
Why do or why don’t software developers use static
analysis tools? A literature review
Kristóf Umann1, Zoltán Porkoláb1

1ELTE, Eötvös Lóránd University, Budapest, Hungary. Faculty of Informatics, Department of Programming Languages and
Compilers

Abstract
In the context of software technologies and literature, the field of static analysis is ancient. If we consider that
compilation errors and warnings themselves are a form of static analysis, one could claim with ease that this field
is about as old computer theory itself. Even involved algorithms, like symbolic execution, specifically tailored to
find programming errors were around since the 1970s, and have enjoyed widespread use in the industry with the
increase of computing power since the early 2000s.

While academic papers on new exciting techniques in the field of static analysis praise the technology, reading
actual user experience reports paint a different picture. Static analyzer tools are frequently described as emitting
numerous false positive or irrelevant reports and having poor quality warning messages, among other things.
Since the early 2010s, renewed interest have sparked the publication of several surveys with human participants.

This paper serves as a literature review on the user experience with static analysis. We discuss six papers
conducting surveys on tens, hundreds, or even thousands of participants all to learn how static analyzers are
used, what are its pain points, how are they configured, among many other aspects.

Keywords
static analysis, survey, false positives, bug report quality, usability

1. Introduction

Our society is more dependent on software systems than ever before. Software appears in all aspects
of life: from convenience functions to critical support systems. Vulnerabilities, especially in the latter
systems, can cause serious material damage, and even can threaten human life. To avoid such situations
software systems are intensively checked in various ways from different levels of testing to human code
review. Among these methods, static analysis is one of the most promising, rapidly developing area
with a number of open source and proprietary tools [1, 2, 3, 4].

Contrary to testing and dynamic analysis, static analysis works on the source code to detect various
properties of the system, including possible errors, without running the program. Therefore, static
analysis does not require the complete running environment (network, databases, etc.), and does not
depend on carefully selected data to cover the most interesting parts of the software. Usually static
analysis is applicable much earlier than the other software checking methods, many cases available
even during the early stages of the development process. As the earlier the bug is detected is the cheaper
to fix it [5], static analysis is a perfect fit method for the development-bug detection-bug fixing cycle.

On the other hand static analysis works using heuristics. Therefore it may underestimate or over-
estimate the program behavior [6]. In practice this means that the tools sometimes do not detect
existing errors in the code which situation is called as false negative, and sometimes they report errors
on correct code which is called false positive. While developers of static analysis tools are working
hard to minimize these situations, the complete elimination of false negatives and false positives are
theoretically impossible [7].

SQAMIA 2025: Workshop on Software Quality, Analysis, Monitoring, Improvement, and Applications, September 10–12, 2025,
Maribor, Slovenia
$ szelethus@inf.elte.hu (K. Umann); gsd@inf.elte.hu (Z. Porkoláb)
� gsd.web.elte.hu (Z. Porkoláb)
� 0000-0002-6679-5614 (K. Umann); 0000-0001-6819-0224 (Z. Porkoláb)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:szelethus@inf.elte.hu
mailto:gsd@inf.elte.hu
gsd.web.elte.hu
https://orcid.org/0000-0002-6679-5614
https://orcid.org/0000-0001-6819-0224
https://creativecommons.org/licenses/by/4.0/deed.en


As such, static analyzers have not always enjoyed unanimous praise [8]. Scholarly work in the field
often leads to vastly different opinions: papers on the new techniques and approaches on static analysis
are usually positive, whereas surveys on the applicability of these tools are often negative or pessimistic.

To demonstrate, the authors of [9] describe the following:„Symbolic execution (SE) is a highly successful
method to automatically find bugs in programs” and „This basic bug-finding strategy has proved to be
a powerful technique, supporting some of the most effective tools for analyzing large codebases”. On the
other hand, the authors of [10] discuss the actual application of a static analyzer, and write „Can we
just take KLEE and use it in the company as is? The answer is no. The designer of KLEE could not foresee
the obstacles inevitable when working with real-life code.” While neither of these excerpts serve as a
summary of the cited papers, they highlight the academic-industrial gap.

Fortunately, since the early 2010s, there is growing interest in user-focused surveys to better un-
derstand this gap [11, 12, 13, 14, 15, 16]. In particular, surveys where human software developers are
involved are especially valuable, as they receive this data straight from the source [8, 17, 18, 19, 20, 21].

