
VII. An excellent source for a beginner in algebraic topology and its applications are the lecture notes
[34].

Persistent homology is an algebraic object attached to a filtration of simplicial complices. It captures
how homology classes, in different degrees, appear and vanish when computing homology of simplicial
complices in the filtration. These are called the birth and death times of homology classes (also called
topological features from the machine learning point of view), where time refers to the position in the
filtration. The results are encoded in either persistent barcodes or persistent diagrams. Both represent
the birth and death times of homology classes.

In the application to point-clouds that represent some data, the filtration of simplicial complices
arises from the Vietoris—Rips complices associated with the growing radius of balls around points in
the cloud. Since point-clouds are finite, there are only finitely many radii at which the Vietoris—Rips
complex changes. This gives a required finite filtration.

In our case, the time-series simulated in Section 2 are transformed in point-clouds using a sliding
window approach. For each time-series the sliding windows of width five and ten are applied. These
produce point-clouds in dimensions five and ten that are the input for persistent homology tools in the
experiment described in Section 4. Thus, we have in total 120 point-clouds, two arising from each of the
60 simulated time-series. Among them, 60 point clouds are in dimension five, and 60 in dimension ten.

The tools for computing persistent homology considered in this paper are the following:

« Dionysus version 2.0.10 in Python [35],

o DIPHA version 2.1.0 in C++ [36], [37],

o Eirene version 1.3.6 in Julia, [38], [39],

« GUDHI version 3.11.0 in Python, [40], [41],
« Ripser version 1.2.1 in C++, [25], [42].

These are the open source tools that all implement the calculation of Vietoris—Rips complex from
a point-cloud with respect to growing radius and the calculation of the persistent homology of the
filtration of simplicial complices so obtained. There are, however, certain differences in their approach.
Dionysus takes advantage of the fact that cohomology is easier to compute than homology, and exploits
the duality between homology and cohomology. DIPHA is making the calculation using distributed
computing, which is very beneficial for large and high-dimensional data. Eirene is relying on matroid



Table 1

Descriptive Statistics of Computational Times for the Five Tools for Persistent Homology in All Dimensions, and

Separately in Dimensions 5 and 10

Point-clouds Computational time [s] ‘ Dionysus  DIPHA  Eirene GUDHI Ripser
Mean 369.776 432.893 3.306 16.922 23.820
Std. dev. 612.145 792.721 7.835 29.910 40.933
All Median 23.772 31.606 0.495 1.163 1.550
Min. 4.196 9.601 0.076 0.307 0.333
Max. | 2974993  3251.298 65.944 144219 202.412
Mean 195.196 622.618 1.110 6.792 10.895
Std. dev. 282.340 943.022 1.365 9.038 14.648
Dimension 5 Median 11.928 32.726 0.180 0.722 0.912
Min. 4.196 9.601 0.076 0.307 0.333
Max. 986.868 3251.298  4.630 25.670 47.439
Mean 544.355 168.161 5.502 27.052 36.746
Std. dev. 783.639 392.065 10.289  38.910 53.152
Dimension 10 Median 33.859 31.606 0.835 1.733 2.468
Min. 7.618 14.120 0.143 0.515 0.570
Max. | 2974993 1831.467 65.994 144.219 202.412

Table 2
Descriptive Statistics of Computational Times for All Five Tools for Persistent Homology and Point-clouds Arising
from Different SGRMs

Computational time [s] ‘ Goel-Okumoto Delayed S-shaped Gompertz Yamada
Mean 553.490 38.128 6.604 413.854
Std. dev. 867.663 62.572 9.519 600.834
Median 79.488 3.692 0.843 73.645
Min. 2.049 0.234 0.077 1.688
Max. 3251.298 310.971 41.755 1972.463

theory and discrete Morse theory. GUDHI employs new data structures for simplicial complices and their
boundary matrices. Ripser is known as one of the best-performing tools due to its special optimizations.
For a detailed account of existing tools for calculation of persistent homology see [26].

