
Testing Strategy for Multi-Tenant Web Applications Using
TestContainers with Use Case: MealMatrix
Davor Dimoski1,∗,†, Bojana Koteska1,∗,† and Anastas Mishev1,†

1Faculty of Computer Science and Engineering, ”Rugjer Boshkovikj” 16, P.O. Box 393 1000 Skopje, North Macedonia

Abstract
This paper addresses the problem of missing a standardized approach for verifying the architectural setup of
multi-tenant applications by offering a testing strategy that covers scenarios of common problems that multi-
tenant applications face (divided in 3 areas: data isolation, data integrity and constraints, tenant context). Using
TestContainers to create a replica of a production environment, with a big bang integration testing approach, we
showcase the practical usage of the proposed testing strategy with a Spring Boot and Kotlin web application for
managing meal orders – MealMatrix. The results show that the testing approach is effective in identifying faulty
setup for multi-tenant environments, with a limitation that TestContainers does not cover an easy-setup for the
multiple databases, multiple schemas model with a single instance of the application serving multiple tenants.
This work contributes to the field of software testing by offering an easily applicable, high-level testing approach
for multi-tenant web applications.

Keywords
multi-tenant, integration testing, TestContainers, software testing, testing strategy

1. Introduction

In today’s software landscape, multi-tenant applications have become a go-to choice for Software-as-
a-Service (SaaS) platforms. Their popularity comes from their ability to serve multiple clients from a
single running application instance, which helps in reducing costs and offers a simplified maintenance.
Testing this type of applications is often a challenge, due to the fact that aside from needing to verify
the correct behavior of the features, we also need to verify that the tenants are correctly isolated and
that the integrity of the data is managed properly without leaks. Integration testing is a crucial part of
this process. Setting up a proper production-like environment is necessary to ensure quality of tests,
and that is where the open source library TestContainers comes into play.

Despite the popularity of multi-tenancy, there is a lack of standardized testing strategies that cover
the common scenarios that arise from the infrastructure of these systems. Testing efforts are usually
concentrated on verifying the business logic and as a result of that, the architectural setup is often
overlooked and not validated enough during the testing stage. Although previous work has examined
similar issues [1], their focus has been on parallel and automated user acceptance testing (UAT), whereas
here, we will focus on providing generic test scenarios and show a use case with integration testing to
address this issue. This paper aims to fill the gap of missing standardization and provide a high-level
testing strategy for multi-tenant applications by covering the most common problems that come from
applications that use multi-tenant architecture: data isolation on CRUD operations, data integrity and
constraints, and tenant context. We will try to demonstrate its effectiveness through a practical use case,
implementing integration tests using TestContainers with the proposed strategy in a multi-tenant web
application for managing food orders – MealMatrix. This approach lays the groundwork for building
more robust and repeatable integration testing practices in multi-tenant environments.

SQAMIA 2025: Workshop on Software Quality, Analysis, Monitoring, Improvement, and Applications, September 20–12, 2025,
Maribor, Slovenia
∗Corresponding author.
†
These authors contributed equally.
Envelope-Open davor.dimoski@students.finki.ukim.mk (D. Dimoski); bojana.koteska@finki.ukim.mk (B. Koteska);
anastas.mishev@finki.ukim.mk (A. Mishev)
Orcid 0009-0004-0363-4057 (D. Dimoski); 0000-0001-6118-9044 (B. Koteska); 0000-0001-7271-6655 (A. Mishev)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:davor.dimoski@students.finki.ukim.mk
mailto:bojana.koteska@finki.ukim.mk
mailto:anastas.mishev@finki.ukim.mk
https://orcid.org/0009-0004-0363-4057
https://orcid.org/0000-0001-6118-9044
https://orcid.org/0000-0001-7271-6655
https://creativecommons.org/licenses/by/4.0/deed.en


2. Multi-tenancy

2.1. Definition

Multi-tenancy is an architectural pattern in which a single instance of the application serves multiple
clients (aka tenants) [2]. This means that the tenants are sharing resources such as servers (and
sometimes databases) while keeping data secure and separated. The basic functionality that a multi-
tenant application needs to cover is to support the usage of multiple tenants and ensure that there is a
separation of concerns for each client [3]. In addition to this, in order to sustain long-term usage, it
needs to be easily scalable, robust, and secure. Multi-tenancy is an attractive solution for models like
SaaS (Software as a Service) and PaaS (Platform as a Service) due to the fact that it provides a low-cost
solution that optimizes resource utilization.

