CEUR-WS.org/Vol-4077/paper8.pdf

C

CEUR

Workshop
Proceedings

Programming in Natural Language

Jaak Henno®"t, Hannu Jaakkola®' and Jukka Makela®*

I Taltech, Ehitajate tee 5, 19086 Tallinn, Estonia
2 University of Tampere/Pori campus, Pori, Finland
3 Universty of Lapland, Rovaniemi, Finland

Abstract

The whole 70-years history of electronic computers has been a fight between extremely
incompatible languages: the machine code understandable by computer's processor and natural
human languages understandable by computer users - humans. Main methods to overcame this
incompatibility and advance software production have been introduction of high-level
programming languages and reuse — libraries, but with increasing volumes and complexity of data
software production is facing bigger and bigger problems. With advance of ChatGPT-like programs
has appeared an insight that computers could understand natural language and the natural
language could be used to write programs. Here we investigate how realistic this perspective is. In
our paper we discuss about the evolution steps in software development and focus in the use of
Large Language Models (LLM) based Artificial Intelligence (AI) systems in generating code based
on the use of natural language as problem specification. However, development work still requires
interaction between both an application area expert and a technical software developer in order to
result in a reliable software solution.

Keywords

human-computer interface, programming languages, libraries, ChatGPT, truth on Internet

1. Introduction

With exhaustion of natural resources the most important resource for Humanity has become
data. Data is produced in enormous amounts and data production grows exponentially.
Investments in IT technology, especially in software are also growing exponentially. But the
results of IT spending, Return of Investment (ROI) from IT spending is not impressive [1][2].
Growing number of IT projects do not produce expected results on time or within the budget
and many are abandoned.

The main reason for IT problems is growing communication distance between the problem
area experts who state problems (in natural language) and solution (program) implementers —
programmers. Most of application area experts are not skilled programmers and the problems
solved by ICT are becoming all the time more complex, e.g. currently real-time analysis of
moving images (autonomous vehicles), translation of biologic codes and manipulating qubits.
This requires also more complex programming constructs what are difficult for problem area
experts to handle. New complex problems are also difficult to explain adequately to
programmers, who are not specialists of the problem area.

A solution could be using far higher-level language for testing of solution ideas (compared
to programming languages) — programming on natural language, what is doable also for
problem area specialists and introduces new 'hot' areas also to programming old-timers. This
paper examines (problem statement) the evolution of software development having finally

SQAMIA 2025: Workshop on Software Quality, Analysis,Monitoring, Improvement, and Applications,
September 10--12, 2025, Maribor, Slovenia

+ Corresponding author. 1 These authors contributed equally.

jaak.henno@taltech.ee; hannu.jaakkola@iki.fi; jumakelal0@gmail.com

@ 0009-0008-9886-4734 (J. Henno); 0000-0003-0188-7507 (H. Jaakkola).)
@ @ © 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:hannu.jaakkola@iki.fi
mailto:jaak.henno@taltech.ee
https://orcid.org/0000-0002-5385-5761
https://orcid.org/0000-0003-3412-1639

focus in the use of natural language in problem definition and the use of artificial intelligence
systems for code generation. Recently, the practice of using systems based on Large Language
Models (LLM) for software generation has rapidly become widespread. In this paper, the
ChatGPT platform has been used as an example system. The evolutionary path under
consideration also indicates a development in which the size of software increases sharply and
the programmer's ability to control the produced code decreases accordingly.

In the following are described some ideas for implementing this new technology. In
Chapter 2 is given an overview of earlier methods used to overcome the communication
breach between problem initiators and solution implementers — using a bigger and bigger
pieces of earlier code, libraries. In Chapter 3 is introduced a new approach - using some Large
Language Model (LLM) based tools. To the tool (in presented examples was used ChatGPT 4.5)
is given problem description of the problem in natural language and it returns a solution
program (in Python 3) what is then locally executed. The conclusion from these examples is
that it is possible to use LLM based tools for creating (small) programs, but these tools should
be used only if the presented programs can be independently checked.

2. Evolution of software production technology

The root of computing problems lays in very different nature of languages understood by
CPU (Central Processing Unit, the processor) and natural, human languages — English, French
etc. We describe our problems in our natural language — English, Estonian, Finnish etc.
Average human knows and uses ca 20000-35000 words [3]. For CPU these words should be
translated to binary strings of machine language, where only two symbols are used. The
whole history of electronic digital computers has been a fight to overcome this cognitive
distance.

