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Abstract
This paper presents a novel adaptation of the Reingold Tilford algorithm designed for the hierarchical vi 
sualization of workflows in product manufacturing. While originally designed for tree structures, the al 
gorithm is reinterpreted to suit workflows, which often include multiple entry points, nodes with multiple
parents, and a unique terminal node representing the single final product. The proposed Workflow algo 
rithm modifies the tree layout algorithm to reflect these features while maintaining aesthetic coherence
and clear predecessor successor relations. The resulting visualization supports intuitive understanding,
traceability, and real time usability within manufacturing process monitoring, offering a clear view of
process flow and status. This work highlights how a classic layout approach can be effectively tailored to
the specific needs of industrial workflows.
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1. Introduction

Trees are fundamental data structures commonly used to represent hierarchical data. In addition to
their roles in storage and processing, there is a need to visualize trees, allowing users to gain in 
sights and manipulate the structure effectively. This need has led to the development of various
algorithms for tree visualization, each approaching the task in its own way [1].

When visualizing trees, there tends to be a preference for tidy drawings. In 1979, Wetherell and
Shannon [2] defined the following three aesthetics for creating tidy tree drawings.

Aesthetic 1: Nodes of a tree at the same height should lie along a straight line, and the straight lines
defining the levels should be parallel.

Aesthetic 2: In a binary tree, each left son should be positioned left of its father and each right son
right of its father.

Aesthetic 3: A parent should be centered over its children.
Wetherell and Shannon, in addition to formalizing three key aesthetics for tree representation,

highlighted that edges should not intersect. The only points of intersection in the tree should occur
at the nodes. Additionally, no node should be positioned closer to the root than its predecessors.
Lastly, it is important to minimize the usable space, aiming for a dense arrangement of nodes.

In their work [3], Reingold and Tilford built upon Wetherell and Shannon’s findings [2] and ad 
vanced Wetherell and Shannon’s algorithm (the WS algorithm) to what is now known as asymmet 
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rically portray symmetrical trees Reingold Tilford algorithm (the RT algorithm), which serves as a
foundation for tree visualization. They observed that the WS algorithm can portray symmetrical
trees in an asymmetrical way, meaning the tree and its reflection are not drawn as mirror images.
Furthermore, the same subtrees can be displayed differently depending on their position within the
larger tree structure. These observations led Reingold and Tilford to enhance the formal aesthetics
with a fourth rule defined in [3]:

Aesthetic 4: A tree and its mirror image should produce drawings that are reflections of one an 
other; moreover, a subtree should be drawn the same way regardless of where it occurs in the tree.

Reingold and Tilford emphasized that the order of nodes at all levels should mirror the order
found in an in order traversal of the tree. These principles formed the foundation for the develop 
ment of the RT algorithm. Since then, numerous algorithms have been created based on the RT al 
gorithm with the goal of modifying or improving it [4, 5].

The visualization of a tree can vary depending on the specific context of a problem, which is
one reason why different visualization algorithms exist. These algorithms can also be applied to
visualize other issues based on tree structures, even if they are not strict tree representations. This
work originated from the idea of visualizing workflows that represent how a product is created in a
factory. A workflow outlines the various steps involved in producing a final product. These steps
can occur sequentially or in parallel across different departments of the factory [13, 14]. Production
may start in one department but can also be distributed among several departments working simul 
taneously. The output from one department can either be routed entirely to another, divided into
two or more new departments, or combined with results from other departments before being
passed on to a new one. Ultimately, all these processes lead to the creation of a single final product,
with the last step in the series always resulting in just one product.

While workflows are not strictly trees in the graph theoretical sense, they often exhibit struc 
tural similarities that make a tree based graphical representation both intuitive and useful. Al 
though such structures do not meet the formal definition of a tree, they can still be described using
tree terminology. In this context, the graphical representation of the workflow that this paper de 
scribes does not need to have a unique root. Instead, there can be one or more nodes at the top
level. Each internal node may have multiple children as well as multiple parents. At the bottom
level, however, there is always exactly one node, which is referred to as an only leaf and represents
the final product. This perspective allows tree visualization techniques to be adapted to workflows
in a way that enhances clarity, traceability, and practical applicability in production environments.

