Automatically Verifying and Repairing General Game
Descriptions

Yifan He

University of New South Wales, Australia

Abstract

General Game Playing (GGP) is concerned with the development of systems that can play any new game from the
mere rules without human intervention. One major challenge in GGP is to endow a player with the ability to prove
game-specific knowledge from the mere game rules automatically. Therefore, Automated Theorem Proving has
become a popular research area in GGP. Automated theorem provers can assist GGP systems in formally verifying
strategic or non-strategic logical properties of general game descriptions. They can also help game designers
to check whether game descriptions are correctly encoded and satisfy desired logical properties. My research
focuses on three main topics: (1) extending verification methods in GGP to support more expressive logics; (2)
identifying a logical framework that can express important game properties, such as strong winnability that
can be verified more efficiently through a specialized encoding; and (3) introducing the game description repair
problem and developing the first automated method for repairing descriptions that violate formal requirements.

Keywords
General Game Playing, Game Description Language, Answer Set Programming, QBF, Model Checking

1. Introduction

The Game Description Language (GDL) has been developed as a lightweight knowledge representation
formalism for describing the rules of arbitrary games [1]. GDL describes game rules in normal logic
program syntax similar to Prolog. It is used as the input language for general game-playing (GGP)
systems, which can learn to play any new game from the mere rules and without human intervention,
thereby demonstrating a form of general intelligence. While the original version of GDL, introduced
for the first AAAI GGP competition, was restricted to games with complete information, the language
was later extended to GDL-II to support the description of games with imperfect information [2].

As a lightweight specification language, GDL merely provides means for representing the rules of a
game, while a crucial aspect of GGP is the ability to automatically reason about a given specification.
Important basic properties of games include, for example, termination (i.e., the game described in GDL
is guaranteed to terminate), playability (i.e., in all non-terminal states of the game, every player has
at least one legal move), and constant-sum (i.e., the sum of scores of all players at terminal states is
fixed). Properties about strategies include, for example, strong winnability and the existence of a Nash
equilibrium. In early years, successful GGP systems perform random simulations to test the validity
of certain properties and rely on their informed guess in case no violation could be detected [3, 4].
However, validating properties through random simulations can be unreliable, and the performance of
the GGP system can be affected if incorrect assumptions are made about the game. For example, in a
single-player game, if the system wrongly assumes that a subtree does not contain a winning state, it
might prune away the actual solution path to the goal.

For this purpose, Automated Theorem Proving was proposed to assist GGP systems in formally
analyzing whether a GDL or GDL-II description satisfies certain logical properties [5]. From the
perspective of building stronger GGP systems, it is always desirable to have automated theorem provers
that can either verify more general game-specific properties or are more efficient at verifying some

CEUR-WS.org/Vol-4078/paper3.pdf

Doctoral Consortium of the 22nd International Conference on Principles of Knowledge Representation and Reasoning (KR 2025 DC),
November 11-17, 2025, Melbourne, Australia
Q) yifan.hel@unsw.edu.au (Y. He)

PN
ams

&’ https://www.linkedin.com/in/yifan-he-unsw/ (Y. He)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5

CEUR
E Workshop
Proceedings

14

mailto:yifan.he1@unsw.edu.au
https://www.linkedin.com/in/yifan-he-unsw/
https://creativecommons.org/licenses/by/4.0/deed.en

Yifan He 14-19

properties. Beyond assisting GGP systems, automated theorem provers can also be used by the game
designer to reliably check whether game descriptions are correctly encoded and satisfy desired logical
properties, although, as for now, if a description violates certain properties, the task of repairing it
must be done manually. Hence, from the perspective of game designers, it is clearly desirable to have
automated methods of repairing ill-defined game descriptions.

The following three research questions can be naturally derived from this background:

R1: Can the Automated Theorem Proving methods in GGP be extended to support more expressive
logic and enable the verification of important game properties that are not verifiable by previous
theorem provers? (Section 2)

R2: Is there some logical framework that captures some important game properties and can be
verified more efficiently through specialized encodings? (Section 3)

R3: Can we design an automated method of repairing game descriptions that violate some formal
logic requirements? (Section 4)

Since both GDL and GDL-II are logical languages, we focus on using logic-based methods to address
these research questions.