2.2. Types of multi-tenancy

As previously stated, in a multi-tenant environment, numerous clients utilize the same application
instance, hardware, and storage mechanism [2]. Database architecture varies, offering three distinct
approaches. This setup optimizes resource utilization and security by ensuring isolation between the
tenants. Understanding these distinctions is very important for both businesses and software developers
when selecting the model that best aligns with their specific requirements. The three types of database
structure in multi-tenancy are the following:

1. Shared database, shared schema – the main characteristics of this type are the cost-effectiveness,
resource optimization, and uniformity. The data isolation between the tenants in this style is done with
tenant-specific identifiers in each of the tables in the database. The limitations here are mainly about
customization and scalability when introducing new tenants.

2. Shared database, multiple schemas – here we have a single database and a separate schema for
each tenant. This offers better data isolation than the shared schema model because the data for each
tenant is kept in a separate space. This also allows a higher level of customization while still keeping
efficiency in resource use.

3. Multiple databases, multiple schemas – in this model we have separate database and schema
instances for each tenant. This approach can be executed in 2 different variations: using a single
instance for multiple tenants that solves the database access in its implementation, or by using separate
instances with custom configurations for each tenant. While this model provides the highest possible
data isolation, customization and flexibility, it comes with higher costs. This method is usually the most
useful where data security and isolation are the highest priority and each tenant requires wide-ranging
customization.

2.3. Benefits and challenges

When it comes to multi-tenancy, its most significant advantages are sharing physical resources and high
configurability [4]. In the single-tenant architecture, each tenant operates on a separate virtual machine
that’s tailored to its specific needs. But this is often very restricting because every virtual machine
requires significant resources from the single physical machine on which it’s operating. The use of
one instance for multiple tenants is the core of the multi-tenancy paradigm and this offers cheaper
maintenance and overall costs. In addition to this, the multi-tenancy setup requires the applications to
be highly configurable and customizable to cater to the specific needs of different tenants and these
configuration capabilities are built into the application’s design.

On the opposite side, some of the most notable disadvantages associated with implementing a
multi-tenancy architecture are performance, scalability, security, and maintenance. The tenants in
a multi-tenant application often have varied demands – one tenant can excessively consume a lot
of the resources, which can have an impact on the performance of other tenants. Aside from the
performance issue, multi-tenant applications get progressively harder to scale as the number of tenants
grows overtime, and with that the maintenance becomes harder to manage. Multi-tenant applications



can also face challenges with security, in the sense that a security breach of one tenant could lead to
the unintended exposure of data to other tenants, potentially even competitors.

3. Integration testing

In today’s age, it’s rare for a software to work in isolation, without having to communicate with other
modules or components [5]. These units can range from databases, 3rd party applications, and so on,
and it’s crucial for them to work well together in order to be able to deliver software. One of the issues
that occurs often is that components work individually, but not when combined. The conflicts may
arise due to incompatibility between versions, different processing logic, etc. All of these issues lead to
the need for integration testing.

Integration testing is a technique where combined modules or components are tested together in one
big system to see if they interact with each other as expected [6]. The main objective in integration
testing is to make sure that the integrated units function correctly as a group and that the flow of the
application is not disrupted.

The reasons why integration testing is sometimes considered difficult in comparison to unit testing are
that you have to make sure that the infrastructure is fully functional and that the data is pre-configured
to meet specific requirements [5]. Additionally, if there are several builds running in parallel, it’s
important for the execution of each pipeline not to interfere with the test data of the other pipeline.
Because of challenges like this, in-memory databases are often used for the process of integration
testing. In-memory databases help in speeding up the process of testing by not having to set up
specific environments for the database in the testing process. However, a lot of issues arise from
using in-memory databases, the most notable being the fact that we’re straying away from the real-life
environment where our application will be run in production. Considering that in-memory databases
are almost never used in production environments, this causes our testing process to be less reliable, and
often sets the feedback cycle back by providing successful tests but improper function in the production
environment. The need for setting up an environment for integration testing that is as close as possible
to the production environment leads to the development of the library TestContainers, which will be
covered in the next section.

