A Rule-Based Approach to Specifying Preferences over
Conflicting Facts and Querying Inconsistent Knowledge
Bases (Extended Abstract)

Robin Jean

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, Talence, France

Abstract

This extended abstract summarizes a joint work with Meghyn Bienvenu, Camille Bourgaux and Katsumi Inoue
presented at KR’25 [1], where we introduce a declarative rule-based framework for specifying and computing
a priority relation between conflicting facts. As the expressed preferences may contain undesirable cycles, we
consider the problem of determining when a set of preference rules always yields an acyclic relation, and we
also explore a pragmatic approach that extracts an acyclic relation by applying various cycle removal techniques.
As a step towards an end-to-end system for querying inconsistent knowledge bases, we present a preliminary
implementation and experimental evaluation of the framework, which employs answer set programming to
evaluate the preference rules, apply the desired cycle resolution techniques to obtain a priority relation, and
answer queries under prioritized-repair semantics.

1. Introduction

Inconsistency-tolerant semantics are a well-established approach to querying data inconsistent
w.r.t. some constraints, both in the relational database and ontology-mediated query answering settings
(cf. recent surveys [2, 3]). Such semantics typically rely on (subset) repairs, defined as maximal subsets
of the data consistent w.r.t. the constraints. The most well-known, called the AR semantics in the KR
community and corresponding to consistent query answering in the database community, considers
that a Boolean query holds true if it holds in every repair. The more cautious IAR semantics amounts to
querying the repairs intersection, and the less cautious brave semantics only requires that the query
holds in some repair.

Since an inconsistent dataset may have a lot of repairs, several notions of preferred repairs have been
proposed in the literature, to restrict the possible worlds considered to answer queries, for example by
taking into account some information about the reliability of the data [4, 5, 6, 7, 8]. In particular, since its
introduction by [9], the framework of prioritized databases, in which a (binary acyclic) priority relation
between conflicting facts is used to define three kinds of optimal repairs, has attracted attention, with
numerous theoretical results [10, 11, 12, 13], and an implementation [14]. However, the crucial question
of obtaining the priority relation was left unaddressed, preventing the adoption of this framework in
practice. Indeed, it is not realistic to expect users to manually input a binary relation between the facts.

2. Specifying Priority Relations via Rules

CEUR-WS.org/Vol-4078/paper4 .pdf

We propose a framework for specifying a priority relation between conflicting facts. We use preference
rules to state that, when some conditions are satisfied, a fact should generally be preferred to another
fact. The rule conditions may naturally refer to the presence (or absence) of facts in the dataset. However,
typically we may also want to exploit information about the facts themselves (e.g. the date they were
added), provided in metadata.

Doctoral Consortium of the 22nd International Conference on Principles of Knowledge Representation and Reasoning (KR 2025 DC),
November 11-17, 2025, Melbourne, Australia
& robin.jean’at’u-bordeaux.fr (R. Jean)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5

CEUR
E Workshop
Proceedings

20

mailto:robin.jean'at'u-bordeaux.fr
https://creativecommons.org/licenses/by/4.0/deed.en

Robin Jean 20-24

Example 1. Consider a DL knowledge base Kex = (Dex, Tex) about a university. The ontology expresses
that associate and full professors (APr and FPr) are faculty members (Fac) and clerical staff workers
(Cleric) are administrative staff workers (Adm). Moreover, one cannot be both an associate and a full
professor, or an administrative staff worker and a faculty member.

Tex = {APr C Fac, FPr C Fac, APr C —FPr,
JTeach C Fac, Cleric C Adm, Adm C —Fac}

Dex = {APr(a), FPr(a), Cleric(a), Adm(a),
Teach(a, c), Adm(b), APr(b)}

We associate to Keyx a meta-database Mex = (idex, Fex), Where idex is a function that associates an iden-
tifier to each fact of Dex: idex(APr(a)) = 1, idex(FPr(a)) = 2, idex(Cleric(a)) = 3, idex(Adm(a)) = 4,
idex(Teach(a, c)) = 5, idex(Adm(b)) = 6, idex(APr(b)) = 7, and Fex records the year that facts have

been added to the university database:

{Date(1,2014), Date(2,2025), Date(3, 2013),
< (2013,2014), < (2013, 2025), < (2014, 2025)}.