4. Experiment

The experiment is made on the dataset of 120 point-clouds constructed in Section 3 from 60 time-series
simulated as in Section 2. The calculations of persistent homology was done for degrees 0, 1, 2, 3 in
homology. Higher degrees are computationally more demanding and would take quite long, at least on
our equipment.

The tools for computation of persistent homology listed in Section 3 were deployed on a laptop
running Linux Mint 21.2 (kernel 6.8.0), equipped with an AMD Ryzen 7 4800H processor (8 cores / 16
threads), 32 GB of DDR4 RAM at 3200 MHz, and two graphic cards (integrated AMD Radeon RX Vega
6 and a discrete NVIDIA GeForce RTX 3050 Mobile). All tools were executed via the Kitty terminal
using the Zsh shell. The GPU was not utilized, as none of the tools support GPU acceleration. Each
computation completed within a few seconds, and 32 GB of RAM was sufficient for all processed
point-clouds.

For each of 120 point-clouds the computational time in seconds for each of the five tools is recorded.
The summary of the descriptive statistics of these times is given in Table 1, for point-clouds in all
dimensions, and separately for points-clouds in dimension 5 and dimension 10. In Table 2, the summary
of the descriptive statistics is given separately for point-clouds obtained from different SRGMs.



Table 3

Results of t-tests for Dependent Variables between Different Tools in All Dimensions

vs. DIPHA Eirene |  GUDHI Ripser
Dionysus | t = —0.670052 | ¢t = 6.616714 | ¢t = 6.623903 t = 608180
p=0.503524 p <1076 p <1076 p <1076
DIPHA — t=05.938261 | ¢t =5.745596 | t = 5.646235
- p <1076 p <1076 p <1076
Eirene — — t=—6.19828 | t = —6.456150
— — p <1076 p <1076
GUDHI — — — t = —6.515680
— — — p <1076
Table 4
Results of t-tests for Dependent Variables between Different Tools in Dimension 5
VSs. DIPHA Eirene GUDHI Ripser
Dionysus | t = —3.36332 | t =5.348114 | ¢ = 5.332483 t = 5.314825
p = 0.001039 | p =0.000002 | p =0.000002 | p = 0.000002
DIPHA — t =5.105054 | t=5.058149 t = 5.024080
— p = 0.000001 | p=0.000002 | p = 0.000002
Eirene - — t = —5.669510 | t = —5.678280
- - p <1076 p <1076
GUDHI — — - t = —5.364410
— — — p = 0.000001
Table 5
Results of t-tests for Dependent Variables between Different Tools in Dimension 10
\ vs. | DIPHA |  Eirene |  GUDHI | Ripser \
Dionysus | t =2.896106 | t = 5.375149 t = 5.36937 t = 5.360293
p = 0.004632 | p =0.000001 | p=0.000001 | p = 0.000001
DIPHA — t=3.218287 | t=2.774210 t = 2.568501
- p=0.001734 | p=0.006593 | p=0.011677
Eirene — — t=—5.332970 | t = —5.369745
— — p = 0.000002 | p=0.000001
GUDHI — — . t = —5.060904
— - — p = 0.000004

The descriptive statistics of computational times for all point-clouds in Table 1 reveals substantial
differences between considered tools. All statistics consistently indicate that Eirene is the best per-
forming tool in terms of computational time, followed by GUDHI and then Ripser, while Dionysus is
slightly better than DIPHA in the last place. The same conclusion also holds for results in the case
of point-clouds in dimension 5 in Table 1. The results of Table 1 in dimension 10 show very similar
behavior, except that DIPHA seems to be better than Dionysus in that case.