2.1. First revolution — high-level programming languages

For humans it is (very) difficult to work with machine language and to understand the effect,
i.e. what the program does. Thus programmers started to add to machine language layers of
languages which increasingly resembled their own, i.e. English language.

First appeared assemblers — encodings, were (arithmetic) operations were already denoted
with meaningful symbols ("add"), memory locations were denoted as variables, moving values
(assigning a value) become "mov" etc. In ca 10 years after first commercial computers
appeared first 'real' programming languages - Fortran (Formula translator, aimed for
engineers and scientists) and COBOL (COmmon Business-Oriented Language) for offices and
banks. Currently there are over 600 programming languages. They have rather limited
vocabulary, and the number of keywords in most programming languages is less than 50 [4].
Besides keywords program text contains also small number of operation symbols (+,% ...) and
other 'special characters, braces/brackets etc., also less than 20..30.

Thus, programming looks like a trivial exercise: put (very) small number of symbols into
(very) small number of structures. But this new structure using less than 100 symbols should
be logically equivalent with the structure described (often vaguely) using 20000...35000 words.
Creating such enormous compression of information is a complex task, thus the failure rate of
software projects is high.

2.2, The Second revolution - Libraries

The first programming courses of 1960s have grown tens of times to full study programs:
Tnformation Systems development', ‘Cyber Security', 'Business Informatics', ‘Bioinformatics'
etc. Programming is taught in all technical and in many humanitarian and art specialties. This
growth of programming has been made possible with sharing and reuse of code. Already in
the first textbook on programming, The 'Preparation of Programs for an Electronic Digital
Computer' [5] the main topic was libraries.

All programming languages have a growing number of libraries. Nobody knows any more
how many there are, e.g. it is estimated that Python has >200000 libraries [6], Javascript
(node.js) - over 2.1 million packages [7] etc. Libraries call other libraries thus they add
enormous number of LOC (Lines Of Code) to the program. Libraries contain many files, e.g.
the popular Python library numpy (numeric Python) contains (in Python 3.11) 1426 files, the
"Numpy Reference" is 2073 pages, "Numpy User Guide" - 658 pages[8]. Nobody knows
exactly, what there is, why it is there, how it works or does it work at all.

3. The third revolution - Large Language Models

The main idea of the previous advances in programming technology was to use bigger and
bigger pre-calculated functions — libraries. Large Language Models (LLM) allow to create
much bigger functions which are described in natural language, thus could be created already
by the application area specialists.

The programming process involves two stages. First the new program's idea, semantics is
envisioned by problem area specialists in natural language; this idea is explained to
programmers who must transform it to code in some programming language. Some problem
area specialists can themselves create (simple) programs, but constantly growing complexity
of both ends, problem areas and programming technology are reducing their number. Difficult
(for humans) is the second stage, where programmer should know thousands of libraries and
their functions, e.g. (in Python) where/when to use native Python language arrays, where
numpy arrays, where pandas or dataframes etc. With recent proliferation of LLM based Al
systems, which seem to understand natural language, this second stage could be given (at
least partly) to computers.

Libraries are disburdening the human effort in code creation, transferring code creation
effort to library. But the code in libraries is invisible, hidden; libraries are used like receipts
'write these imports, then write these commands'. Utterly useless are suggestions to use Al -
"use convolutional neural networks; multilayer perceptrons, radial basis function network,
probabilistic neural network" etc - if the application area specialist does not know 'why’, does
not know and understand, what actually happens, the results provided by AI are like God's
voice to Moses from the burning bush. When presenting a task on natural language to LLM
based Al system user must understand and describe the idea — what should be done, the
semantics of the solution. The syntax - which libraries to use and how — remains for Al
system; user can then investigate the presented solution in order to understand it, modify and
improve. Al system will act like a (half) intelligent interface to the constantly growing mass of
libraries what has become by their size directly unmanageable by humans.

This idea has been extensively discussed (e.g. [9],[10]) and the opinions vary. We wanted
to test possibilities of ‘programming on natural language' using non-trivial tasks in two areas:

tasks based on locally available finite amount of data (classification of unknown data) and
tasks based on gathering data from Internet. In all tests we used the same protocol: task text
in natural-language was copy-pasted to the query window of the free version of ChatGPT-4.5
[11] (sometimes also a picture file).