This paper serves as a comprehensive literature review for surveys on the usability of static analyzer
tools involving human participants. There are also numerous papers on the usability, explainability,
and applicability of static analyzers not involving human participants. While the human aspects of this
research is important, we discuss three such papers we found were particularly relevant to this survey.
The last comprehensive literature review on a similar topic was [22] in 2011.

Our paper is structured as follows. In Section 2., we discuss six articles involving software developer
participants. When novel techniques were used to develop the questionaire or interview, we also show
that alongside the results. In Section 3., we take a look at three articles from a tool designer perspective.
We conclude our paper in Section 4.

2. Surveys with software developer participants

In 2008, the authors of paper [23] reported that while the static analysis methods are frequent research
areas in the academy, there are no many usage examples in the industry. Current trends show a growing
industrial interest of the static analysis tools [24, 25], but still, most tools are hindered by a high number
of false positives and poor quality warning messages. Since the early 2010, several excellent surveys
were conducted with software developers on why they do, or do not use static analyzers. In this section,
we overview these articles.

We selected papers based on the following criteria:

• The article must be relatively recent, from 2010 or later. This lead to the omission of [26] from
2008.

• Have at least 20 participants. This lead to the omission of [27] from 2018, as they only had 8
participants, the 2018 article [28], as they only had 10, and the 2024 article [? ], as they only had
11.

• Be focused on static analyzers beyond compiler errors and warnings. This lead to omission of the
2018 article [29] and the 2024 article [30].

It should be emphasized that papers we cite as an example here are also valuable additions to the
academic community and worth reading.

2.1. Why Don’t Software Developers Use Static Analysis Tools to Find Bugs?

In 2013, authors in [8] investigate why the use of static analysis tools is not as widespread as it could
be possible. They focused on the developer’s perception on using the tools, including the interaction
with the user interface. The research was conducted via 40-60 minutes long semi-structured interviews
with 20 developers with experience ranging from 3 to 25 years. Among these 20 developers, 14 people
expressed negative impact on the way in which the warnings are presented. Apart from the possibility
of overwhelming false positive warnings they mentioned that the reports are non-intuitive.



As the result of their research, they conclude that developers are not able to understand what the tool
is telling them, which is a definite barrier to use static analysis tools. Nineteen of the 20 participants,
felt that many static analysis tools do not present their results in a way that gives enough information
for them to assess what the problem is, why it is a problem and what they should be doing differently.

2.2. What developers want and need from program analysis: An empirical study

In 2016, the authors in [17] survey what authors want and need from static analyzers. The article focuses
on industrial applicability: So far, much research and many studies on program analysis tools have focused
on the completeness of these tools [. . . ], their soundness [. . . ]. However, as companies integrate program
analyzers as part of their development process, more investigation is needed into how these tools are used in
practice and if practitioners’ needs are being met. The article frequently compares the similarities and
differences in results against [8] (discussed in Section 2.1).

The authors used Kitchenham and Pfleeger’s guidelines for personal opinion surveys in software
engineering research [31] when designing and deploying their survey. First, they invited five developers
for interviews to gauge the clarity of the survey questions. Based on their feedback, an enhanced version
was sent out to 100 participants to further improve the survey format and wording, and the collected
responses were not added to the final data set. Finally, they sent out the survey to 2000 randomly
selected developers, and recieved 375 reponses. All participants in all three rounds were from Microsoft.

On their question What Makes Program Analyzers Difficult to Use?, developers ranked Wrong checks
are on by default the highest, stating that several enabled checks do not match what the developer wants,
such as specific convetion checks not used in their project (e.g. follow Hungarian Notation). Too many
false positives was ranked only third behind Bad warning messages. Among the top 7 pain points also
appeared the lack of suggested fixes and bad visualization. Interestingly, among 15 other choices, Misses
too many issues was ranked second to last ahead of Not cross platform. Among other things, they
conclude that To build trust in their analyzers, tool designers should keep in mind that developers care
much more about too many false positives than too many false negatives.

The authors also note that There are relatively few empirical studies [. . . ] from the point of view of
software engineers. So far, many studies have analyzed the functionality of program analyzers, mostly
from the point of view of tool designers. Fortunately, many excellent surveys have emerged since their
publishing.

