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Abstract

Randomized algorithms depend on accurate sampling from probability distributions, as their correctness and
performance hinge on the quality of the generated samples. However, even for common distributions like
Binomial distribution, exact sampling is computationally challenging, leading standard library implementations
to rely on heuristics. These heuristics, while efficient, suffer from approximation and system representation
errors, causing deviations from the ideal distribution. Although seemingly minor, such deviations can accumulate
in downstream applications requiring large-scale sampling, potentially undermining algorithmic guarantees. We
propose statistical distance as a robust metric for analyzing the quality of samplers, quantifying deviations from
the ideal distribution. We derive rigorous bounds on the statistical distance for standard implementations of
samplers and demonstrate the practical utility of our framework and propose an interface extension that allows
users to control and monitor statistical distance via explicit input/output parameters.
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1. Motivation

Randomization stands as a cornerstone of computer science, permeating algorithm design from the
field’s earliest days to its cutting-edge developments. From Quicksort [1], one of the most widely-used
algorithms, to modern cryptographic protocols, randomization has proven indispensable in achieving
efficiency and functionality that deterministic approaches struggle to match. While the fundamental
question of whether randomization offers additional computational power over determinism remains
open, randomized algorithms have established themselves as the preferred choice in numerous domains,
including data structures [2], hash functions [3], and probabilistic data structures [4].

At the heart of every randomized algorithm lies its ability to sample from probability distributions.
The algorithm’s correctness and performance guarantees intrinsically depend on the quality of these
samples. For instance, a hash table’s performance relies on the uniformity of its hash function’s output
distribution, while a Monte Carlo algorithm’s accuracy depends on the fidelity of its random sampling
process. This fundamental reliance on sampling has led to the development of sophisticated sampling
algorithms implemented as standard library functions.

While specialized techniques exist for generating high-quality samples from certain distributions [5],
these approaches typically circumvent direct probability mass computation through transformations of
basic random processes. However, such techniques remain constrained to specific distributions exhibit-
ing particular mathematical properties. In practice, standard library implementations predominantly
rely on transformed rejection sampling [6, 7, 8], which necessitates explicit probability mass computa-
tion. These computations entail multiple arithmetic operations and specialized function evaluations,
including factorial and logarithm computations, thereby introducing approximation errors at each step.
The accumulation of these errors can significantly impact the statistical properties of the generated
samples, potentially compromising the theoretical guarantees of algorithms that depend on them.

In this work, we focus on analyzing standard library implementations of Binomial samplers, which
are largely based on transformed rejection sampling techniques [6, 7, 8]. These implementations require
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computation of Binomial distribution probability mass, denoted by b,, ,,(k), necessitating approximations
of factorial terms [9], logarithmic computations [10], and various arithmetic operations. While such
approximations enable efficient sampling, they introduce systematic deviations from the ideal Binomial
distribution that current implementations neither quantify nor report to users. These deviations can
accumulate and potentially trigger cascading failures in downstream applications [11, 12]. Despite the
widespread adoption of these libraries, there exists no documentation providing precise analysis of
accumulated errors.

The primary research problem we address is: how to develop a rigorous methodology to analyze the
errors in existing samplers to provide meaningful measurement of their impact on downstream applications?
This question is particularly pertinent given the increasing reliance on randomized algorithms in critical
applications, where understanding and quantifying sampling errors becomes crucial for ensuring system
reliability and correctness.

Our first contribution is a rigorous framework for analyzing the quality of existing samplers through
the lens of statistical distance. We advocate statistical distance as a theoretically sound metric for
quantifying sampler quality, owing to its fundamental property of indistinguishability. Let P and @
be two probability distributions with statistical distance at most 7, i.e., dry (P, Q) < 1. Then, for
any statistical test T' (even computationally unbounded), the difference in its acceptance probabilities
when run on samples from P versus samples from () cannot exceed 7. This fundamental property has
profound implications for sampler quality analysis: if a sampler’s output distribution has a statistical
distance 7 from the ideal distribution, then the downstream application cannot experience an error
greater than 7, regardless of its computational sophistication. Building on this theoretical foundation,
we present a detailed analysis of state-of-the-art implementations, deriving concrete bounds on their
deviation from the ideal distributions through careful decomposition of numerical approximation errors.
We propose an extension to sampler interfaces that exposes statistical distance as an input/output
parameter, enabling users to control the sampling accuracy.