3.1. Example: Classification

Information compression with classification is the basic task in all information handling. In
Data Science (DS) is information compression often considered as a supervised learning — an
Oracle (human expert) classifies first a large number of samples, the learning task is to create
computer program which reasonably well mimicries Oracle's (humans) wisdom. To create
such an algorithm a large set of already classified by some wise Oracle items is very one-
sidedly divided (e.g. 80%-20%), the large part is used for teaching (computer, not human!), the
smaller — for testing. For teaching are proposed some ready-made receipts/libraries (e.g.
neural networks), which perform tremendous number of flops (floating-point operations). The
totally non-transparent for human user process is called ML (Machine Learning), but actually
this creating explanation for Oracle's classification. Without Oracle, there is nothing to learn.

New unclassified data appears all the time. Oracle can't be used for handling a set of
unknown items; use of Oracle may be expensive and should be minimized. We wanted to
create (basic) classification starting directly with unknown data, using some well-known ideas
from DS ie. the k-nearest neighbors algorithm [12]; in ML this is called unsupervised
learning.

We tested this idea with the 'Hello World' example of DS - the Iris dataset [13], which
presents 150 examples classified in 1936 by British statistician Ronald Fisher four attributes
into three species. The classification is based on four measurements: the length and the width
of the sepals and petals, thus does not provide any information about flowers 'inner'
information — DNA, organelles etc. On the level of visual attributes irises are nowadays
classified by very different attributes, e.g. beard, size (dwarf, tall [14]) and contrary to often
repeated claim in ML papers "Iris flower has three species - setosa, versicolor, virginica..."
there are actually there are 15 classes in standard classification [15], but some classifications
list > 200 species of iris flowers [16]).

We wanted to investigate quick exploration - create a classification of iris data without any
Oracle, using (only) ChatGPT. To compare results with the Fisher's classification Fisher's
names of species were replaced with RGB color triples: (1.,0.,0) — setosa, (0.,1.,0.) — versicolor,
(0.,0.,1.) — virginica. There are two possible approaches: bottom-up, considering relations
between single data items and top-down - considering statistical properties of the data.

3.2. Iris — bottom-up approach

The commonly used bottom-up relation between data items is distance, used in multiple
nearest neighbors methods. To ChatGPT window was copy-pasted the following text.

Task 1. "Import list of items from the uploaded file iris_col_dat.py, calculate distances between
list items using the first four elements of lists, create graph of items connecting items with
minimal distance, color the graph nodes using the last element of the item as an RGB-triple (each
channel encoded by real values from [0.,1.], e.g (1.,0.,0.)="red’); display the graph; find its connected
components, sort them by the number of nodes in the component, print the list of components and
display all components starting with largest."

To reduce the number of components the program created by ChatGPT was modified
connecting nodes with distanece < 1.5*min_dist (Figure 1).

\‘ ‘.$.o

St
3'0’..,-"

Figure 1. The graph of 42 connected components created by nearest neighbours of 150
samples of irises; alll connected components of the graph contained a single species

3.3. Iris — top-down approach

Considering distances between dimensions of sepals and petals leaves out their biological
nature. The width/height of sepals/petals grow when the plant grows, but they always keep
the same shape - they are similar vectors. In DS is often used reducing dimensionality [17].
As the initial statistics we considered angles of 4-dimensional vectors of data items with the 1-
dimensional vector representing expectation of data items (measured by the cosine);
properties of the array of angles were presented by the histogram.

Task 2. "Create a Python 3 program, which imports from the file iris_col _dat.py the list
items, finds the mean of the list and creates a histogram with 24 bins of angles of lists of first four
components of lists with the mean; set color of 3 locally maximal bins of the histogram to 'aqua’."

The ChatGPT-s program had some small problems (it could not color histogram bars), but
after indication them to ChatGPT it always agrees (very politely) and presents a correction, so
after several interactions we got a program for histogram with colored local maximums. The
histogram suggests that there are three separate groups among data — the three local maxima
of the histogram. We added average values of data from these three hilltops to the list as
virtual items 150, 151, 152 and used them as 'centers of attraction of angles' for grouping
(Figure 2).

Histogram of angles between Data Points and the Mean Vector

12 4

10 1

8

Frequency

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Angle (radians)

Figure2. The histogram of angles suggests that there are three separate groups among data.