2.3. Context is king: The developer perspective on the usage of static analysis tools

In the 2018 research published in paper [18] the authors consider the development context in which
analyzer tools are used. The authors sent out forms to 52 developers, and have gotten response from 42
users of static analyzers. 29 developers worked in the industry, while 13 were in open-source. Then,
they interviewed 11 industrial experts to understand the possibilities of better prioritization of static
analysis tool reports. Among other interesting results, they found that ... warnings hard to integrate in
case they do not have teammates having enough expertise for fixing them. However, those warnings can be
easily understood if the tools provide exhaustive descriptions.

2.4. How developers engage with static analysis tools in different contexts

The 2019 paper [19] surveys how the usage of automatic static analysis tools (ASATs, in their terminology)
in the development workflow evolved over the years. They approach their survey from 3 angles:
(1) A survey on the practical usage of ASATs with 56 participants, (2) A semi-structured interview
with 11 participants to validate the findings from the previous point, (3) Manual inspection of ASAT
configuration files of 176 open-source projects.

The authors put heavy emphasis on what analyzers developers use, the types of programming errors
they want uncovered, and the development contexts in which the analysis is conducted. They conclude,
among other findings, that developers usually pay attention to different categories of defects while working
locally, in code review or rather in CI. Specifically, they mainly look at Error Handling in CI, at Style



Convention in Code Review, and at Code Structure locally. These warnings are not mutually exclusive
though and some categories appear in different contexts with different weights. In terms of why ASAT
findings are not being enforced (e.g. gating in pull requests) they find that the tools are „buggy” and
hard to configure.

2.5. Why Do Software Developers Use Static Analysis Tools? A User-Centered Study
of Developer Needs and Motivations

As software systems are getting more and more complex and the same time vulnerable against various
errors and attacks, a growing number of software companies use static analysis tools. In their 2022
paper [20] the authors investigate the main motivation of the developers to use these tools and their
strategies to derive requirements and applicable guidelines for designing and using them. While about
30% of the developers used a static analysis tool because of company policies, more than 20% said that
they help them to code faster. Meanwhile almost 80% admitted that the tools help to write better code.
When they start to work on fixing the bug, they chose the most severe issue, which indicates that bug
severity should be included in the bug report. The other mandatory information is the bug type (e.g.,
memory leak, uninitialized variable) so that the developer can start the report investigation based on
that. The authors also measured that the developers investigate only the 65.1% of reports in detail. The
authors state that the ability of the analysis tool to explain the warning and showcase relevant data is key
to supporting its users [20].

2.6. Do Developers Use Static Application Security Testing (SAST) Tools Straight Out
of the Box? A large-scale Empirical Study

Static Application Security Testing (SAST) is a security focused branch of Automated Static Analysis
Tools (ASATs). The authors in the 2024 article [21] ask whether developers use SAST tools, and if so,
how they configure them. They sent out screening test to 1263 developers, on which 260 (∼21%) failed
by selecting fake SAST tools. Of the remaining 1003 participants, only 204 (∼20%) claimed to have used
SAST tools, though the authors note that its possible that that 20% might be responsible for a greater
portion of security checking in their codebases.

To the remaining 204 participants the authors sent out a survey on their usage of SAST tools, receiving
175 responses. The reason participants use SAST tools is that they believe they are good at detecting
vulnerabilities (78%) and convenient to use (57%). However, when asked how effective SAST tools are [. . . ],
most developers (53%) believed SAST tools to be only moderately effective [. . . ], suggesting improvements
can still be made to the detection rate of SAST tools to increase their effectiveness.

SAST (and ASAT) tools can be configured to enable, disable, edit or create new bug detecting modules.
The article later notes that the majority of developers do not configure SAST tools (54%) or use more
than a single tool (59%) and 40% do neither, potentially missing many vulnerabilities. While the survey
did not explicitly ask about easy configurability, the result suggests that there is some difficulty when
configuring the tool or, alternatively, integrating SAST tools into CI/CD pipelines may make configuring
tools less accessible. The fact that SonarQube is the most popular, yet least configured tool among the
participants makes this an even more likely explanation.

However, among those that did configure their tool, they more often enabled, rather than disabled
modules, suggesting that developers prefer fewer false negatives over fewer false positives. This is in sharp
contrast with general ASATs, for which numerous studies [8, 17] found that a lower false positive ratio
is preferred.

3. Tool designer perspective surveys

The literature in surveys on the usability of static analysis not involving human participants is vast and
diverse. Because of this, we selected only a few we felt were particularly relevant to our paper.