This paper introduces essential tree terminology and aesthetic criteria for the hierarchical visu 
alization of trees, and the paper structure is as follows. Section 2 provides an overview of related
work, briefly summarizing existing approaches to visualizing trees, hierarchical structures, flows,
and workflows. Section 3 briefly explains the steps involved in drawing trees using the RT algo 
rithm, which serves as a foundation for problem solving. In Section 4, the details of the modifica 
tions and adaptations made to this algorithm to meet the needs of workflow visualization, specif 
ically focusing on the creation of the WF algorithm, are described. Finally, the paper concludes
with a discussion and final remarks.

2. Related work

How trees are visualized can vary significantly depending on the purpose and context in which
they are used. Tree layout algorithms, originally developed for strictly hierarchical structures, can
often be adapted to visualize other types of data that do not formally qualify as trees but share sim 
ilar characteristics. With appropriate modifications, existing tree visualization methods can be ef 
fectively repurposed to address a wide range of problems beyond pure tree structures.

In addition to the hierarchical structure of trees described in the previous section, there is a
need for tree visualization methods that are not strictly hierarchical due to the requirement to dis 
play large amounts of data and to ensure scalability. Tree maps, as described in [6] and [7], are
used for direct access and to visualize value changes. Cone trees were introduced in [8] and further



improved in [9] and [10] to represent and navigate large hierarchies. The Bubble Tree Drawing
Algorithm [11], unlike the RT algorithm that relies on contour, employs the concept of enclosing
circles to represent the space necessary for drawing a subtree. The Bubble Tree algorithm is de 
signed for drawing general rooted trees, with a key advantage being its focus on enhancing angular
resolution and aesthetic criteria.

Tree visualizations can be categorized into two types: connection and enclosure [12]. The con 
nection type represents a natural way of drawing trees, where nodes symbolize data and edges il 
lustrate the connections between them. Various algorithms fall under this category, including cone
trees [8], hyperbolic trees [17], radial views [18, 19], balloon views [8], disk trees [20], classical hi 
erarchical trees [3], botanical visualizations [21], and NicheWorks [22]. On the other hand, enclo 
sure is utilized to illustrate the tree structure itself. In this approach, each node is represented by a
single region, which is then subdivided to depict its children. This division continues recursively
through the descendants. Common representations of this type include tree maps [7] and Venn
diagrams [23]. The concept of Space Optimized Trees [12] introduces a novel method where chil 
dren are accessed through polygons. Enclosure is particularly effective for representing quantita 
tive values associated with nodes.

In addition to general purpose methods for tree visualization, which primarily focus on repre 
senting abstract hierarchical structures, there exists a separate class of visual representations aimed
at modeling and communicating operational processes. These include workflows, which, while
structurally like trees in some aspects, are typically more complex and dynamic. While standard
workflow modeling notations such as UML activity diagrams [24], BPMN [25], and Petri nets [26]
are widely used for expressing process logic in enterprise and engineering contexts, the approach
presented in this paper is specifically tailored to the needs of workers in a production environment.
The visualization is integrated directly into the Manufacturing Execution System already in use,
with the goal of enhancing clarity, traceability, and real time usability. Workflow nodes are en 
riched with textual descriptions and dynamically colored based on execution state, offering an in 
tuitive overview of the current process flow. This practical representation prioritizes interpretabil 
ity and ease of use over formal expressiveness, making it more suitable for day to day operations
in manufacturing settings. To achieve this, the underlying layout is based on a modified version of
the RT algorithm, originally designed for tree structures, which is here adapted to accommodate
the specific characteristics of production workflows while preserving visual clarity and hierarchical
intuition.

3. Tree visualization algorithm

The RT algorithm served as the foundation for developing the workflow (WF) visualization algo 
rithm. As previously mentioned, the RT algorithm was based on the WS algorithm. This section
will detail the method for implementing the RT algorithm, which includes aspects of the WS algo 
rithm. For the program's implementation of the RT algorithm, which will later be upgraded to the
WF algorithm, existing implementations in [15] and [16] were utilized.