Integration testing has proven to be beneficial in the areas of verifying reliability between components,
their compatibility, and early detection of bugs, among other things [7]. On the flip side, some of the
common downsides with integration testing are the intensive use of resources due to the involvement
of several components - this can involve setting up complex test environments and hardware, and
additionally, it also is a slower feedback loop due to the slower execution times [8].

There are several strategies for integration testing, and they are mostly dependent on the integration
of the modules in a system [9, 10, 11]. The four main approaches are the following:

1. The big bang approach involves all of the modules being tested at once as a single unit. This
type of testing simulates a complete system as it covers all modules that are integrated into it. It is
often used in smaller systems or, conversely, in very complex and large systems where it might not be
practical to test all modules together incrementally.

2. The bottom-up approach involves testing each module from the lower levels until all modules
are covered. This way, the stability of the foundation of the system is verified by gradually reaching the
higher levels. The testing process can be slow depending on the layers in the architecture.

3. The top-down approach is used when we want to test modules from the highest to the lowest
levels of the application. This technique is used to simulate the behavior of lower-level layers that have
not been integrated yet. In this methodology, stubs are needed to showcase the behavior of low-level
modules, which can make testing more time-consuming.

4. Sandwich/Hybrid approach is a combination of both top-down and bottom-up strategies, by
testing high-level and low-level modules at the same time in order to provide. The goal of this approach
is to provide a comprehensive view of the application.



4. TestContainers

TestContainers is a set of open-source libraries that offer simple and lightweight APIs that help devel-
opers use real services (like databases or message brokers) for the execution of tests, all wrapped in a
disposable Docker container [5]. The usage of Docker containers allows for reproducing an environment
as close to production as possible, avoiding mocks or in-memory services, while being in a disposable
and isolated state. Even though TestContainers is a Java-based library, it offers support for a high
variety of popular technologies, including .NET, Go, NodeJS, Python, Rust, Haskell and more.

The lifecycle of TestContainers can be boiled down to three stages. Before the tests run, the configu-
ration needs to be set up for the container and the necessary services (like the database or messaging
systems). Once the setup is finished, the containers are started so that they can support the execution
of the tests. During the test stage, the Docker container that was spun up by TestContainers is being
used to execute the tests. After the test run is completed, the containers are automatically destroyed,
regardless of whether the tests executed successfully or not. The test results are shown before the
container is destroyed.

The biggest advantage of TestContainers is their ability to easily create test environments that are
isolated and disposable, constructed in a way to replicate the production environment of the application
as close as possible. A very common issue for testing environments is that they can be unreliable
and inconsistent when executed on different locations. TestContainers offers a stable and consistent
testing environment that will act the same way locally, as well as CI/CD pipelines. To further prove
their reliability, Testcontainers implements several out-of-the-box wait strategies to make sure that the
application is fully started before executing any tests inside the container.

On the other hand, a common downside of this library is that it has slower test execution and higher
resource usage compared to the testing done with mocks or a H2 database [12] and it is also heavily
dependent on a correct installation of Docker in order to be used. The dependency for a correct Docker
installation can be avoided with an alternative approach - the use of TestContainers Cloud which is a
paid service.

4.1. Pre-requisites

In order to set up TestContainers, you need to meet the following pre-requisites [12]:

• Docker-Compatible Container runtime – the main requirement in order for TestContainers
to execute is having Docker installed beforehand. You can either install Docker locally on the
machine where tests are going to be executed, or use TestContainers Cloud – an alternative paid
cloud service provided by TestContainers. Supported container runtimes include Docker Desktop
on macOS and Windows, and Docker on Linux. Alternative runtimes like Colima and Podman
can also be configured with some additional required setup.

• TestContainers Library – the TestContainers library is a necessary dependency that’s needed
in the project in order to be able to utilize the service. The TestContainers library is available in a
variety of programming languages: Java, .NET, Python, Go, Node.js etc.