Task 3. "Create a Python 3 program, which imports from the file iris_col_dat.py the list of
lists Items, using the first 4 items as coordinates finds for each list except the last three distances
of the list with the last three lists, finds the minimal distance among these three distances, creates
a graph whose nodes are lists from the list Items; for each node except the last thee add edge to
node in last three nodes which had minimal distance with the node; color nodes using the last
item in the list as the RGB triple for node color; color components are encoded as real numbers
from [0.0,1.0], e.g. (1.0,0.,0.) is red."

After minor adjustments the result was a beautiful graph (Figure 3).

Figure 3. The graph produced by the ChatGPT program. The local maxima in histogram of
angles predicted quite well specis of iris samples; experimenting with number of bins in
histogram may produce even better results.

3
o
This classification agrees rather well the Fisher's one — variances g E[(Xi - E(Xl-))z] of

1

clusters are 0.71, 0.82, 0.49, similarity of Fisher's clustering and clustering on Figure 5 is 0.73 %.

In DS publications the Fisher's clustering is often considered as the 'final truth' - the best
possible clustering of the iris data. This view is questionable, different clustering methods
create different results, different methods for estimating quality of a clustering also give
different estimates, it is impossible to say what is "the best", e.g. for the iris data has been
proposed a clustering with four clusters [18]. Assessment of clusters produced by the well-
known DS algorithm K-Means [19], the clustering produced using ChatGPT (shown in Figure
3) and Fisher's clustering using three popular methods: the Davis-Bouldin-Index (DBL lower is
better), the Silhouette score (SSC, 1 is the best, -1 is the worst), the Calinski-Harabasz Index
(CHL, higher is better) gives to ChatGPT clustering the best scores (Table 1).

Table 1
Assessment of clusters
Estimator K Means ChatGPT Fisher
DBI 0.666 0.974 1.067
SSC 0.551 0.397 0.381
CHI 561.6 205.2 191.3

The classification created by ChatGPT is close to the Fisher's classification and evaluated
even to be better than Fisher's.

3.4. OCR - measuring amount of obtained information

Another example tested with ChatGPT was (simplified) OCR (Optical Character Recognition),
using black/white printed digits. Here attributes for classified samples are darkness values
(probability p, of black pixels) in cells of uniform n" m grid drawn over the minimal

bounding box of the digit. If the whole information of a digit as 1, then every cell of a n" m
grid can provide 1/ nm of the whole information. A cell does not provide any information if
there is equal number of black and white pixels, i.e. p, =0.5; it gives more the closer this

probability is to 0 (cell is white) or to 1 (cell is black); the overall information provided by grid

. g & 2
G,, is (0G,,) =(a a (p; - 0.5°)/(n*m).
2 j=

To create a grid over a single digit and illustrate effect of randomizing black pixels in grid
cells to ChatGPT was uploaded image (Figure 4) and given the following parametrized task.

Task 4. "Create a program which finds in the uploaded image minimal bounding rectangle
around connected black blob, divides them with nxm grid, calculates for each grid cell the
probability of black pixels in the cell, creates and prints a nxm-element vector of blackness
probability values in blob's grid cells and draws next to blob (to right) similar grid where each cell
is uniformly (randomly) filled with the same number of black pixels as in the corresponding cell
in the grid over the black blob; show result with n=6, m=6."

Figure 4. Uploaded image (on the left) with 6x6 grid and the grid with randomized black
pixels, the first column of the 6x6 matrix of blackness values was [0.0, 0.2553606237816764,
0.7855750487329435, 0.847953216374269, 0.9376218323586745, 0.5907407407407408,...];
(G) =0.309 - i.e. ca one third of the whole information in the image

To recognize an object (a digit) in a picture, in the picture are found blobs (connected
areas) of connected black pixels, their areas divided with similar grids and in every grid cell
recorded the percentage of black pixels. The grids on uploaded image of digits '0','1,'2",'3",'4'
and the 5x24-matrix of darkness values in grid's cells were produced with the ChatGPT task 5
(Figure 5).

Task 5. "Create a program which finds in the above image numbers.png minimal bounding
rectangles around connected black blobs, divides them with 6x4 grid, calculates for each grid cell
the percentage of black pixels in the cell and outputs 24x5 matrix where each row is a 36-element
vector of blackness values in blob's grid cells; save the matrix as text file 'numbers6_6.txt' in the
current directory; show on the screen the picture with applied grid."