Various works have been carried out in Automated Theorem Proving in GGP. For the verification of
temporal invariance properties in GDL and of epistemic properties in GDL-II, Answer Set Programming
has been used in the past [6, 7]. In addition, the model checker MCK was used to verify Epistemic
Computation Tree Logic (CTLK) properties of GDL-II games [8]. However, none of these works handle
the strategic dimension. Ruan et al. (2009) provides a framework in which GDL can be understood as a
specification language for models of Alternating-time Temporal Logic (ATL) [10]. But their approach
is restricted to the original GDL for games with complete state information. Although Ruan and
Thielscher (2012) extends the work to allow the verification of Epestemic Alternating-time Temporal
Logic (ATEL) properties of GDL-II games, the work stays at the theoretical level, and ATEL cannot
express important strategic properties like the existence of a Nash equilibrium.

Although no prior work was carried out in repairing game descriptions that violate formal require-
ments in GGP, many works have been done regarding repairing formal models in the context of e.g.,
biological networks [12], service-based processes [13], and Petri nets [14]. One piece of highly related
work is repairing unsolvable planning domain descriptions (PDDL) [15]. While PDDL and GDL dif-
fer, their work can only repair reachability to the goal (aka. winnability in GDL) instead of arbitrary
properties expressed in a certain logical framework.

2. Verification of General Games with Imperfect Information with SLK

2.1. Motivation

To extend the Automated Theorem Proving methods in GGP, we can establish a concrete link between
GDL or GDL-II with a more expressive logical language. Notably, no practical work in Automated
Theorem Proving within GGP considers reasoning about strategic properties in GDL-II games. This
raises a natural research question: how can we automatically reason about strategic properties in GDL-II
games using existing model checkers?

Epistemic Strategy Logic (SLK) [16] is a rich logical framework for reasoning about multi-agent
systems and the strategic behavior of agents with partial observability. In particular, it can express
important game properties such as the existence of pure strategy Nash Equilibria, which neither ATEL
nor CTLK can express. More importantly, the model checking toolkit MCMAS has an implementation of
the SLK model checking algorithm [17]. Our goal, therefore, is to draw a concrete link between GDL-II
and SLK models and allow GGP systems to take advantage of this rich formalism for the automatic
verification of strategic properties of imperfect information games with MCMAS.

15

Automatically Verifying and Repairing General Game Descriptions 14-19

2.2. Approach and Progress

To automatically reason about logical properties specified in the SLK framework, we provide a formal
translation from GDL-II games to interpreted systems, which are the semantical structures used in
both SLK and MCMAS. Our goal is to create a translation II(G) for any GDL-II description G, which
represents an interpreted system that is the input to MCMAS. We need to ensure that the model derived
from I1(G) using MCMAS operational semantics is isomorphic to the interpreted system Z¢ derived
from G using GDL-II semantics.

In our KR 2024 paper [18], we present the translation and prove its correctness. We also show how
to express and verify the strategic properties of players, such as strong winnability and pure-strategy
Nash equilibrium in GDL-II games, using MCMAS.

The main limitation of that work lies in scalability. This is due to the complexity of SLK model
checking, which is EXPSPACE-complete with respect to the size of the GDL-II description and the
formula, and which motivates the development of more efficient, or possibly sound but incomplete,
model checkers.

3. Verification of Perfect Information Games with QBF Solvers

3.1. Motivation

Our work on reasoning about GDL-II games with SLK provides a general framework for verifying a
broad class of properties in GDL-II games. This significantly extends the range of verifiable properties
supported by earlier approaches based on ATL [9]. However, using SLK or ATL model checkers to
reason about game-specific properties remains inefficient. This is mainly due to the high complexity of
model-checking these logics (e.g., for ATL, it is EXPTIME-complete with respect to the size of the GDL
description and formula), and existing implementations of model-checkers for these logics require a
full expansion of the state space before property verification can even begin. Due to the potentially
large state space of general games, explicitly expanding all game states is certainly undesired.