We then define the following preference rules.

Date(z1,y1) ADate(za, y2)A < (y2,y1) — pref(x1, z2)
x1 = id(FPr(y)) A zo = id(APr(y)) — pref(z1, x2)
Y T Adm A Z C Fac A ~(3zTeach(y, z))A
Az =1d(Y(y)) A z2 = id(Z(y)) — pref(z1,22)

The first rule states a general preference for keeping more recently added facts. The second one states if we
have both FPr(p) and APr(p), we prefer to keep FPr(p), capturing the domain knowledge that associate
professors are promoted into full professors. The third rule states that if a person is declared to belong both
to a subclass of Adm and a subclass of Fac, but there is no Teach-fact for the person in the dataset, then the
Adm-related facts are deemed more reliable. Observe that it uses ontology axioms with variables in order
to simplify rule formulation (avoiding the need to write separate rules for every pair of subclasses of Adm
and Fac). These three preference rules induce the following preferences over the facts of Dey, designated by
their identifiers:
{pref(2,1), pref(2, 3), pref(1, 3), pref(6,7)}.

Given a set of preference rules 3, let >y be the binary relation over facts obtained from the preferences
over facts induced by X, restricted to facts that appear together in some conflict (minimal set of facts
inconsistent with the logical theory 7). This relation may still fail to be a priority relation if it contains
a cycle, as priority relations are required to be acyclic. We explore two complementary approaches to
tackling this issue: identifying preference rules which are guaranteed to yield an acyclic relation, and
employing different methods to extract an acyclic sub-relation from >y.

Checking acyclicity of preference rules We show that, given a logical theory 7, the problem of
deciding whether a set of preference rules X yields an acyclic >y, for every dataset and meta-database
is undecidable in general. However, for DL-Lite ontologies and preference rules whose bodies are
essentially conjunctive queries, this problem is in coNP.

Resolving cycles to get a priority relation Ideally the preference ruleset > would always yield an
acyclic >y, but this cannot be assumed in general. Furthermore, cycles can naturally arise when users
create rules that capture different criteria, e.g. prefer more recent facts and prefer facts from more
trusted sources. To ensure acyclicity in such cases, one would need to create more complex rules whose
bodies consider different combinations of the criteria, making rules much harder for users to specify
and understand. We thus advocate a pragmatic approach: give users free rein to specify preferences

21

Rule-Based Approach to Specifying Preferences over Conflicting Facts and Querying Inconsistent KBs 20-24

as they see fit, then apply cycle resolution techniques to extract a suitable acyclic sub-relation should
any cycles arise. To allow for a more fine-grained specification of the preferences, we assume that ¥ is
partitioned into priority levels X, ..., 3, so that a preference induced by a preference rule from ¥; is
considered more important than one induced by a preference rule from >J; with j > 7, and will thus be
preferably kept in the cycle elimination process. Given two facts a and § such that « >y, 3, we denote
by level(c, B) the minimal index i such that « >y, 3. We consider four cycle resolution techniques:

« Going up (>"): Let =":=) and 7 := 1. Then while =" Uy, is acyclic, let =":=>"U >y, and
increment ¢.

« Going down (=9): Let =%:=>x and i := n. Then while =< is cyclic, let =%:=~9\{(a,) |
level(a, B) = i, (o, B) is in a cycle w.r.t. =%} and decrement i.

« Refined going up (>-""): Let ="%:=>y,, then remove every («a,) that occurs in a cycle w.r.t.
>x,. Then for i = 2 to n, add to ="" all pairs («,) such that level(c, 8) = i and (v, 3) does
not belong to any cycle w.r.t. =" U>yx,.

« Grounded (-9): Let =9:= (). Then until a fixpoint is reached, add to =9 all pairs («, 5) such
that o >y [and for every cycle ¢ of >y, containing («, [3), either there is (v, d) € ¢ such that
level(a, B) < level(w,), or there is (7, d) € c such that =9 U{(~, d)} is cyclic.