3.1. Lessons from building static analysis tools at Google

Industry leader software companies show the most positive approach towards static analysis and its
application in every day development. Google, Apple, Microsoft, Facebook, and others also participate in
the creation of such tools. The paper [14] from 2018 reports about the lessons learned while developing
static analysis tools at Google. The authors list the most frequent problems resulting in the developers
not using static analysis tools or ignoring their warnings. These are the lack of tool integration into
the developer’s workflow; the fact that many warnings are not actionable; the high number of false
positives; situations where the bug is theoretically possible but in practice it does not manifest; the
possibly high cost of the fix; and that the users do not understand the warnings.

The authors emphasize the importance of actionable messages: the warnings should include a
suggestion to the (possible) fix, which in the best case could be applied automatically. However, the
authors state that many serious issues cannot be detected correctly or automatically fixed. The fix
depends on the correct understanding of the report. They also claim that the developer’s happiness
is a crucial factor for the successful introduction of static analysis on an organizational level. Non-
understandable reports cause frustration among engineers and work against trust in static analysis
tools.

3.2. Explaining Static Analysis – A Perspective

In their 2019 short paper [15] the authors specifically target a known pain point in the usability of
static analyzers: explainability. They claim that this is a major step to overcome the gap between the
academically perceived potential of static analysis and its use in practice.

The article surveys recent (at the time of writing) research into the following challenges static
analyzer tools face: (1) the impact of warning message quality, (2) fixin support, when the tool offers
to help fix the finding, (3) dealing with false positives, (4) integrating user feedback into the analysis
results, (5) workflow integration, (6) user interface developers need to interact with.

Then, they survey 14 state-of-the-art static analyzer tools based on these challenges. They conclude
that static-analysis tools used in industry show three main weak points: (1) Warning messages are generic
and do not provide ade- quate fix support (in the case of complex warnings), (2) Mechanisms against false
positives and user feedback are mainly limited to disabling warnings and customization of the analysis
rules, (3) Many tools are not completely integrated into the IDE, which interrupts the developer’s workflow.

3.3. A Large-Scale Study of Usability Criteria Addressed by Static Analysis Tools

From the same authors as [15], the 2022 study [16] presents the first systematic usability evaluation
in a wide range of static analysis tools. They collected 243 tools for popular programming languages,
excluded those that emitted no warnings or hints, and those that were either inaccessible, proprietary
(with one exception), or unmaintained for longer than 2 years. The remaining 46 Static Analysis Tools
(SAT ) were evaluated.

After a thorough literature review, the authors compiled 36 criteria for evaluation. Each criterion was
grouped to one of the 6 challenges identified in the previous article. Each SAT either „clearly fulfilled”,
„somewhat fulfilled” or „virtually fulfilled” all each challenge based on the challenge’s criteria. While the
evaluation methodology is described in the paper, it is not clearly established that how many criteria
need to be met in order for the corresponding challenge to be fulfilled, or if some criteria are weighed
more against others. Still, the results confirm the conclusions of the earlier paper, but with concrete
measurements on each challenge. A highlight, on the issue of bug report quality, they 30 of 46 tools
have too poor warning messages, and Explaining the code issue with details exceeding the most basic
aspects also remains a common problem.

Furthermore, the reference list of this article is impressive, providing an excellent source for further
research.



4. Conclusion

Static analyzers are about as old as programming itself. Specifically for finding bugs and programming
errors, lightweight analyses in the form of compiler warnings have been in use for a long time, but more
thorough analyses like symbolic execution only enjoyed widespread use since the early 2000s with
the increase of computing power. Static analyzers, even when they are computationally demanding,
provide an early feedback on the quality of the software and offer wider code coverage than dynamic
analyzers.

With that said, static analyzers are less precise than dynamic analyzers, they tend to emit false
positives, and struggle to create easy to understand warning messages. As the userbase of these tools
grew, so did the desire for academic work in how software developers use static analyzers, and what
aspects hinder the experience.

Our paper surveyed six papers involving human participants on the usability, explainability and
applicability of static analyzer tools, ranging from tens of participants to thousands, from as early as
2013 to as late as 2024. We learned that high number false positives and poor quality warning messages
are leading causes for dissatisfaction. It is often stated that developers prefer a lower false positive
rate even at the cost of losing real findings. The most recent paper, which surveyed the usage of Static
Application Security Testing found that security focused users may think otherwise, and consider
enabling more checks to find more bugs.

