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Abstract
Modern machine learning (ML) models for malware detection offer high predictive power but often lack trans-
parency, hindering trust and interpretability. Ontology-driven representation provides a formal, structured way
to model malware behavior that is both machine-readable and human-interpretable. This research proposes a
dynamic malware ontology leveraging standard vocabularies from Malware Attribute Enumeration and Charac-
terization (MAEC) and Structured Threat Information Expression (STIX), aimed at capturing behavioral features
extracted via dynamic analysis. The structured dataset resulting from the ontology will serve as input to Graph
Neural Networks (GNNs) and DeepProbLog to produce explainable detection results. This work addresses key
challenges in explainability, semantic representation, and robust malware classification, contributing a novel
dataset, ontology, and interpretability framework for cybersecurity applications.

Keywords
Malware detection, Malware ontology, Explanability, Graph Neural Network

1. Introduction

Malware continues to pose a significant threat in our increasingly interconnected world. Modern
machine learning (ML) techniques have shown great promise in detecting malicious code, but these
models often operate as black boxes, making their decisions difficult to interpret and trust. As a
result, there is a growing demand for explainable malware detection systems that not only achieve
high accuracy but also provide human-understandable insights. Ontologies provide a structured and
semantically rich means to represent domain knowledge. In the context of malware detection, an
ontology-based approach offers a consistent, machine- and human-interpretable representation of
malware behaviors, artifacts, and threat patterns. Existing malware ontologies, however, often rely
solely on static analysis features and lack coverage of dynamic behaviors that are crucial for detecting
sophisticated malware employing evasion techniques. Static malware features (data obtained through
static analysis) have been useful for malware detection, but their limitations with respect to obfuscation
[1], evasion tactics [2], and lack of understanding of malware behaviors [3] underscore the need for
dynamic features (data obtained through dynamic malware analysis) in mitigating malware attacks.
There exists a standard called MAEC1 (Malware Attribute Enumeration and Characteristics), created
for sharing these analysis results. This standard is starting to be used among experts and is considered
a fundamental standard for sharing. However, to the best of our knowledge, there has not yet been
an ontological representation created for the MAEC standard that would be suitable for data sharing.
Several efforts have been made to develop ontologies for the cybersecurity domain [4, 5], but these
initiatives have remained largely outdated and either do not incorporate the MAEC standard or only do
so at a very superficial level. For data obtained through static analysis, the PE Malware Ontology [6] was
created, which partially uses the taxonomy from the MAEC standard but also adds its own attributes.
The version of the ontology presented here includes a taxonomy for storing data obtained through
both dynamic and static analysis and fully utilises the MAEC taxonomy. This study combines MAEC
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and STIX languages for describing and representing malware actions, artifacts, and threat patterns for
ontology-based knowledge representation that are suitable for the integration of results obtained from
static and dynamic malware analysis (hybrid features). Aligned with the MITRE ATT&CK2 framework,
this ontology enables the definition of malware techniques and tactics.

This research aims to bridge that gap by developing an integrated malware ontology enriched with
dynamic features derived from live malware analysis. The ontology will leverage standard vocabularies
from MAEC and STIX to formalize the representation. By integrating this structured representation
with Graph Neural Networks (GNNs) and DeepProbLog as explainable models, the work will advance
both detection performance and interpretability.

2. Research Plan and Objectives

The proposed research seeks to create a pipeline that connects dynamic malware analysis, ontology-
based representation, and explainable AI (XAI) methods for malware detection. The following key
objectives guide this research:

2.1. Ontology Development

We will create a semantically rich and comprehensive ontology that formally represents malware
behavior, actions, and threat patterns. The ontology will incorporate dynamic malware attributes such
as runtime behaviors and system-level interactions using standardized vocabularies from MAEC and
STIX. This structured representation will enable both humans and machines to understand the context
of malware operations more clearly and provide a basis for interpretable reasoning. MAEC (Malware
Attribute Enumeration and Characterization) and STIX (Structured Threat Information Expression) are
standardized vocabularies for malware and threat intelligence. MAEC provides a structured language
for describing low-level malware behaviors, while STIX adds higher-level context and granularity,
thereby enriching MAEC classes. Used together, they enhance the ontology’s expressiveness and
interoperability, and their wide adoption and support across analysis tools make them particularly
suitable for our approach.