We relate these cycle removal strategies to notions that have been proposed in the literature to
select a single consistent set of facts from a knowledge base whose dataset is partitioned into priority
levels [15, 12], and show that =UC4C 9 and =*C>9C="" and that each of these relations can be
computed in polynomial time from the relations >y,.

3. ASP Implementation and Experiments

We implement our approach using answer set programming (ASP) [16, 17] to evaluate the preference
rules, apply the desired cycle resolution techniques to obtain a priority relation, and answer queries
under optimal repair-based semantics (AR, IAR or brave semantics based on Pareto- or completion-
optimal repairs), towards an end-to-end system for querying inconsistent knowledge bases. Our system
takes as input logic programs representing the input, and computes the query answers under the chosen
semantics w.r.t. =% for the chosen z € {u,d,ru, g}. All building blocks can be encoded into ASP
programs that a Python program combines and passes to the ASP solver clingo [18] to check whether
the resulting program has a stable model. However, we found more efficient in practice to split the
computation into several steps and implement some of them in Python. Our approach applies to any
logical theory 7 such that:

1. there exists a set Inc(7T) of rules of the form ¢ — L with ¢ a Boolean CQ, such that for every
dataset D, (D, T) |= L iff there exists ¢ — L € Inc(T) such that D |= ¢; and

2. for every CQ ¢(Z) there exists a set Rew(q, T) of rules of the form ¢/ (Z) — ¢(Z) with ¢ a CQ
such that for every D s.t. (D, T) [~ L and tuple a@, (D, T) | ¢(@) iff there exists ¢/ (%) — ¢q(Z) €
Rew(q,T) st. (D, T) E ¢(a).

These conditions are fulfilled, e.g., when 7 is a set of denial constraints (then, Inc(7) = 7T and
Rew(q,T) = {q — q}), or when T is a DL-Lite ontology. Regarding preference rules, we handle rules
whose bodies are CQs with negation and comparison operators. We expect that the KB K = (D, 7)),
meta-database M = (id, F), preference rules ¥ = ¥; U --- U X,,, and query ¢ are given as ASP
programs.

Our main goal is to compare the different approaches to obtaining a priority relation from preferences
rules, in terms of run time and size of the priority relation. We also compare our ASP implementation
of the optimal repair-based semantics with orBITs, the existing SAT-based implementation. We use the
CQAPri benchmark [19], a synthetic benchmark adapted from LUBM3, [20] to evaluate inconsistency-
tolerant query answering over DL-Lite KBs. We also consider its extension with two priority relations
given by the orBITs benchmark [14] for the comparison with orBITs, and add a denial constraint to

22

Robin Jean 20-24

experiment with non-binary conflicts. For the meta-data, we randomly generate facts of the form
date(id(«),n), source(id(a), k) and reliability(k, m). We define four preference rules which
express that one prefers more recent facts, facts with a more reliable source, FPr(y) over APr(y) facts,
and APr(y) over GrSt(y) facts, and partition the rules in one, two or three priority levels.

We were not able to compute >~"" even on the simplest case because it overflows the number of
atoms clingo can handle. However, we managed to compute the other priority relations for almost all
small datasets (>75K) and several medium size datasets (>463K), even in cases with a large proportion
of facts in conflict. Interestingly, on all instances for which we computed them, -9 never compares
more than 5% more pairs of facts than =%, while =" is often reduced to the empty relation. From a
computational point of view, = is significantly faster to compute than =9 and ~*. This indicates
that =9 may be a good method to use in practice. Regarding the computation of optimal repair-based
semantics, our system is by far slower than orBITS but we note that we manage to answer some queries
under AR and brave semantics based on completion-optimal repairs when oRrBITS runs out of time or
memory.

Declaration on Generative Al

The author has not employed any Generative Al tools.

References

[1] M. Bienvenu, C. Bourgaux, K. Inoue, R. Jean, A rule-based approach to specifying preferences over
conflicting facts and querying inconsistent knowledge bases, in: Proceedings of KR (to appear),
2025.

[2] L.E.Bertossi, Database repairs and consistent query answering: Origins and further developments,
in: Proceedings of PODS, 2019.