We also surveyed three papers from a tool designer perspective, but still focusing on usability. The
papers also find that among other things, lowering the false positive ratio and improving the analyzer
tool – human expert relationship is important.

Acknowledgment

Project no. C2314106 has been implemented with the support provided by the Ministry of Culture and
Innovation of Hungary from the National Research, Development and Innovation Fund, financed under

the KDP-2023 funding scheme.

Declaration on Generative AI

We have not used AI in any part of the research or writing process.

References

[1] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-Gros, A. Kamsky, S. McPeak,
D. Engler, A few billion lines of code later: Using static analysis to find bugs in the real world,
Commun. ACM 53 (2010) 66–75. URL: http://doi.acm.org/10.1145/1646353.1646374. doi:10.1145/
1646353.1646374.

[2] Synopsys, Coverity, 2019. https://scan.coverity.com/ (last accessed: 24-04-2023).
[3] Roguewave, Klocwork, 2019. https://www.roguewave.com/products-services/klocwork (last ac-

cessed: 28-02-2019).
[4] CodeSecure, CodeSonar, 2025. https://codesecure.com/our-products/codesonar/ (last accessed:

29-07-2025).
[5] B. Boehm, V. R. Basili, Software defect reduction top 10 list, Computer 34 (2001) 135–137. URL:

http://dx.doi.org/10.1109/2.962984. doi:10.1109/2.962984.
[6] M. Anders, I. S. Michael, Static program analysis., 2012. URL: https://users-cs.au.dk/amoeller/spa/

spa.pdf.

http://doi.acm.org/10.1145/1646353.1646374
http://dx.doi.org/10.1145/1646353.1646374
http://dx.doi.org/10.1145/1646353.1646374
https://scan.coverity.com/
https://www.roguewave.com/products-services/klocwork
https://codesecure.com/our-products/codesonar/
http://dx.doi.org/10.1109/2.962984
http://dx.doi.org/10.1109/2.962984
https://users-cs.au.dk/amoeller/spa/spa.pdf
https://users-cs.au.dk/amoeller/spa/spa.pdf


[7] H. G. Rice, Classes of recursively enumerable sets and their decision problems,
Trans. Amer. Math. Soc. 74 (1953) 358–366. URL: https://www.bibsonomy.org/bibtex/
207eadfff0be3322a169ba4ac8dad06a4/idsia.

[8] B. Johnson, Y. Song, E. Murphy-Hill, R. Bowdidge, Why don’t software developers use static analysis
tools to find bugs? (2013) 672–681. URL: http://dl.acm.org/citation.cfm?id=2486788.2486877.

[9] Z. Susag, S. Lahiri, J. Hsu, S. Roy, Symbolic execution for randomized programs, Proc. ACM
Program. Lang. 6 (2022). URL: https://doi.org/10.1145/3563344. doi:10.1145/3563344.

[10] A. Misonizhnik, S. Morozov, Y. Kostyukov, V. Kalugin, A. Babushkin, D. Mordvinov, D. Ivanov,
KLEEF: Symbolic Execution Engine (Competition Contribution), Springer Nature Switzer-
land, 2024, p. 314–319. URL: http://dx.doi.org/10.1007/978-3-031-57259-3_18. doi:10.1007/
978-3-031-57259-3_18.

[11] C. Wijayarathna, N. A. G. Arachchilage, Why johnny can’t develop a secure application? a
usability analysis of java secure socket extension api, Computers & Security 80 (2019) 54–73. URL:
http://dx.doi.org/10.1016/j.cose.2018.09.007. doi:10.1016/j.cose.2018.09.007.

[12] B. Hartmann, D. MacDougall, J. Brandt, S. R. Klemmer, What would other programmers do:
suggesting solutions to error messages, in: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’10, Association for Computing Machinery, New York, NY,
USA, 2010, p. 1019–1028. URL: https://doi.org/10.1145/1753326.1753478. doi:10.1145/1753326.
1753478.

[13] N. Imtiaz, A. Rahman, E. Farhana, L. Williams, Challenges with responding to static analysis tool
alerts, in: 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR),
2019, pp. 245–249. doi:10.1109/MSR.2019.00049.

[14] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, C. Jaspan, Lessons from building static
analysis tools at google, Communications of the ACM 61 (2018) 58–66. URL: https://doi.org/10.
1145%2F3188720. doi:10.1145/3188720.