0 1 &

A b d

Figure 5. The 6x4 grid on images of digits; grids (from left to right) contained 50.09, 47.22,
47.38, 45.54, 42.77 percent of the whole information of the corresponding digit.

The matrix was used to recognize digits on uploaded picture with task 6.

Task 6. "Create a program which finds in the above image numbrid.png minimal bounding
rectangles around connected black blobs, divides them with 6x4 grid, calculates for each grid cell
the percentage of black pixels in the cell and creates for each blob a 24-element vector of blackness
values in blob's grid cells, then calculates distances of this vector with three 24-element row
vectors from the 5x24 matrix in the uploaded file, finds among them the minimal distance, writes
to blob as a caption the index of the list giving minimal distance and shows image with captioned
blobs on screen”

The program created by ChatGPT was able to recognize digits of different size and shape

33
24

Figure 6. Program was able to recognize in an image digits of different size and shape (font).

3.5. Decoding genetic sequence

Genetic code and DNA are introduced already in primary school, thus we tested elements
of these concepts also with ChatGPT. For decoding is needed information about codons
(three-letter groups of nucleotides), thus to ChatGPT was uploaded the codon chart which is
often used in decoding examples (Figure 7).

Second letter

u c A e
uuu Ucu) UAU uGU u
o uuc}Phe Uce o UAc]’Tyr UGC}CyS G
UUA}Leu UcA UAA Stop|UGA Stop| A
uuG uca UAG Stop|UGG Trp | G
cuu ccun CAU}HiS cGuU u
cuc cce cAC cGe c
5 Ml cua [-84] cea [P e 2 A Al g
£ |cuc o) CAG CGG G| &
B| |Awu ACU AAU AGU ul| B
i alAuC tie |acc| AAC}Asn AGC}Ser cl|g
AUA ACA AAA } Lys |AGA } A | A
AUG~ Met | ACG | AAG AGG c
GuU Gcu GAU}AS GGU u
olGUC |y | ocC | |GACIAP leee () |C
GUA GCA GAA}GIU GGA [ZY | A
GUG GCG) GAG GGG @

Figure 7. The codons translation chart [20]

Task: "Using the genetic code provided, determine the amino acid sequence coded for by the
DNA sequence 3 ACATGGAAGS5"

ChatGPT-4.5 provided solution with detailed explanations "Reverse it... Use the codon chart
you provided... Final Amino Acid Sequence: Leu - Pro — Cys". But the process was a 'little bit too
good' — the codons chart is a picture, if ChatGPT used it should have good OCR capabilities.
Thus we modified the picture a bit — covered one square (Figure 8).

Second letter

GAU}ASp GGU
G GuC val GCC Ala GAC GGC aly

GAA GGA
GAG} Gl | cee

u c A e

uuy ucu UAU UGy u

W uuc}Phe uce oo ul-\c}'ryr ucc}cys G

UUAY, o, | UCA UAA’ Stop|UGA ™ Stop| A

uuG uce UAG Stop|UGG Trp |G

cuu ccu CAUYs [CSU u

o cuc | o |ccC Ly, |cAC c6C | o |C
5 CUA CCA CAA}Gln cea (A9 | Al 5
£| |cue cce cAG cGG Gl
=]
% | |Aw AAU AGU ul B
& | 5 |AUC Hiie A a0 268 Jser (¢ £

AUA AAA AGA A

AUG~ Met AmatYs |aco Ao | &

u

c

A

G

Figure 8. The modified codons translation chart

With the same task as in previous example ChatGPT presented a bit different explanations
and a totally different solution.

"Let's determine the amino acid sequence using your updated codon table:... Use the codon
chart ... Final amino acid sequence: Cys — Thr — Phe"

The program understood when all squares of the table were covered and proposed to
restore the table. With partially damaged table the hidden information was obtained by some
other way, but the program still claims, that it is using the provided (damaged) chart. The
program could use 'outside' information (without explanation) the same way with every task
- this is a very dangerous feature. Since chatGPT did not produce a working Python program
for its results but used unknown and unexplained information this task was not considered in
the summary table 2 (In sub-section 3.8)..

3.6. Tasks with data from Internet
We tested several LLM based Al systems with tasks involving use of data from Internet.