2.2. Dynamic Malware Analysis

To enhance the ontology with real-world behavioral data, this step involves performing dynamic
analysis on live malware samples. Using Cuckoo Sandbox, the malware is executed in a controlled
environment to capture runtime features such as API calls, file manipulations, registry changes, and
network activity. These behaviors offer valuable insights into how malware interacts with a system,
especially those that evade static detection through obfuscation or encryption.

2.3. Ontology-based Dataset Construction

The dynamically extracted features will be mapped to the ontology and used to generate a structured
dataset. This dataset will contain instances represented as graph-like structures suitable for input
into machine learning models. The process involves transforming unstructured behavioral logs into
semantically labeled data points, thus enabling downstream algorithms to learn from meaningful,
domain-grounded representations.

2.4. Explainable Detection Models

In the final stage, the structured dataset will be used to train Graph Neural Networks (GNNs) and
DeepProbLog, a probabilistic logic programming framework. GNNs are well-suited for learning from
graph-structured data (e.g., ontology instances) [7], while DeepProbLog allows for symbolic reasoning

2https://attack.mitre.org
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with probabilistic inference [8]. Together, these models will support interpretable classification decisions
by associating predictions with human-understandable rules, dependencies, or paths in the graph making
the malware detection process more transparent and trustworthy.

This integration of the symbolic structure of the ontology and sub-symbolic learning enables trans-
parent and logically grounded explanations for model predictions. Through this combination, our
approach not only aims to improve malware classification performance but also provides rule-based
explanations for why a sample was labeled as malicious or benign thus enhancing the trust, auditability,
and human interpretability of AI-driven security systems [9, 10].

This research also aim to address the following questions:

• RQ1: Which dynamic features are most suitable (or unsuitable) for representing malware behavior?
• RQ2: To what extent does integrating these features into a formal ontology produce a structured

and expressive dataset?
• RQ3: How effective are GNNs and DeepProbLog in providing interpretable decisions based on

ontological data, and what are their limitations?

3. Current Progress

We have developed MAECO, an ontology constructed using classes derived from the vocabularies of
MAEC and STIX languages. This section introduces key classes in the ontology, primarily derived
from MAEC’s top-level objects, along with selected object properties that define relationships between
these classes, and relevant data properties. We formalize our ontology in OWL, one of the most widely
used ontology languages for knowledge representation. [11]. It is a more expressive language for
designing complex ontologies which support the extension of RDFS with richer semantics such as
property restriction, equivalence and disjointness and enhances reasoning [12, 13].

MAEC Specifications
and STIX vocabularies

Define concepts,
relationships and

individuals

Design Ontology 
(Protege)

Malware Ontology
(MONTFRAME)

Figure 1: MAECO Process Workflow

Figure 1 illustrates our systematic approach to designing the Malware Ontology (MAECO). We began
by reviewing and analyzing the MAEC and STIX [14] languages to understand existing standards in
malware characterization. Based on this analysis, we defined relevant concepts, relationships, and
individuals, along with their associated properties. Utilizing Protégé [15], we structured the ontology
according to these defined classes and properties. The culmination of this process is the development of
the standardized Malware Ontology Framework (MAECO). Table 1 present the metrics of the MAECO
ontology in comparison with the PE Malware Ontology. [6]. The metrics which include Total Axioms
of 2,929, Logical Axiom Count of 1,702, Declaration Axiom Count of 1,227 with Class Count of 195
and Object Property Count 107. Data Property Count is 194 with Individual Count of 393. SubClassOf
Axioms of 510 with EquivalentClasses Axioms equall to 1. These figures indicate a moderately expressive
ontology, with a balanced representation of schema-level constructs (classes, properties) and instance-
level assertions (individuals). The high count of SubClassOf axioms suggests a well-structured class
hierarchy over the existing PEFile Ontology [6]