[15] M. Nachtigall, L. Nguyen Quang Do, E. Bodden, Explaining static analysis - a perspective, in:
2019 34th IEEE/ACM International Conference on Automated Software Engineering Workshop
(ASEW), 2019, pp. 29–32. doi:10.1109/ASEW.2019.00023.

[16] M. Nachtigall, M. Schlichtig, E. Bodden, A large-scale study of usability criteria addressed by static
analysis tools, in: Proceedings of the 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2022, Association for Computing Machinery, New York, NY, USA, 2022,
p. 532–543. URL: https://doi.org/10.1145/3533767.3534374. doi:10.1145/3533767.3534374.

[17] M. Christakis, C. Bird, What developers want and need from program analysis: An empirical
study, in: 2016 31st IEEE/ACM International Conference on Automated Software Engineering
(ASE), 2016, pp. 332–343.

[18] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, A. Zaidman, H. C. Gall, Context is king: The
developer perspective on the usage of static analysis tools, in: 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering (SANER), 2018, pp. 38–49. doi:10.
1109/SANER.2018.8330195.

[19] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, H. C. Gall, A. Zaidman, How developers engage
with static analysis tools in different contexts, Empirical Software Engineering 25 (2019) 1419–1457.
URL: http://dx.doi.org/10.1007/s10664-019-09750-5. doi:10.1007/s10664-019-09750-5.

[20] L. N. Q. Do, J. R. Wright, K. Ali, Why do software developers use static analysis tools? a user-
centered study of developer needs and motivations, IEEE Transactions on Software Engineering
48 (2022) 835–847. doi:10.1109/TSE.2020.3004525.

[21] G. Bennett, T. Hall, S. Counsell, E. Winter, T. Shippey, Do developers use static application security
testing (sast) tools straight out of the box? a large-scale empirical study, in: Proceedings of the
18th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement,
ESEM ’24, Association for Computing Machinery, New York, NY, USA, 2024, p. 454–460. URL:
https://doi.org/10.1145/3674805.3690750. doi:10.1145/3674805.3690750.

[22] S. Heckman, L. Williams, A systematic literature review of actionable alert identification techniques
for automated static code analysis, Information and Software Technology 53 (2011) 363–387. URL:

https://www.bibsonomy.org/bibtex/207eadfff0be3322a169ba4ac8dad06a4/idsia
https://www.bibsonomy.org/bibtex/207eadfff0be3322a169ba4ac8dad06a4/idsia
http://dl.acm.org/citation.cfm?id=2486788.2486877
https://doi.org/10.1145/3563344
http://dx.doi.org/10.1145/3563344
http://dx.doi.org/10.1007/978-3-031-57259-3_18
http://dx.doi.org/10.1007/978-3-031-57259-3_18
http://dx.doi.org/10.1007/978-3-031-57259-3_18
http://dx.doi.org/10.1016/j.cose.2018.09.007
http://dx.doi.org/10.1016/j.cose.2018.09.007
https://doi.org/10.1145/1753326.1753478
http://dx.doi.org/10.1145/1753326.1753478
http://dx.doi.org/10.1145/1753326.1753478
http://dx.doi.org/10.1109/MSR.2019.00049
https://doi.org/10.1145%2F3188720
https://doi.org/10.1145%2F3188720
http://dx.doi.org/10.1145/3188720
http://dx.doi.org/10.1109/ASEW.2019.00023
https://doi.org/10.1145/3533767.3534374
http://dx.doi.org/10.1145/3533767.3534374
http://dx.doi.org/10.1109/SANER.2018.8330195
http://dx.doi.org/10.1109/SANER.2018.8330195
http://dx.doi.org/10.1007/s10664-019-09750-5
http://dx.doi.org/10.1007/s10664-019-09750-5
http://dx.doi.org/10.1109/TSE.2020.3004525
https://doi.org/10.1145/3674805.3690750
http://dx.doi.org/10.1145/3674805.3690750


https://www.sciencedirect.com/science/article/pii/S0950584910002235. doi:https://doi.org/
10.1016/j.infsof.2010.12.007, special section: Software Engineering track of the 24th
Annual Symposium on Applied Computing.

[23] N. Ayewah, W. Pugh, D. Hovemeyer, J. D. Morgenthaler, J. Penix, Using static analysis to find
bugs, IEEE Software 25 (2008) 22–29. URL: https://doi.org/10.1109%2Fms.2008.130. doi:10.1109/
ms.2008.130.