5. Problem and proposed solution

As mentioned before, multi-tenant applications have a lot of benefits like cost efficiency and scalability,
but they come with a unique set of challenges in integration testing. It is crucial to ensure proper
isolation between the data of each tenant, to make sure there are no leaks between them and that the
system stores and manages the data of each client correctly. Writing integration tests for applications
with mocked services and in-memory databases often don’t reflect the same environment as the one
the application will be when using when in production state, therefore the tests can be inaccurate and
not provide a real picture of the validity of the system. In this paper, we strive to provide a high-level



testing strategy for multi-tenant applications that can be applied to systems that use a multi-tenant
architecture.

In this section, we will propose a testing strategy that will focus on the most common problems in
integration testing for multi-tenant applications. The problems are divided into 3 separate areas: data
isolation on CRUD operations, data integrity and constraints, and tenant context.

The testing strategy can be used for each type of multi-tenancy setup. All of the test scenarios are
recommended to be executed using TestContainers, as a library that offers an easy replication of a
production environment in an isolated container. Furthermore, this testing strategy is best applied for a
big bang integration testing approach due to the fact that it covers all areas of the system that are being
tested.

It is important to note that in this paper, the focus of the proposed testing strategy is on the architecture
of a multi-tenant application, not on the differences between the business logic of each tenant. Writing
tests that cover the differences in the business logic is dependent on the requirements that the clients
have, and that will not be covered here. This paper offers a testing strategy that provides a high-level
overview of the most common problems that arise from the setup of multi-tenant applications in order
to mitigate these issues as soon as possible in the development lifecycle.

The two types of multi-tenancy: shared database, shared schema and shared database, separate schema
are implementations that use the same database for storing data for each tenant. Considering that these
implementations have the lowest separation of data between the tenants and they are heavily reliant
on how it’s handled in the code base, naturally, the main focus of the integration tests will be the data
isolation between each tenant. Additionally, even though the databases are separated into multiple
databases, multiple-schemas approach, the data isolation concerns remain if there is a single instance
that is serving multiple tenants.

The test scenarios for this area that should be covered are the following:

1. The tenant can access its own data
2. The tenant can access ONLY its own data (no data is shown from other tenants)
3. Creating new data is saved under the correct tenant
4. Updating existing data modifies the correct record
5. Deleting data deletes the correct record

Here we should note that scenario number 1 and scenario number 2 are very similar, but there is a
distinct difference between them and they should be covered separately. The first scenario covers a case
where you’re retrieving a specific record and getting the correct data back, whilst the second scenario
would cover a case where you’re fetching a collection of data and all the retrieved data belongs to the
correct tenant.

The data isolation that we want to cover with our testing is tightly coupled with CRUD operations.
The reason for this is that CRUD operations are the primary points where tenant data could leak or
be accessed improperly, therefore, we want to make sure that our application is covering the basic
scenarios of accessing and manipulating data.

The next area of testing that we want to cover with our testing scenarios is relating to data again –
this time in the context of data integrity and constraints. These scenarios are applicable mainly to
multi-tenancy of type shared database, shared schema, due to the fact that this implementation uses a
discriminatory tenantId column, which is present in all of the tables in the database. If the application
is not set up correctly, the integrity of the data could easily be compromised and the database-level
constraints could cause issues. This section covers mainly constraints that are related to the way we
store data, and not constraints that are dependent on business logic. This is an important distinction
because, as mentioned earlier, the proposed testing strategy in this paper isn’t reliant on the business
logic of the clients, but is a bare-bones structure that can work in any multi-tenant environment.

The test scenarios in this section are the following:

1. Referential integrity check – the relationship between different entities should be allowed only if
they both share the same tenant



2. Unique constraint check – the constraint should be restricted specifically to the tenant, not across
all tenants

The first scenario covers the risk of data leaks between tenants. Referential integrity in the scope of
a multi-tenant application is not just ensuring the referenced data exists in another table, it’s important
that the data is scoped to the appropriate tenant as well. This scenario is applicable only if there is a
link between entities in the system.