To address R2, we identify a fragment of some popular logical frameworks that can express some
interesting game properties, and model-checking for such a logical framework in the context of GGP is
within PSPACE with respect to the size of the game description and logical formula. Thielscher and
Voigt (2010) defined a temporal logic (GTL) that is similar to the Linear Temporal Logic with only
the temporal operator “next” (0)) and allows the formulation of properties that involve finitely many
successive game states. Model-checking against such a logic is only co-NP-complete. However, such a
logic can only express non-strategic properties. We identify a logical framework that can also express
some strategic properties.

3.1.1. Problem Definition

We consider a logic over the ground atoms of GDL descriptions that has the following grammar:

pu=qleNe || (C)Op

We denote the logic as GCL, which is similar to Coalition Logic [19] or ATL over finite traces [20] with
only the temporal operators (C)) O (i.e., “the coalition C' can enforce something in the next state”)
defined in the context of GDL, which extends the range of verifiable properties supported by GTL. One
interesting strategic property that can be expressed in this logic is bounded-depth strong winnability
(denoted as ¢uin(p, n)), which is whether a player p has a strategy to win the game within n steps,
regardless of the actions of the remaining players in R \ {p}. This property is useful to GGP systems
when conducting endgame searches in perfect information games.

o Pwin(p,n) = win(terminal A goal(p,100), n) where,

« win(y,0) = v, and win(v,i) = v VvV {(C)) Qwin(vy,i — 1)

16

Yifan He 14-19

3.1.2. Approach and Progress

We can show that GCL model-checking is PSPACE-complete with respect to the size of the GDL description
and the formula. Hence, using a QBF solver to perform the model-checking task is a natural idea. GDL
uses stable models for the semantics, while QBF is based on classical models. Converting directly from
GDL to QBF is, therefore, challenging as it would require some form of completion technique [21].
Our approach is to extend the Answer Set Programming approach of GTL model-checking [6] by
encoding the GCL model-checking task with an intermediate language called Quantified Answer Set
Programming (QASP), which is based on stable model semantics and has the same expressive power as
QBF. Thanks to the existing work on converting from QASP to QBF [22], we do not need to deal with
the completion task from scratch as long as we can encode the model-checking task of GCL in QASP.
We can then use QBF solvers [23] to evaluate the resulting QBF, which corresponds to the result of the
GCL model-checking task.

Our work on verifying the formula ¢, (p, n) when |R| = 2 was published in AAMAS 2024 [24].
In that paper, we compare the efficiency of the QBF approach with forward search on solving several
popular two-player GDL games such as Breakthrough, Connect-4, and Dots and Boxes. We show that
the QBF approach is comparable with forward search, hence can be used as an alternative approach for
GGP systems to evaluate endgame positions. The work on general GCL model-checking was accepted
by NMR 2025.

4. General Game Descriptions Repair

4.1. Motivation

Theorem Provers can also help game designers to verify if the game descriptions are encoded correctly.
For example, game descriptions used in a GGP competition are required to be well-formed [1], which
means: the game must terminate, and is both playable (cf. Section 1) and weakly winnable (i.e., for
each player, there is a sequence of joint moves leading to one of its winning states). Game designers
can use theorem provers to check if a game description satisfies some desired properties, such as
well-formedness, before submitting it to the competition. This is not ideal for non-expert GDL encoders.
For this reason, we define the GDL repair problem and propose the first automated method for repairing
general game descriptions. Repairing game descriptions is a new research problem. We start by focusing
on the repair of GDL descriptions only, and repairing GDL-II is left as future work.

4.2. Problem Definition

We call a GDL rule a legal rule if its head is an instance of the predicate legal, and similarly, we call a
GDL rule a next rule if its head is an instance of the predicate next. We consider a game description G
to be broken if it satisfies some undesired properties or dissatisfies some desired properties under some
logic L. Informally speaking, a repair to the game description is considered as a set of modifications
to the legal and next rules of G or adding a bounded number of new legal or next rules to G. Each
modification to G has a cost. To avoid redesigning the entire game, our goal is to calculate the lowest-
cost modification to G so that the resulting game description G’ j£1, ¢~ forall¢~ € @~ and G’ =, ¢
for all ™ € &1 where &~ (resp. &) is a set of logical formulas for some logical framework L that G’
should dissatisfy (resp. satisfy). We only allow modifications to legal/next rules because changing other
rules, such as the definition of base propositions, initial state, and goal, would be akin to defining a new
game rather than repairing an existing one.