[3] M. Bienvenu, A short survey on inconsistency handling in ontology-mediated query answering,
Kinstliche Intelligenz 34 (2020) 443-451.

[4] A. Lopatenko, L. E. Bertossi, Complexity of consistent query answering in databases under
cardinality-based and incremental repair semantics, in: Proceedings of ICDT, 2007.

[5] J.Du, G. Qi, Y. Shen, Weight-based consistent query answering over inconsistent SHIQ knowledge
bases, Knowl. Inf. Syst. 34 (2013) 335-371.

[6] M. Bienvenu, C. Bourgaux, F. Goasdoué, Querying inconsistent description logic knowledge bases
under preferred repair semantics, in: Proceedings of AAAI, 2014.

[7] M. Calautti, S. Greco, C. Molinaro, I. Trubitsyna, Preference-based inconsistency-tolerant query
answering under existential rules, Artif. Intell. 312 (2022) 103772.

[8] T.Lukasiewicz, E. Malizia, C. Molinaro, Complexity of inconsistency-tolerant query answering in
datalog+/- under preferred repairs, in: Proceedings of KR, 2023.

[9] S.Staworko, J. Chomicki, J. Marcinkowski, Prioritized repairing and consistent query answering in
relational databases, Annals of Mathematics and Artificial Intelligence (AMAI) 64 (2012) 209-246.

[10] B. Kimelfeld, E. Livshits, L. Peterfreund, Detecting ambiguity in prioritized database repairing, in:
Proceedings of ICDT, 2017.

[11] B. Kimelfeld, E. Livshits, L. Peterfreund, Counting and enumerating preferred database repairs,
Theor. Comput. Sci. 837 (2020) 115-157.

[12] M. Bienvenu, C. Bourgaux, Querying and repairing inconsistent prioritized knowledge bases:
Complexity analysis and links with abstract argumentation, in: Proceedings of KR, 2020.

[13] M. Bienvenu, C. Bourgaux, Inconsistency handling in prioritized databases with universal con-
straints: Complexity analysis and links with active integrity constraints, in: Proceedings of KR,
2023.

[14] M. Bienvenu, C. Bourgaux, Querying inconsistent prioritized data with ORBITS: algorithms,
implementation, and experiments, in: Proceedings of KR, 2022.

23

Rule-Based Approach to Specifying Preferences over Conflicting Facts and Querying Inconsistent KBs 20-24

[15] S. Benferhat, Z. Bouraoui, K. Tabia, How to select one preferred assertional-based repair from
inconsistent and prioritized DL-Lite knowledge bases?, in: Proceedings of IJCAI, 2015.

[16] V. Lifschitz, Answer Set Programming, Springer, 2019. URL: https://doi.org/10.1007/
978-3-030-24658-7. d0i:10.1007/978-3-030-24658-17.

[17] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, Answer Set Solving in Practice, Synthesis Lectures
on Artificial Intelligence and Machine Learning, Morgan & Claypool Publishers, 2012. URL: https://
doi.org/10.2200/S00457ED1V01Y201211AIM019. doi:10.2200/S00457ED1V01Y201211AIMO19.

[18] M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub, M. Schneider, Potassco: The
potsdam answer set solving collection, AI Commun. 24 (2011) 107-124.

[19] C. Bourgaux, Inconsistency Handling in Ontology-Mediated Query Answering. (Gestion des
incohérences pour I'accés aux données en présence d’ontologies), Ph.D. thesis, University of
Paris-Saclay, France, 2016.

[20] C.Lutz, I Seylan, D. Toman, F. Wolter, The combined approach to OBDA: Taming role hierarchies
using filters, in: Proceedings of ISWC, 2013.

24

https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.1007/978-3-030-24658-7
http://dx.doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.2200/S00457ED1V01Y201211AIM019
https://doi.org/10.2200/S00457ED1V01Y201211AIM019
http://dx.doi.org/10.2200/S00457ED1V01Y201211AIM019

	1 Introduction
	2 Specifying Priority Relations via Rules
	3 ASP Implementation and Experiments