The second scenario covers unique constraints that also have to be scoped on a tenant level and not
on a global level. This scenario is applicable if there is a unique constraint on a field in the system.

The third and last area of testing scenarios covers the system’s behavior regarding the multi-tenancy
implementation – tenant context. This is applicable to all types of multi-tenancy that use a single
instance of the application. Mainly, they are scenarios for error-handling that cover the system’s
response when we don’t use the tenant implementation as expected.

Here we have 2 scenarios:

1. Missing tenant information – check if the system responds accordingly if the tenant information
is not sent on request

2. Wrong tenant information – check the system’s behavior when the passed tenant information is
wrong, i.e., doesn’t correspond to an existing tenant

These scenarios make sure that the core setup of a multi-tenant application is working as expected.
Sending tenant information is the entry point of how the system deals with the user’s request, so it is
important that any improper data does not cause faulty behavior in the system.

In Table 1, you can find a summary of the testing strategy. The table covers the 3 abovementioned
areas of testing, their test scenarios and the types of multi-tenancy that they can be applied to.

6. Use case for the proposed test strategy through a multi-tenant
application – MealMatrix

We will demonstrate the usage of the proposed testing strategy through a practical example – a multi-
tenant web application called MealMatrix. The code snippets in this paper are released under the GNU
license 1. MealMatrix is a backend web application built with Kotlin and Spring Boot whose main
purpose is the management of food orders and employees. The application is built with the 3 types of
multi-tenancy, each type implemented on a separate branch.

For the showcase in this section, we will provide the setup and some test examples from the testing of
a multi-tenant implementation with the shared database, shared schema approach. The implementation
here is reliant on the tenant’s name being sent in the header of each request for the proper actions to
be executed under the correct tenant. We will consider that the application is running for 2 tenants:
restaurant and take-away. We will take the big bang approach for the integration testing, as it has
been proven to be a reliable verification process for detecting system defects [11]. We will also use
TestContainers in our process, a widely used tool by companies for reliable and containerized testing
that gives consistent results[13]. Additionally, we will utilize jUnit for the writing of the test cases.

6.1. Setting up the environment

The setup for TestContainers consists of installing Docker on a local machine where the tests will be
executed, and adding dependencies for the library in the build.gradle file, as well as a dependency for
the database driver we will use in the container (PostgreSQL in our case). Since we are using Spring
Boot, we will also need the Spring Boot Test library and jUnit for writing of the tests. The core libraries
that are needed for writing and executing the integration tests are shown in Listing 1.

1https://www.gnu.org/licenses/gpl-3.0.html



Table 1
Summary of the testing strategy for multi-tenant web applications

Area Test scenarios Type of multi-tenancy

Data isolation on
CRUD operations

1. The tenant can access its own
data
2. The tenant can access ONLY its
own data (no data is shown from
other tenants)
3. Creating new data is saved
under correct tenant
4. Updating existing data modifies
the correct record
5. Deleting data deletes the correct
record

• Shared database, shared schema
• Shared database, separate
schema
• Multiple databases, multiple
schemas

Data integrity
and constraints

1. Referential integrity check –
relationship between different
entities should be allowed only if
they both share the same tenant
2. Unique constraint check – the
constraint should be restricted
specifically to the tenant, not
across all tenants

• Shared database, shared schema

Tenant context

1. Missing tenant information –
check if the system responds
accordingly if tenant information
is not sent on request
2. Wrong tenant information –
check the system’s behavior when
the passed tenant information is
wrong i.e., doesn’t correspond to
an existing tenant

• Shared database, shared schema
• Shared database, separate
schema
• Multiple databases, multiple
schemas

Listing 1: Core dependencies used for writing and executing tests with TestContainers

Next, we will set up the configuration for TestContainers, which will spin up the container with our
needed database driver to replicate the environment as close to the production one as possible. The
configuration class is shown in Listing 2. This configuration will later be imported into the specific test
classes and it’s used on a global level in the test environment.

The annotations used in this class and their purpose are the following:

• @ExtendWith(SpringExtension::class) – This annotation wires up the Spring context so
that it can be used in tests. It enables features like dependency injection, and commonly used
annotations like @MockBean and @Autorwired.