Task 7: "Create a Python program which illustrates graphically change in percentage of
programmers in the whole World population during the last ten years and add second-order

polynomial interpolation; use real data and indicate data sources."
The result is seen in Figure 9.

Percentage of Programmers
in World Population (2014-2024)

0.340%

0.320%

0.300%

0.280% A

0.260%

T T T T T T
2014 2016 2018 2020 2022 2024

Figure 8. Graph produced by the Python program created by ChatGPT in response to task 7;
ChatGPT claimed, that it used data from [21],[22],[23], but on repetitions were created
different graphs.

We tested also another task where it was requested to use real data and indicate its source.

Task 8. "For the list of countries in the uploaded file countries.txt find for each country the
percentage of programmers in its population using real data from Internet, order countries by this
number and create bar chart showing percentage of programmers in population in each country;
calculate correlation of number of programmers with GDP per capita of countries and indicate
sources of data"

The program produced by ChatGPT created the following graphs (Figure 10 and 11) using
data from [24],[25].

Percentage of Programmers by Country

Norway
Austria
Croatia

Percentage of Programmers in Population

Figure 10. Graph produced by the program which was created by ChatGPT as a response to
Task 8.

Scatter Plot: GDP per capita vs. Percentage of Programmers

ers in Population

tage of Programm
s
°
.
°
.
.
.
.

Percentage of Pro

0 10000 20000 30000 40000 50000 60000 70000
GDP per capita (USD)

Figure 11. Another chart produced by the previous program - correlation between percentage
of programmers and GDP per capita: 0.25 — doubling the percentage of programmers in
population makes a country more productive.

On different queries, ChatGPT produced (slightly) different charts (although indicated the
same data sources) but very different correlation coefficients, from -0.42 to 0.25.

3.7. Other LLM based Al systems

We tested besides ChatGPT also some other LLM based Al systems, e.g. the Deepseek [26],
but results were worse. Common to all systems was warning (in small print) "AI responses
may be inaccurate, please verify information independently', e.g. Claude from Anthropic
repeats this warning 4 times. Nowhere are any suggestions given on how to implement
'independent verification'. When a LLM based Al system is used to generate a program, this is
easy — run the program in the language's compiler/interpreter, but with information-seeking
the independent verification is googling.

Most of tested LLM based Al systems did not understand what is "real data with indicated
sources". For instance, the LLM Granite 3.2 from IBM [27], which uses 12 trillion tokens,
returned a solution to the Task 4 with comments: "For this illustrative purpose, we'll use
hypothetical data, as actual comprehensive, global programmer data might not be readily
available." The Python program produced by the Granite had also other problems: a Python
dictionary was called "data in CSV format", unnecessary conversion of the dictionary to
DataFrame for "for easy data manipulation" etc.

Very annoying is companies’ intension to get users private information, e.g. Anthropic
asks for birth date and mobile phone number - this is private info and according to EU
General Data Protection Regulation (GDPR) [28] nobody is obliged to share it.

3.8. Can LLM based Al systems s improve software production?

Because of great and growing importance, programmers’ productivity has been discussed
often, see e.g. [29],[30],[31]. Fred Brooks stated in his book "The Mythical Man-Month: Essays
on Software Engineering" [32] that a professional developer will write on average 10 lines of
code (LOC) per day. Using LOC as a measure of programs size is not a very adequate metric,
since most of programs code is hidden in libraries [33],[34]. A more adequate metric is total
number of lines of code in all libraries imported by the program. This number characterizes
the work done by the program and ratio of number of words in task description with number

of lines in all loaded libraries show the effectivity of programming is natural language. The
ChatGPT reduced also our time wasted for fighting with bad modules and libraries — all
Python libraries contain lot of bad modules producing errors [33].

Table 2
Number of words in task description vs number of LOC in all loaded libraries in the final
program
Task Number of LOC in all loaded Number of Ratio:
words in task libraries in good/bad LOC/number of
description Python code modules words
1 83 1175737 2426/263 14166
2 52 1293587 2426/263 24877
3 110 1175763 2426/263 10689
4 38 1175771 2426/263 13361
5 73 1175753 2426/ 263 16106
6 97 1202764 2455/266 12400
7 34 1175736 2426/263 34580
8 61 1175708 2426/263 19274
AVG 61 1193852 18182

Thus a word in natural language evokes over 18 thousand LOC in Python libraries (Table 2).

4. Conclusions

The amount of data handled by Humanity is growing exponentially (Figure 12).