It is interesting to observe how all the means in Table 1 are considerably greater than medians,
maxima are pretty large, and there is high variability in terms of standard deviation. This shows that
there is a small portion of point-clouds with very high computational times, and the remaining large
portion of point-clouds that are very quickly processed. Checking by hand which of the point-clouds
have larger computational times than average, we discovered that all tools perform badly on the same



Table 6
Results of ¢-tests for Dependent Variables between the Same Tool Applied to Point-clouds in Dimension 5 and 10

‘ ‘ Dionysus ‘ DIPHA ‘ Eirene ‘ GUDHI ‘ Ripser ‘
dim5vsdim 10 | t = —4.915500 | ¢ =2.977814 | t = —3.501114 | ¢t = —5.111223 | t = —5.012962

p =0.000007 | p=0.003635 | p = 0.000889 p = 0.000004 | p = 0.000005
Table 7
Results of t-tests for Independent Variables between Different Software Reliability Growth Models
vs. | Delayed S-shaped ‘ Gompertz Yamada
Goel-Okumoto t = 5.924296 t =6.304215 | t=1.266813
p <1076 p <1076 p = 0.206850
Delayed S-shaped — t =4.980730 | t = —6.218271
— p = 0.000001 p <1076
Gompertz — — t=—6.778711
— — p <1076

point-clouds.

To explore this observation further, we compare in Table 2 the descriptive statistics separately for
point-clouds arising from different SRGMs. According to these statistics, the computational times of
all tools combined strongly depends on the SRGM from which a point-cloud is constructed. The tools
perform best on point-clouds from Gompertz model, closely followed by delayed S-shaped, while they
perform significantly slower in the case of Yamada model and the last placed Goel-Okumoto model.
This is consistent with the worst point-clouds from computational time point of view observe above.

It is worth noticing in Table 1 that all the tools except DIPHA are faster on point-clouds of dimension
5 than on those of dimension 10. This is as expected, since computational complexity rises with growth
of dimension, that is, with the width of the sliding window used in the construction of the point-cloud
from a time-series. The reason why DIPHA exhibits the opposite behavior may lie in the fact that it is
designed for distributed computing,.

To support the conclusions made above based solely on descriptive statistics, we performed the ¢-test
of equal means between different samples of computational times. The ¢-statistic and the corresponding
p-value for compared samples of five considered tools applied to all point-clouds are reported in Table 3,
applied to point-clouds in dimension 5 in Table 4 and in dimension 10 in Table 5. On the other hand, the
results of ¢-test for samples of the same tool applied to point-clouds in dimension 5 and 10 are reported
in Table 6. Finally, the ¢-statistic and p-value for samples arising from the application of all tools to
point-clouds obtained from time-series of different SRGMs are reported in Table 7. In all these tables,
if the null hypothesis of equal means is not rejected at significance level p = 0.5, i.e., if the p-value
p > 0.05, then the p-value is written in boldface for the convenience of the reader.

Browsing through these tables shows that the only cases in which the null hypothesis is not rejected
are in the case of comparison of Dionysus and DIPHA tool applied to all point-clouds, and the comparison
of all tools applied to point-clouds arising from Goel-Okumoto and Yamada model. In both cases these
are the worst performing models. For all other comparisons the null hypothesis can be rejected, thus
providing evidence for our conclusions based on descriptive statistics.

5. Conclusion

One of the key aspects of software quality, especially in mission-critical systems, is its reliability.
Topological data analysis through persistent homology is one of the modern approaches to the analysis
of time-series. There are several tools for computing persistent homology of time-series. We analyzed
five of them (Dionysus, DIPHA, Eirene, GUDHI, Ripser) from the point of view of software reliability.



More precisely, we analyzed computational time of different tools when applied to time-series datasets
simulated to follow some of the classical software reliability growth models (Goel-Okumoto, Delayed
S-shaped, Gompertz, Yamada) with parameters estimated from five industrial large-scale software
development projects. The main conclusion is that the best performing tool is the latest version of
Eirene, followed by GUDHI, and then Ripser. Dionysus and DIPHA performed substantially slower.
However, we also observed high variability in computation time and a small portion of input data with
very long computational times, so that the conclusions are not decisive.

It is interesting that the computational times of all tools strongly depend on the underlying soft-
ware reliability growth model which the time-series follows. We also confirmed the expectation that
computational times grow with higher dimensions.
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