• @Testcontainers – this is the annotation that marks the usage of TestContainers. It manages
the startup and teardown of containers automatically and it makes sure that containers are shared
correctly between tests.

• @TestConfiguration – Spring annotation that marks the class as a test configuration (e.g.,



Listing 2: Configuration class for the tests

overriding beans like DataSource only for tests). It helps isolate test dependencies from the
configuration of the main application.

Inside the companion object of the class, we have defined the following:

• PostgreSQL container – we create a PostgreSQL container using TestContainers that can be
used by all tests

• Registering properties – we dynamically register property values at runtime before the Spring
context loads for the database-related variables in the active profile

• Custom bean for Data source – this is used to connect the PostgreSQL container as the main
data source used in the test context

6.2. Test case examples

Before writing the tests, we fill up the database with initial data for the tenants with an SQL script
that’s executed before the start of the tests. In Figures 3, 4, and 5 below, we have example tests from
each area in the proposed testing strategy.

The test in Listing 3 covers the scenario “Creating new data is saved under the correct tenant” from
Data Isolation. In this test, we create a new employee and check if the call for fetching an employee by
ID under the correct tenant returns the correct data.

The test in Listing 4 covers the scenario “Unique constraint check – the constraint should be restricted
specifically to the tenant, not across all tenants” from Data Integrity and Constraints. This test checks
the ability to create discount codes that have the same name under 2 separate tenants.

The test in Listing 5 covers the scenario “Missing tenant information” from Tenant Context. This test
checks if the system is behaving correctly when tenant information is missing from the request.



Listing 3: Example test for a scenario from Data Isolation

Listing 4: Example test for a scenario from Data Integrity and Constraints

6.3. Findings

The practical implementation of the testing strategy has proven to be efficient for validating the integrity
of the architectural setup of multi-tenant web applications. The testing strategy is useful in identifying
issues related to the areas of data isolation, data integrity and constraints, as well as the context of the
tenant itself.

However, there is a restriction that we came across that limits this approach of using the testing
strategy together with TestContainers. For the multi-tenancy model of multiple databases, multiple
schemas, TestContainers is able to provide the correct setup for the testing strategy only if the model is



Listing 5: Example test for a scenario from Tenant Context

set up by using separate application instances for each tenant. Docker (and therefore TestContainers as
well) follows the principle of “one service per container” as a best practice [14]. It does not offer an
out-of-the-box solution for this problem. While it is possible to manually configure a container that will
support multiple database services, that approach shifts the responsibility of managing the container’s
lifecycle entirely onto the developer. That type of manual handling defies the original purpose of a
library like TestContainers, which is intended to simplify and automate the setup and management of
test environments.

7. Conclusion

This paper introduced a testing strategy that covers the common problems any multi-tenant application
can face. By doing so, we standardized the approach for testing the architectural setup of multi-tenant
web applications. We showed its practical usage by implementing integration tests using TestContainers
on a web application MealMatrix. The findings from the use case showed that although the strategy does
hold up in verifying the proper implementation of a multi-tenant structure, the usage of TestContainers
falls short on providing a proper out-of-the-box support for the model multiple databases, multiple
schemas for an application that serves multiple tenants on a single instance. Regardless of this, the usage
of TestContainers in integration testing is still very valuable by offering a fast solution for creating
disposable and isolated containers for testing.

There are some limitations to this research that can be further improved. The proposed testing
strategy does not cover scenarios for testing other parts of multi-tenant application, such as the security
layer of the application or the lifecycle of its tenants (e.g. creating new tenants, migrating tenant data,
or deactivating existing tenants). These things can also serve as a possibility to extend this research in
the future. In addition to expanding the testing strategy, there is also a potential to define a standardized
approach for integrating these methods into CI/CD workflows and enabling automated test generation,
as well as explore how testing would work for multi-tenant applications that are not web-based.

The testing strategy presented in this paper serves as a foundational step toward what we hope will
become a broader effort to advance research in the testing of multi-tenant applications.

8. Acknowledgments

This research is partially supported by the Faculty of Computer Science and Engineering in Skopje.