4.3. Approach and Progress

Game description repair is a broad topic. We start by focusing on solving the lowest-cost repair problem
for GDL descriptions that violate logical requirements described in the simple logic GTL (cf. Section 3)
(i.e. L = GTL). For example, in the context of GTL, to ensure the repaired game description G’ must

17

Automatically Verifying and Repairing General Game Descriptions 14-19

terminate within n steps, one can introduce the GTL formula ¢¢,,4(n) to ®* which says that for all
playing sequences, terminal must hold at some step 0 < ¢ < n.

o Genda(n) = terminal vV Oterminal \V ...V Q" terminal

where (O™ denotes n consecutive () connectivities.

To solve the repair problem, we need to identify the complexity class of the problem and encode the
problem with some logical language that can express problems in that complexity class. The work was
accepted by KR 2025. In the paper, we provide sufficient conditions on when certain repair problems have
or do not have solutions. We prove that the complexity class of the lowest-cost repair problem for the
logic GTL is FAY -complete'. Based on the complexity analysis, we apply an Answer Set Programming
technique called guess and check [26] to solve the lowest-cost repair problem automatically and show
its effectiveness on repairing broken GDL descriptions.

5. Future Work

My research mainly focuses on verifying general games and repairing broken game descriptions. By
employing logic-based methods to address these problems, we have established connections between
General Game Playing research and the research in different branches of logic.

For future work, in terms of verifying general game descriptions, we can try to identify fragments
of other logical frameworks that can express interesting game properties and can be verified more
efficiently through specialized encodings. In particular, it is worth exploring whether certain fragments
of epistemic logics (e.g., SLK), that can express strategic properties, may admit more efficient verification
procedures, thereby enabling their practical use in verifying GDL-II games. For repairing broken game
descriptions, we can explore how to solve the repair problem in the context of imperfect information
games. We plan to extend the definition of the game description repair problem to GDL-II descriptions,
which allows the modifications of the sees rules (i.e., modifying what a player can see in the next state).
We can then consider how to repair GDL-II descriptions that violate formal requirements specified in
some epistemic logics such as GTLK, CTLK, or SLK. Out of these logics, repairing GTLK [7] properties
is the most promising one. Since GTLK is an extension of GTL with the knowledge operator and
both GTLK and GTL model checking use Answer Set Programming, we might expect that a guess and
check-based approach for repairing GTLK properties for GDL-II games can be developed by extending
our current work on repairing GTL properties.

For the remaining time of my PhD degree, I aim to address the problem of repairing GDL-II descriptions
that violate GTLK properties and include the result in my thesis.

Acknowledgments

I want to thank my supervisors, Prof. Michael Thielscher and Dr. Abdallah Saffidine, for their support.

Declaration on Generative Al

The author has not employed any Generative Al tools.

References

[1] M. Genesereth, M. Thielscher, General game playing, Synthesis Lectures on Artificial Intelligence
and Machine Learning 8 (2014) 1-229.

[2] M. Thielscher, A general game description language for incomplete information games, in: Proc.
of AAAL 2010, pp. 994-999.

'FAY is the class of function problems that can be solved in polynomial time with a ¥4 oracle [25].

18

Yifan He 14-19

(3]

[9]
[10]
[11]
[12]

[17]

[18]
[19]
[20]
[21]

[22]

J. Clune, Heuristic evaluation functions for general game playing, in: Proc. of AAAI 2007, pp.
1134-1139.

M. Swiechowski, J. Mandziuk, Y. S. Ong, Specialization of a uct-based general game playing
program to single-player games, IEEE Transactions on Computational Intelligence and Al in
Games 8 (2015) 218-228.

S. Haufe, Automated Theorem Proving for General Game Playing, Ph.D. thesis, Dresden University
of Technology, 2012. URL: https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-89998.