4. Investigating the Suitability of GNNs on Ontology-Based Datasets

We constructed PyTorch Geometric (PyG) graph data from ontology-based knowledge graphs created
by Daniel et al. [16], derived using the malware ontology of Švec et al. [17] from the EMBER dataset
(1,000 binary-labeled samples). To assess the suitability of graph neural networks (GNNs), we conducted
four experiments:
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Table 1
Structural and Evaluation metrics for PEFile and MAECO Ontologies

Structural Metrics
Metric PEFile Ontology [6] MAECO
Total Axioms 874 2,929
Logical Axiom Count 231 1,702
Declaration Axiom Count 210 1,227
Class Count 195 535
Object Property Count 6 107
Data Property Count 10 194
Individual Count 0 393
Annotation Property Count 3 0
SubClassOf Axioms 189 510
EquivalentClasses Axioms 0 1

Evaluation Metrics
Attribute Richness 0.051 0.36
Inheritance Richness 0.97 0.95
Relationship Richness 0.032 0.21
Annotation Coverage 0.015 0.00
Class Richness 1.000 0.58
Average Population 0.00 0.73
Axiom Richness 2.96 3.03
Logical Axiom Density 0.264 0.58
Declaration Axiom Density 0.240 0.42

1. GCN1 – Graph Convolutional Network
2. GCN2 – Graph Convolutional Network with edge reversal
3. RGCN1 – Relational Graph Convolutional Network
4. RGCN2 – Relational Graph Convolutional Network with edge reversal

The goal was to evaluate the effect of bidirectional relations (edge reversal) when learning from
numeric feature subsets. The results are summarized in Table 2.

Table 2
Performance of GCN and RGCN variants on ontology-based dataset.

Model Accuracy (%) TPR (%)

GCN1 67 55
GCN2 67 87
RGCN1 67 87
RGCN2 98 98

The results show that bidirectional relations significantly improve performance. In particular, RGCN
with edge reversal (RGCN2) achieved 98% accuracy and TPR, compared to 67% in baseline models. This
demonstrates that relational GNNs are highly suitable for ontology-based datasets, where relational
structures are central.

In our envisaged neuro-symbolic pipeline, the ontology structures domain knowledge into relational
graphs of malware samples. A relational graph convolutional network (RGCN) learns embeddings and
probabilistic predictions from these graphs, which are then passed into DeepProbLog and combined with
logical rules derived from the ontology. This integration allows the ontology to constrain the feature
space, the RGCN to capture statistical relational patterns, and DeepProbLog to provide probabilistic
reasoning with symbolic explanations.
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5. Related Work

Ontology-based approaches for malware detection have been investigated in various forms, aiming to
formalize malware behaviors and characteristics for better representation and reasoning. The earliest
ontology [18]; a core ontology to model suspicious malware behaviour, lacks grounding in formal
standards such as MAEC or STIX, reducing reusability and interoperability.

Chowdhury and Bhowmik [19] introduced a knowledge graph-based approach to model malware
behavior, capturing relationships between malware indicators and behavior patterns. While their system
provided graphical interpretations, it did not explicitly rely on standardized ontology vocabularies and
lacked dynamic feature integration. More recently, Svec et al. [20] presented a PE malware ontology
using the MAEC vocabulary to model features from static analysis. Although their model included
explainability considerations, it was limited to Windows PE binaries and static features leaving out
dynamic behaviors which are essential in uncovering evasive malware traits. Balogh and Galko [21]
addressed integration of both static and dynamic analysis results into an ontological model using MAEC.
Their work is foundational to this proposal, as it confirms the feasibility of unifying hybrid malware
attributes into a single semantic representation. However, it stops short of applying explainable machine
learning models to the resulting ontology-enhanced datasets. In a broader AI context, research on
explainability has progressed rapidly. [22] outlines principles of Explainable AI (XAI), highlighting its
role in transparency, fairness, and user trust. While numerous studies explore XAI in domains such as
healthcare or finance, few have systematically applied XAI to malware detection in conjunction with
ontology-based representations.

To the best of our knowledge, no existing work has combined dynamic malware analysis, ontology-
based semantic modeling grounded in MAEC/STIX, and explainable learning using GNNs and Deep-
ProbLog. This research thus fills a key gap by proposing a novel end-to-end pipeline that incorporates
all these elements for interpretable malware detection.
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