The RT algorithm starts with the premise that plotting the tree requires knowledge of each
node's position. Once the positions are established, a straightforward plotting or printing routine
can generate a tree diagram. To plot the nodes accurately, it is essential to know the X and Y coor 
dinates of each node. The Y coordinate is determined by the node's depth, which corresponds to its
level in the tree. Additionally, the vertical distance between nodes must be calculated to pinpoint
the exact Y coordinate. On the other hand, calculating the X coordinate is vital, as it plays a crucial
role in the plotting process. Algorithms for tree visualization primarily revolve around determining
the X coordinate.

A postorder traversal of the tree was used to calculate the X coordinate. This process can be di 
vided into four phases: determining the initial X coordinate, ensuring that all nodes are visible on
the screen, positioning the leaves in the center, and finally, determining the final X coordinate.



3.1. Determining the initial X coordinate

When determining the initial X coordinate, the approach differs depending on whether the node is
a leaf or an internal node.

3.1.1. Determining the X coordinate of the leaves in relation to their left sib 
ling

In the case of a leaf node, the calculation of the X coordinate is based on its sibling nodes. More
precisely, the X coordinate is determined solely by the ordinal position of the node among its sib 
lings in the parent's list of children. If the node is the first child, its initial X value is set to zero. For
any other node, the X value is calculated as the sum of the X value of the left sibling and a specified
distance between the nodes.

3.1.2. Determining the X coordinate of internal nodes

For internal nodes, the X coordinate is determined based on the left sibling and by centering the
parent node over its children. Let's determine the X coordinate of node A, which has parent P and
the oldest child C.

If node A has only one child, referred to as node C, the method for determining the X coordi 
nate will vary depending on whether node A has left siblings. If node A is the first child of its par 
ent P, the X coordinate will be set to the same value as the X coordinate of node C. If node A has
left siblings, the X coordinate will be set to the sibling distance from the left sibling. After that, the
entire subtree rooted at node A (without moving the root) needs to be centered relative to node A
by modifying the MOD property of node A, as shown in the following pseudocode.

this.X = this.PreviousSibling().X + SIBLING_DISTANCE;
this.MOD = this.X – this.LeftMostChild().X;

If node A has more than one child, the temporary X coordinate for the parent will be the aver 
age of the X coordinates of the leftmost and rightmost children of node A. If node A is the oldest
child of its parent P, its X coordinate will be the previously calculated temporary X coordinate.

this.X = (this.LeftMostChild().X + this.RightMostChild().X) / 2;

If node A has left siblings, the X coordinate will be set to the sum of the X coordinate of the left
sibling and the sibling distance. Finally, it is necessary to center the entire subtree with the root at
node A (without moving the root) relative to node A, as shown in the following pseudocode.

this.X = this.PreviousSibling().X + SIBLING_DISTANCE;
this.MOD = this.X – (this.LeftMostChild().X + this.RightMostChild().X) / 2;

It is important to explain how to move a subtree rooted at an internal node without moving the
root itself. This operation is necessary whenever the root of the subtree is not the leftmost child of
its parent. Depending on the tree structure, this can be a costly operation. If every node of the sub 
tree were to be passed through in the subtree and repeatedly update their X coordinates, the total
number of visits across the entire tree would increase significantly, leading to higher algorithmic
complexity.

To avoid this issue, a property called MOD has been introduced. The MOD property for an arbi 
trary node A contains a value that indicates how much to move all children of node A along the X
coordinate. It's important to note that while the MOD value of node A allows its descendants to be
moved along the X axis, the X coordinate of node A itself remains unaffected by these changes.
Instead, the X coordinate of node A is influenced by the MOD values of all its ancestors. Therefore,



when the algorithm states that an entire subtree is being moved by a certain value, it implies that
the MOD value of the subtree's root will be updated accordingly.