Growth of data handled by Humanity

Figure 12. Growth of data (in zetabytes, 1 zB = 10*' bytes) handled yearly by Humanity [35]

Data is the future of economic growth [36], doubling the number of programmers in
population increases country's GDP per capita by 25% (Figure 11), but 90% of data is not used
[37]. The current methods of software production are not adequate, the Consortium for
Information and Software Quality (CISQ) estimated that the yearly losses from poor quality
software is ca 1.56 trillion USD and growing annually ca 2 % [38]. We need new low-code/no-
code methods to handle our growing mountains of data [39].

Our experiments show, that it is possible to use ChatGPT (and soon maybe also some other
LLM based Al systems) as a significant help in teaching and possibly also in creating new
software. The use of these tools forces users to use clear, succinct language, what is not
customary in our everyday practice, e.g. "clear definitions" is the first recommendation to EU
Council to improve EU information systems [40]. Language improvement improves
requirements, involve users, improve communication between users and developers and
create better process planning and definition of final goals. Improvement in more than 16
thousand times in number of LOC in produced programs (Table 2) makes learning of new
style of programming clearly a need for all application area specialists and software
developers.

Our experiments show also, that LLM based Al systems would be used for solving
concreate tasks with finite input — such as our tasks 1.-7., where results can be checked.
Tasks, where Al systems 'wisdom from Internet' (our tasks 8.-9.) should be avoided. Quality of
truth on Internet is rapidly deteriorating. More and more people publish on Internet,
repeating half-earlier published half-truths or nonsense produced by Al systems and once
published, it becomes a 'source’, can be referred and is becoming 'truth’ for many people and
such papers have appeared already on Google Scholar [41]. This constantly growing flow of
misinformation is a real danger for the whole humanity [42].

Declaration on Generative Al

During the preparation of this work, the authors used ChatGPT as an example system to
generate code of specific problem settings in natural language. The quality of the code
produced was analyzed in the paper, not published as a part of it. For comparison purposes,
Deepseek, Anthropic, Granite and Gemini were tested in a light manner. In the paper text
LLM based systems were not used and the authors take full responsibility for the publication's
content.

References

[1] D. Courts, Software Project Failures: Why 70% Miss the Mark.
https://www.callibrity.com/articles/why-software-projects-miss-the-mark.

[2] R. Williams, Banks Are Falling Short in Their ROI on Technology.
https://www.crnrstone.com/gonzobanker/banks-are-falling-short-in-their-roi-on-
technology.

[3] NL. Huld, How Many Words Does the Average Person Know?
https://wordcounter.io/blog/how-many-words-does-the-average-person-know.

[4] GitHub Repository: Keywords, GitHub (n.d.), https://github.com/e3b0c442/keywords.

[5] M.W.Wilkes et al., The Preparation of Programs for an Electronic Digital Computer.
Addison-Wesley 1951, 167 pp.

[6] Javapoint, How many Python Packages are there? https://www.javatpoint.com/how-
many-python-packages-are-there.

[7] Node.js, An introduction to the npm package manager. https://nodejs.org/en/learn/
getting-started/an-introduction-to-the-npm-package-manager.

[8] Numpy Documentation, https://numpy.org/doc/.

[9] J. Warden, GitHub Copilot Research Finds "Downward Pressure on Code Quality".
https://dev.to/jesterxl/github-copilot-research-finds-downward-pressure-on-code-
quality-4m87.

[10] Yi-Miao Yan et al, LLM-based collaborative programming: impact on students’
computational thinking and self-efficacy. Nature, Feb. 7, 2025, https://www.nature.com/
articles/s41599-025-04471-1

[11] ChatGPT, OpenAl, https://chatgpt.com/.

[12] T.M. Cover, P.E. Hart, Nearest neighbor pattern classification", 1967, IEEE Transactions
on Inf. Theory. 13 (1) 1967, pp 21-27, https://doi.org/10.1109/TIT.1967.1053964.

[13] UCI Machine Learning Repository, Iris. https://archive.ics.uci.edu/dataset/53/iris

[14] American Iris Society, Bearded Irises, https://www.irises.org/gardeners/care-
classification/classification/.

[15] American Iris Society, Iris Encyclopedia of the American Iris Society,
https://wiki.irises.org/.

[16] American Iris Society, Iris Classifications, https://www.irises.org/gardeners/care-
classification/classification/.