M. Thielscher, S. Voigt, A temporal proof system for general game playing, in: Proc. of AAAIL
2010, pp. 1000-1005.

S. Haufe, M. Thielscher, Automated verification of epistemic properties for general game playing,
in: Proc. of KR, 2012, pp. 339-349.

X. Huang, J. Ruan, M. Thielscher, Model checking for reasoning about incomplete information
games, in: Proc. of Al, 2013, pp. 246-258.

J. Ruan, W. Van Der Hoek, M. Wooldridge, Verification of games in the game description language,
Journal of Logic and Computation 19 (2009) 1127-1156.

R. Alur, T. A. Henzinger, O. Kupferman, Alternating-time temporal logic, Journal of the ACM 49
(2002) 672-713.

J. Ruan, M. Thielscher, Strategic and epistemic reasoning for the game description language
GDL-IL, in: Proc. of ECAL, 2012, pp. 696-701.

M. Gebser, C. Guziolowski, M. Ivanchev, T. Schaub, A. Siegel, S. Thiele, P. Veber, Repair and
prediction (under inconsistency) in large biological networks with answer set programming., in:
Proc. of KR, 2010, pp. 497-507.

G. Friedrich, M. G. Fugini, E. Mussi, B. Pernici, G. Tagni, Exception handling for repair in service-
based processes, IEEE Transactions on Software Engineering 36 (2010) 198-215.

F. Chiariello, A. Ielo, A. Tarzariol, An ilasp-based approach to repair petri nets, in: Proc. of LPNMR,
2024, pp. 85-97.

A. Gragera, R. Fuentetaja, A. Garcia-Olaya, F. Fernandez, A planning approach to repair domains
with incomplete action effects, in: Proc. of ICAPS, 2023, pp. 153-161.

P. Cermék, A. Lomuscio, F. Mogavero, A. Murano, Practical verification of multi-agent systems
against slk specifications, Information and Computation 261 (2018) 588—-614.

A. Lomuscio, H. Qu, F. Raimondi, MCMAS: an open-source model checker for the verification of
multi-agent systems, International Journal on Software Tools for Technology Transfer 19 (2017)
9-30.

Y. He, M. Mittelmann, A. Murano, A. Saffidine, M. Thielscher, Verification of general games with
imperfect information using strategy logic, in: Proc. of KR, 2024, pp. 420-430.

M. Pauly, A modal logic for coalitional power in games, Journal of logic and computation 12 (2002)
149-166.

F. Belardinelli, A. Lomuscio, A. Murano, S. Rubin, et al., Alternating-time temporal logic on finite
traces., in: Proc. of [JCAI, 2018, pp. 77-83.

V. Asuncion, F. Lin, Y. Zhang, Y. Zhou, Ordered completion for first-order logic programs on finite
structures, Artificial Intelligence 177 (2012) 1-24.

J. Fandinno, F. Laferriére, J. Romero, T. Schaub, T. C. Son, Planning with incomplete information
in quantified answer set programming, Theory and Practice of Logic Programming 21 (2021)
663-679.

M. N. Rabe, L. Tentrup, Cagqe: A certifying qbf solver, in: Proc. of FMCAD, 2015, pp. 136-143.

Y. He, A. Saffidine, M. Thielscher, Solving two-player games with QBF solvers in general game
playing, in: Proc. of AAMAS, 2024, pp. 807-815.

M. W. Krentel, Generalizations of opt p to the polynomial hierarchy, Theoretical Computer Science
97 (1992) 183-198.

T. Eiter, A. Polleres, Towards automated integration of guess and check programs in answer set
programming: a meta-interpreter and applications, Theory and Practice of Logic Programming 6
(2006) 23-60.

19

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-89998

	1 Introduction
	2 Verification of General Games with Imperfect Information with SLK
	2.1 Motivation
	2.2 Approach and Progress

	3 Verification of Perfect Information Games with QBF Solvers
	3.1 Motivation
	3.1.1 Problem Definition
	3.1.2 Approach and Progress

	4 General Game Descriptions Repair
	4.1 Motivation
	4.2 Problem Definition
	4.3 Approach and Progress

	5 Future Work