3.1.3. Reviewing any conflicts with previous trees

In previous calculations of the X coordinates for tree nodes, the main focus was on preventing
overlaps with left sibling nodes and centering parent nodes over their children. However, the
process of determining the X coordinate is not yet fully complete. In each level of the tree, there
could be multiple nodes that do not have to be siblings, meaning they may not share the same par 
ent. So far, conflicts between nodes at the same level have not been addressed.

When processing a node that is neither a leaf nor a leftmost child of its parent, it is necessary to
check for conflicts between the subtrees. To determine if there is a conflict, a minimum distance
between trees must be set. For node D, the conflict is assessed by comparing the subtree rooted at
D with each subtree rooted in all of node D's left siblings. In Figure 1 those would be nodes B and
C. The comparison starts with the leftmost sibling and continues until reaching node D itself.

Conflicts are examined at each level of the subtree as contours are created. The left contour of
node D and the right contour of each of its left siblings are established. To create a contour, a Dic 
tionary structure can be used, where for each level y, the X coordinate of the node that serves as
the rightmost at that level in the analyzed subtree is recorded for the right contour, and the left 
most is recorded for the left contour. In Figure 1 the blue nodes represent the right contour of the
subtree rooted in the node B, and the pink nodes represent the left contour of the subtree rooted in
the node D.

After establishing the left contour for the subtree rooted at D and the right contour for the left
siblings of node D, it is essential to examine all contour levels and calculate the shortest distance
between tree contours. If the shortest distance between tree contours is less than the minimum dis 
tance between trees, node D and all its children should be shifted accordingly. Specifically, the X
coordinate and MOD property of node D should be increased by the difference between the min 
imum distance between trees and the shortest distance between tree contours.

Figure 1: The right contour of node B and the left contour of node D.

3.2. Ensuring that all nodes are displayed on the screen

After performing all the specified operations and making several changes to the X, the final X co 
ordinate can be negative. To address this issue, it is unnecessary to traverse the entire tree. Instead,
we can simply determine the left contour of the tree.

Similar to the previous case, once the contour is identified, we can examine all levels of the tree
to find the smallest X coordinate among the nodes in the left contour. If this smallest coordinate is
less than 0, we will need to adjust the root's X coordinate.

3.3. Place the leaves in the center

After completing all the previous steps, the nodes are now correctly positioned concerning their
left siblings, centered in relation to their children, and there is no overlapping of nodes or subtrees.



All nodes are displayed appropriately on the screen. However, one potential issue remains: the cen 
tering of leaves that are positioned between their parents, meaning they are neither the leftmost
nor the rightmost children.

While each internal node is centered with respect to its children and placed correctly concern 
ing its left sibling, leaves are only positioned relative to their left siblings. Each parent node is po 
sitioned in the center between the leftmost and rightmost children. Although nodes can be shifted
further due to the MOD properties of their descendants, leaves, which do not have children, are not
centered concerning them. As a result, leaves that are situated in the middle of their parents may
not be centered relative to their siblings.

The traversal begins at the root and is performed recursively in a preorder manner. If the cur 
rent node has more than one child, the traversal of the children proceeds from the rightmost child
to the leftmost child. If the node being examined is a leaf and is neither the leftmost nor the right 
most child of its parent, its X coordinate will be calculated as the mean of the X coordinates of its
left and right siblings. Therefore, the leaf node is centered between its left and right siblings.

3.4. Determination of the final X coordinate

After considering all the cases and changes to the X coordinates and MOD properties of the nodes,
the final X coordinate should be determined. The final X coordinate will be the sum of the current
X coordinate of the node and the MOD values of all its descendants.

To calculate this, a recursive function that takes one parameter modSum is used. During the exe 
cution of this function, the X coordinate of node A is incremented by modSum, and then modSum is
updated by adding the MOD property of node A. The function is called for each of node A's chil 
dren using the updated modSum parameter.

By the end of this function, each node will have its final X and Y coordinates determined, en 
abling the nodes to be drawn in the shape of a tree.