[17] A.N. Gorban, A. Y. Zinovyev, Principal Graphs and Manifolds. arXiv:0809.0490,
[18] https://doi.org/10.48550/arXiv.0809.0490.

[19] D. Benson-Putnins et al., Spectral Clustering and Visualization: a Novel Clustering Of
Fisher’s Iris Data Set, https://www.siam.org/media/s12Iln4i2/spectral_clustering_
and_visualization.pdf.

[20] Scikit-learn Developers, Preprocessing, https://scikit-learn.org/stable/modules/
preprocessing.html.

[21] OpenStax, Codon chart, https://openstax.org/apps/image-cdn/v1/f=webp/apps/archive/
20230620.181811/resources/d99b2d20bb12abe0a633a49c567152957e014db7.

[22] Evans Data Corp., Worldwide Developer Population and Demographic Study 24.2.,
https://evansdata.com/reports/viewRelease.php?reportID=9.

[23] Stack Overflow Developer Survey 2020, Stack Overflow, https://survey.stackoverflow.co/
2020.

[24] GitHub Octoverse 2021 Report, https://octoverse.github.com/2021/.

[25] Stack Overflow Developer Survey 2024, Stack Overflow, https://survey.stackoverflow.co/
2024/.

[26] World Bank Group. GDP per capita,
https://data.worldbank.org/indicator/NY.GDP.PCAP.
CD.

[27] Deepseek, https://www.deepseek.com/.
[28] IBM, Granite Playground, https://www.ibm.com/granite/playground/app/.

[29] European Union, Data Privacy and Protection, https://www.trade.gov/european-union-
data-privacy-and-protection.

[30] K. Kennedy et al. Defining and Measuring the Productivity of Programming Languages,
ACM SIGPLAN Notices 18:4 (2004), pp. 441-448.

[31] J. Gmys et al., A comparative study of high-productivity high-performance programming
languages for parallel metaheuristics, Swarm and Evolutionary Computation vol. 57,
2020, https://doi.org/10.1016/j.swev0.2020.100720.

[32] Y. Li et al. An empirical study to revisit productivity across different programming
languages. Proc. 24th Asia-Pacific Software Engineering Conference (APSEC), pp.
526-533 (2017).

[33] F. P. Brooks, The Mythical Man-Month, Addison-Wesley (1975), ISBN 0-201-00650-2.

[34] J. Henno, H. Jaakkola, J. Mikeld, Handling Software Icebergs, In: CEUR Workshop
Proceedings, vol. 3237 (2022), https://ceur-ws.org/Vol-3237/.

[35] J. Henno, H. Jaakkola,]J. Makeld, Non-determinism in Nowadays Computing and IT
Education, In: 43rd Int. Conv. on Information and Communication Technology,
Electronics and Microelectronics (MIPRO 2020), pp. 794-801.

[36] Statista, Volume of data/information created, captured, copied, and consumed worldwide
from 2010 to 2023, with forecasts from 2024 to 2028,

https://www.statista.com/statistics/871513/worldwide-data-created/ .

[37] World Economic Forum, The Future of Growth Report 2024,
https://www.weforum.org/publications/the-future-of-growth-report/data-on-the-future-

of-growth/.

[38] Greenenergy, 90% of data sits unused. How to get rid and avoid digital waste,
https://www.greenergydatacenters.com/eng/blog/90-of-data-sits-unused-how-to-get-rid-
and-avoid-digital-waste.

[39] H. Krasner, Cost of Poor Software Quality in the U.S.: A 2022 Report, https://www.it-
cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2022-report/.

[40] T. Tran, Stay Ahead of the 2024 Latest Software Development Trends,
https://www.orientsoftware.com/blog/latest-software-development-trends.

[41] F. Konig, What’s wrong with EU information systems and how to fix it,
https://www.delorscentre.eu/fileadmin/user_upload/PoPa2_Sept18_final2.pdf.

[42]]. Hader et al, GPT-fabricated scientific papers on Google Scholar,
https://misinforeview.hks.harvard.edu/article/gpt-fabricated-scientific-papers-on-google-
scholar-key-features-spread-and-implications-for-preempting-evidence-manipulation/.

[43] B. Mittelstadt et al., To protect science, we must use LLMs as zero-shot translators.
Nature Human Behaviour volume 7, pages 1830-1832 (2023).