[24] M. Beller, R. Bholanath, S. McIntosh, A. Zaidman, Analyzing the state of static analysis: A large-
scale evaluation in open source software, in: 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), IEEE, 2016. URL: https://doi.org/10.1109%2Fsaner.
2016.105. doi:10.1109/saner.2016.105.

[25] F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora, M. D. Penta, How open source projects use static
code analysis tools in continuous integration pipelines, in: 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR), IEEE, 2017. URL: https://doi.org/10.1109%
2Fmsr.2017.2. doi:10.1109/msr.2017.2.

[26] N. Ayewah, W. Pugh, A report on a survey and study of static analysis users, in: Proceedings of the
2008 Workshop on Defects in Large Software Systems, DEFECTS ’08, Association for Computing
Machinery, New York, NY, USA, 2008, p. 1–5. URL: https://doi.org/10.1145/1390817.1390819. doi:10.
1145/1390817.1390819.

[27] T. D. Oyetoyan, B. Milosheska, M. Grini, D. Soares Cruzes, Myths and facts about static application
security testing tools: An action research at telenor digital, in: J. Garbajosa, X. Wang, A. Aguiar
(Eds.), Agile Processes in Software Engineering and Extreme Programming, Springer International
Publishing, Cham, 2018, pp. 86–103.

[28] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, H. R. Lipford, How developers diagnose potential
security vulnerabilities with a static analysis tool, IEEE Transactions on Software Engineering 45
(2019) 877–897. doi:10.1109/TSE.2018.2810116.

[29] T. Barik, D. Ford, E. Murphy-Hill, C. Parnin, How should compilers explain problems to developers?,
in: Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE 2018, Association for
Computing Machinery, New York, NY, USA, 2018, p. 633–643. URL: https://doi.org/10.1145/3236024.
3236040. doi:10.1145/3236024.3236040.

[30] N. Vánder, G. Antal, P. Hegedüs, R. Ferenc, On the usefulness of python structural pattern matching:
An empirical study, in: 2024 IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2024, pp. 501–511. doi:10.1109/SANER60148.2024.00058.

[31] B. A. Kitchenham, S. L. Pfleeger, Personal Opinion Surveys, Springer London, London, 2008, pp. 63–
92. URL: https://doi.org/10.1007/978-1-84800-044-5_3. doi:10.1007/978-1-84800-044-5_3.

https://www.sciencedirect.com/science/article/pii/S0950584910002235
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2010.12.007
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2010.12.007
https://doi.org/10.1109%2Fms.2008.130
http://dx.doi.org/10.1109/ms.2008.130
http://dx.doi.org/10.1109/ms.2008.130
https://doi.org/10.1109%2Fsaner.2016.105
https://doi.org/10.1109%2Fsaner.2016.105
http://dx.doi.org/10.1109/saner.2016.105
https://doi.org/10.1109%2Fmsr.2017.2
https://doi.org/10.1109%2Fmsr.2017.2
http://dx.doi.org/10.1109/msr.2017.2
https://doi.org/10.1145/1390817.1390819
http://dx.doi.org/10.1145/1390817.1390819
http://dx.doi.org/10.1145/1390817.1390819
http://dx.doi.org/10.1109/TSE.2018.2810116
https://doi.org/10.1145/3236024.3236040
https://doi.org/10.1145/3236024.3236040
http://dx.doi.org/10.1145/3236024.3236040
http://dx.doi.org/10.1109/SANER60148.2024.00058
https://doi.org/10.1007/978-1-84800-044-5_3
http://dx.doi.org/10.1007/978-1-84800-044-5_3

	1 Introduction
	2 Surveys with software developer participants
	2.1 Why Don't Software Developers Use Static Analysis Tools to Find Bugs?
	2.2 What developers want and need from program analysis: An empirical study
	2.3 Context is king: The developer perspective on the usage of static analysis tools
	2.4 How developers engage with static analysis tools in different contexts
	2.5 Why Do Software Developers Use Static Analysis Tools? A User-Centered Study of Developer Needs and Motivations
	2.6 Do Developers Use Static Application Security Testing (SAST) Tools Straight Out of the Box? A large-scale Empirical Study

	3 Tool designer perspective surveys
	3.1 Lessons from building static analysis tools at Google
	3.2 Explaining Static Analysis – A Perspective
	3.3 A Large-Scale Study of Usability Criteria Addressed by Static Analysis Tools

	4 Conclusion