4. Workflow visualization

The distinction between the RT and WF algorithms is evident in the data structures they visualize.
The TR algorithm is specifically designed for visualizing trees. The WF algorithm is intended to
represent the flow of creating a product. Consequently, the visualization must depict the sequence
of operations required and the order in which they must be performed. Unlike trees, workflows do
not have a single root, instead, they can have multiple starting nodes. Each node, except for the
starting nodes, may have one or more parent nodes. Internal nodes can also have one or more child
nodes. Notably, there is only one leaf node, which is the terminal node that has no successors. This
terminal node signifies the final product.

The visualization of this workflow resembles that of a tree. It is essential to clearly distinguish
between levels with nodes and to differentiate predecessor nodes from their successors. Each pre 
decessor must be positioned at a level above its respective successor. Additionally, it is important to
incorporate aesthetics 1 and 3 when visualizing the tree, along with other recommendations, such
as avoiding edge crossings. In tree visualizations, the only allowed intersection of edges occurs at
nodes. However, since a node in a workflow can have multiple parents, it is permissible to merge
edges that lead from several parents into one child node. In this case, the joining point of these
branches should be above the child node, specifically at the same X coordinate as the child but at a
higher Y coordinate.

For trees, it is accepted that no node should be positioned closer to the root than its predeces 
sors. Given that workflows do not have a root, we will consider that no node should be closer to
the initial nodes than its predecessors. As with tree structures, it is crucial to minimize the usable
space, striving for a dense arrangement of nodes. To visualize the workflow with these character 
istics, modifications to the RT algorithm were necessary. For the WF algorithm, the implementa 
tion of the RT algorithm described in the previous section was used. In this section, the changes
that the RT algorithm leads to the WF algorithm will be described.



For each node, its X and Y coordinates are recorded, where the Y coordinate indicates the depth
at which the node is located. Each node has a MOD property, as explained in the previous section,
which optimizes the algorithm by determining how much the descendants of the current node
should be shifted in the final calculation of the X coordinate. Each node also keeps track of its pre 
vious and next siblings, remembers its first child, and has a boolean property that indicates if it has
more children. If the node has additional children, the list of all its children is also maintained.

Since each node can have multiple parents, similar to its children, each node records its main
parent. There is a boolean property that indicates whether the node has more than one parent, and
if so, all parents are stored in an appropriate list. Additionally, for each node, it is noted whether it
is a leaf node. Along with each node, the operation in the workflow that it represents is also
recorded.

4.1. Creating a workflow structure

Workflow represents the process of creating a product. It illustrates the flow and interdepen 
dence of operations needed to produce the final item. The workflow is developed based on a single
product, using the list of operations that constitute the product and outlining their mutual depen 
dencies. Instances of the Node class were created for each operation. The previous operations that
led to the current one are the node’s parents and predecessors. Each operation is assigned a unique
ID, which allows us to determine whether the corresponding node has already been established.
For each newly created node, its predecessor is checked. If no such node exists, it is added to the
list of root nodes. Conversely, if a predecessor does exist, a Node class object for that predecessor is
created as well, connecting the two in a parent child relationship. The child node is added to the
parent node as the first child if the parent was previously a leaf node. Otherwise, it is added to the
list of other children. The child node is assigned as the main parent if it has not had a parent be 
fore, or the identified parent is added to the other parents’ list. After processing all mutual depen 
dencies, nodes are created containing data about the operation they represent, along with lists of
their parents and children.

4.2. Virtual root

Unlike a tree structure that has a single root, a workflow can consist of multiple initial nodes. Since
all functions for drawing a tree start from a single root node and then proceed recursively through
the children of that node, a VirtualRoot is created. The VirtualRoot is an instance of the Node class
equipped with the same properties as the other nodes in the workflow. It serves as the initial node
for calling functions for visualization, though its own rendering is skipped.

The VirtualRoot is assigned as the main parent for all nodes in the roots list, and all nodes from
this list are added to the VirtualRoot’s children list. The depth of the VirtualRoot node is set to  1,
which serves as the initial depth for all nodes. After creating the VirtualRoot node, a function is
called to calculate the depth of this node and its descendants. The depth of a node in the tree is de 
fined as the parent's depth plus one. However, since a node can have multiple parents in a work 
flow, the main parent property becomes relevant. The main parent of node N is defined as the par 
ent located at the greatest depth of all nodes in the list of parents. It is essential to visually repre 
sent node N after its deepest parent to ensure a coherent visual flow of data. This method allows
viewers to see the sequence of operations, illustrating which actions precede and which follow
them.