Declaration on Generative AI

The author(s) have not employed any Generative AI tools.



References

[1] V. H. S. C. Pinto, R. R. Oliveira, R. F. Vilela, S. R. Souza, Evaluating the user acceptance testing for
multi-tenant cloud applications., in: CLOSER, 2018, pp. 47–56.

[2] V. Cheng, Multi-tenancy architecture, 2004. URL: https://www.saasceo.com/
multi-tenancy-architecture/.

[3] N. H. Bien, T. Dan Thu, Multi-tenant web application framework architecture pattern, in: 2015
2nd National Foundation for Science and Technology Development Conference on Information
and Computer Science (NICS), 2015, pp. 40–48. doi:10.1109/NICS.2015.7302219.

[4] C.-P. Bezemer, A. Zaidman, Multi-tenant saas applications: maintenance dream or nightmare?,
IWPSE-EVOL ’10, Association for Computing Machinery, New York, NY, USA, 2010, p. 88–92. URL:
https://doi.org/10.1145/1862372.1862393. doi:10.1145/1862372.1862393.

[5] Testcontainers, 2025. URL: https://testcontainers.com/.
[6] H. Leung, L. White, A study of integration testing and software regression at the integration level,

in: Proceedings. Conference on Software Maintenance 1990, 1990, pp. 290–301. doi:10.1109/ICSM.
1990.131377.

[7] J. E. T. Akinsola, M. Adeagbo, Qualitative comparative analysis of software integration testing
techniques 7 (2022) 67–82.

[8] I. Alazzam, A. M. R. AlSobeh, B. B. Melhem, Enhancing integration testing efficiency through
ai-driven combined structural and textual class coupling metric, Online Journal of Communication
and Media Technologies 14 (2024) e202460.

[9] BrowserStack, Integration testing: A detailed guide, 2025. URL: https://www.browserstack.com/
guide/integration-testing.

[10] GeeksforGeeks, Software engineering | integration testing, 2025. URL: https://www.geeksforgeeks.
org/software-engineering-integration-testing/.

[11] J. Solheim, J. Rowland, An empirical study of testing and integration strategies using artificial
software systems, IEEE Transactions on Software Engineering 19 (1993) 941–949. doi:10.1109/
32.245736.

[12] R. North, other authors, Testcontainers for java, 2025. URL: https://java.testcontainers.org/.
[13] S. Timonen, M. Sroor, R. Mohanani, T. Mikkonen, Anomaly detection through container testing: A

survey of company practices, in: International Conference on Product-Focused Software Process
Improvement, Springer, 2023, pp. 363–378.

[14] Run multiple processes in a container, 2024. URL: https://docs.docker.com/engine/containers/
multi-service_container/.

https://www.saasceo.com/multi-tenancy-architecture/
https://www.saasceo.com/multi-tenancy-architecture/
http://dx.doi.org/10.1109/NICS.2015.7302219
https://doi.org/10.1145/1862372.1862393
http://dx.doi.org/10.1145/1862372.1862393
https://testcontainers.com/
http://dx.doi.org/10.1109/ICSM.1990.131377
http://dx.doi.org/10.1109/ICSM.1990.131377
https://www.browserstack.com/guide/integration-testing
https://www.browserstack.com/guide/integration-testing
https://www.geeksforgeeks.org/software-engineering-integration-testing/
https://www.geeksforgeeks.org/software-engineering-integration-testing/
http://dx.doi.org/10.1109/32.245736
http://dx.doi.org/10.1109/32.245736
https://java.testcontainers.org/
https://docs.docker.com/engine/containers/multi-service_container/
https://docs.docker.com/engine/containers/multi-service_container/

	1 Introduction
	2 Multi-tenancy
	2.1 Definition
	2.2 Types of multi-tenancy
	2.3 Benefits and challenges

	3 Integration testing
	4 TestContainers
	4.1 Pre-requisites

	5 Problem and proposed solution
	6 Use case for the proposed test strategy through a multi-tenant application – MealMatrix
	6.1 Setting up the environment
	6.2 Test case examples
	6.3 Findings

	7 Conclusion
	8 Acknowledgments