4.3. Determining the X coordinate

As explained in the RT algorithm section, the function for determining the initial X coordinate is
utilized in the postorder traversal of the tree. This function is first called recursively for all chil 
dren, and then for the parent node. Within the function, the X coordinate is set based on the X co 
ordinate of the left sibling, the MOD property is established, and the parent is centered over its
children. After calculating the initial X coordinate, conflicts between the subtrees are checked.



As mentioned earlier, the processing of nodes varies based on whether a node is a leaf, has one
or more children, and whether the left sibling is a child of its parent. While the cases considered
and the values assigned for the X coordinate and the MOD value remain unchanged, it is essential
to clarify how the workflow identifies whether a node is a leaf, counts its children, determines if
the left sibling is a child, and distinguishes between the previous and next siblings.

In this workflow, a node is deemed a leaf if it has no descendants, similar to a leaf in a tree.
However, this is not the sole criterion. A node is also considered a leaf if it is not the main parent
of any of its children. This indicates that no children will be drawn beneath this node, allowing it to
be classified as a leaf during the drawing process.

Node N is identified as the leftmost if it has no parent or is the only child of its main parent. If
the main parent P of node N has more children, the first child of node P to which P is the main par 
ent is searched. If this child is node N, then node N is considered to be the leftmost.

To determine if a node is the rightmost, the process is analogous to that of identifying the left 
most. If node N has no parent or is the only child of its main parent, it is classified as the rightmost.
If not, the search is conducted for the last child of the main parent P of node N.

A node N in a workflow is considered to have one child if it has only one child for which it is
the main parent. If N has multiple children, it is necessary to count all the children for which N is
the primary parent. If this count equals one, then the node is considered to have only one child.

The methods for determining the previous and next siblings are commonly used for nodes. Ini 
tially, these values are set to null. Siblings are defined as nodes that share the same main parent,
under which they will be drawn later. When calling these methods for a node N, the function
checks whether its main parent P has more children. If so, it traverses the list of children belonging
to node P to find the previous and the following sibling.

The leftmost child of node N is the first child of node N, where N is the main parent. Similarly,
the rightmost child is the last child of node N, with N as the main parent.

Centering the leaves is crucial due to the potential asymmetry among sibling leaves. To center
the leaves in the WF, the process begins at the VirtualRoot node and follows a preorder traversal.
For each child C of node N where this function is invoked, the following conditions are checked:
C's main parent must be node N, C must be a leaf, and C should not be the leftmost nor rightmost
sibling among its siblings. If all these criteria are met, node C will be positioned in the middle of its
siblings. If node C is not a leaf, the function is called recursively for node C.

The final X coordinate is determined based on the current X value and the MOD values of all
main ancestors. The function is initially called with a VirtualRoot and a MOD value of zero as a pa 
rameter. This follows a preorder workflow traversal.

4.4. Plotting nodes and edges

After establishing the nodes, their interconnections, and their X and Y coordinates, nodes can be
plotted. Before plotting, key parameters such as the height, width, and node distance should be de 
termined. Nodes are depicted as rectangles with dimensions defined by the node height and width,
and the position of each rectangle's upper left corner is determined.

The dimensions of the nodes should accommodate the content that will be placed inside them. If
the content within the nodes is larger, it will be necessary to increase the dimensions accordingly.
Additionally, to allow for different displays, the height and width of the nodes, as well as the dis 
tances between them, can be adjusted.

After each node is drawn, edges are created to connect it to each of its children. To draw an
edge, it’s necessary to determine both the starting and ending points, along with any curves along
the way. Each edge ends with an arrow. If the parent and child nodes share the same X coordinate,
the stroke begins at the parent’s X coordinate, adjusted by half the node width to ensure that it is
centered. The starting Y coordinate is calculated by the parent’s Y coordinate increased by the node
height. A vertical line will extend downward to a point where the X coordinate matches that of the
parent, but the Y coordinate is equal to the child’s Y coordinate minus half of the node distance.



From that point, a horizontal line will be drawn towards the child’s X coordinate, which is again
increased by half the node width. Finally, a vertical line will descend to the child node’s final po 
sition. Figure 2 shows an example of a plotted workflow.

Figure 2: Example of a plotted workflow

5. Discussion

This paper describes the modification of the existing RT algorithm for drawing trees in order to
visualize the workflow in production. As mentioned in the Related Work, there are various meth 
ods for visualizing trees based on the specific needs of the data. In a hierarchical representation of
tree visualization, a parent node is always depicted above its child, with edges connecting them.
This arrangement allows for the visual tracking of the order of predecessors and successors among
the nodes.

The WF algorithm is intended to represent the flow of creating a product. It is crucial that the
visualization clearly depicts the sequence of operations required and the order in which they must
be performed. Although workflows are not trees, the importance of hierarchical representations of
previous and subsequent operations resembles that of a tree. Therefore, the RT algorithm was used
as a foundation for creating the WF algorithm, which aims to simplify the work in product manu 
facturing. Unlike trees, workflows do not have a single root, instead, they can have multiple start 
ing nodes. Since workflow does not have a single root but can have several starting nodes, a place 
holder node called VirtualRoot was introduced. Each node, except for the starting nodes, may have
one or more parent nodes. Internal nodes can also have one or more child nodes. Notably, there is
only one leaf node, which is the terminal node that has no successors. This terminal node signifies
the final product.

The focus was primarily on the implementation aspects and the necessary algorithmic modifica 
tions to repurpose an existing tree visualization method for a different type of structure. The goal
was to demonstrate how a tree based algorithm can be effectively transformed to support the spe 
cific visualization needs of industrial workflows, to improve clarity and usability for workers in 
volved in complex product creation processes. This paper also demonstrates that algorithms de 
signed for one purpose can be adapted to solve different problems.

The proposed visualization provides the state of the production process, where each node repre 
sents a specific activity or checkpoint, annotated with textual descriptions and dynamically colored



to reflect its status. Unlike standard notations, this personalized layout emphasizes readability, sim 
plicity, and immediate interpretability, enabling workers to quickly grasp the process flow and cur 
rent progress. A formal comparison or mapping to existing modeling languages is beyond the
scope of this work, but may be addressed in future research.

6. Conclusions

This paper provides an overview of tree visualization algorithms, focusing specifically on the de 
velopment and enhancement of the RT tree drawing algorithm, one of the most widely used in this
field. Section 3 describes a possible implementation of this algorithm based on various existing im 
plementations. This implementation served as inspiration for addressing the workflow visualiza 
tion challenges. The workflow does not meet the formal definition of a tree, but can still be de 
scribed using tree terminology. In that terminology, the workflow node may have multiple parents.
While there may not be a unique root, several nodes can exist without parents, and there is always
one terminal node, a leaf.

To effectively visualize such a workflow, it was necessary to modify the existing tree visualiza 
tion algorithm, as detailed in Section 4. This modification involved the introduction of a place 
holder instead of the unique root, the list of node’s parents and children, along with the term main
parent and other explained modifications. Each node is assigned to a main parent, which is defined
as the parent located at the greatest depth.

In addition to reviewing existing solutions and types of tree visualization, this work demon 
strates how established and modified algorithms can be leveraged to tackle problems that were not
initially considered in their design. This paper aimed to present a conceptual approach for adapting
the well known Reingold Tilford tree layout algorithm to the domain of workflow visualization in
product manufacturing. This work did not aim to provide a formal analysis of algorithmic complex 
ity or performance metrics such as rendering time, memory usage, or scalability. Instead, the focus
was placed on the conceptual adaptation of an existing algorithm to a new purpose, demonstrating
the potential for algorithmic reuse in a different context. The significance of formal evaluation and
user centered validation is acknowledged, and future research will address these aspects through
comprehensive performance testing and potential real world deployment.
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