We believe our work highlights a fundamental challenge in randomized computation: the need for
rigorous analysis of sampler implementations to establish precise error bounds and enhance trust in
randomized algorithms. Our approach of integrating error analysis into algorithmic frameworks opens
new avenues for developing robust randomized algorithms that maintain both theoretical guarantees
and practical efficiency. This work will likely motivate the broader community to examine and enhance
the reliability of randomized computation implementations, particularly in the context of standard
library functions that serve as building blocks for numerous algorithms.

2. Related Work

Considerable effort has been devoted to designing samplers that generate samples with arbitrary
precision and provably no deviation from the original distribution, a concept referred to as exact
sampling. This line of work dates back to Von Neumann and has been further developed in studies
such as Karney [5], which propose arbitrarily precise algorithms for sampling from distributions like
the normal and exponential distributions. Similar significant attention has been given to designing
exact Binomial samplers [13, 14] as well. But these algorithms are often impractical for large-scale
applications due to their high computational complexity, which is typically linear in the size of the
sample space. Constant time sampling algorithms for binomial distributions are categorized under
the framework of transformed rejection sampling [15]. These algorithms achieve a sampling time
complexity of O(1), but at the cost of approximations. The framework needs to evaluate the probability
mass function, which is computationally expensive unless approximated.

The impact of numerical accuracy on computational programs has been extensively studied. Signifi-
cant research has been conducted to analyze errors in arithmetic operations [16]. Recently, Blanchard
et al. [17], Bonnot et al. [18] have explored how these errors affect the performance of functions such
as log-sum-exp and softmax. These studies underscore the critical need to account for the inherent
numerical errors when designing algorithms and assessing their performance.
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3. Proposal for Extending Sampler Interfaces

Since exact sampling from distributions such as Binomial distribution is computationally expensive
for most parameters of interest, the standard libraries rely on approximations to achieve practical
efficiency. While these approximations significantly reduce time complexity, they introduce deviations
from the actual distribution, effectively causing the samples to come from a distribution different from
the intended one. Therefore, we need to focus on a fundamental question: how do we make systems that
rely on samplers trustworthy?

Simply ignoring these deviations is not advisable, as they can have cascading effects that compromise
the correctness of the entire system. Often, a user designs a randomized algorithm A to solve a particular
problem, with an upper bound § on its failure probability. If A relies on a standard Binomial sampler
without knowledge of the sampler’s quality, the program may experience a higher failure rate due to
approximations in the underlying samplers.

3.1. Statistical Distance as Quality Metric

Our proposal immediately raises the question: how should one measure the quality of the sampler?
To this end, we first focus on the fact that the objective of the measurement of quality is to allow the
end user to quantify the impact of the usage of the sampler. There are several metrics, such as KL-
divergence, statistical distance, and Hellinger distance, that have been proposed in the literature focused
on probability distributions that seek to quantify the distance between two probability distributions. In
this regard, a natural question is to ask what distance metric we should choose. To this end, we propose
the usage of statistical distance (Definition 3.1) as the metric to report the quality.

Definition 3.1 (Statistical Distance). Suppose two distributions P, Q) are defined over the set 2. Then,

dry (P, Q) = Z |P(x (z)| = sup [P(A) — Q(A)].

zEQ ACQ

Our proposal for statistical distance stems from its ability to allow end users to derive the worst-case
bounds on the behavior of the system in a black-box manner.

Lemma 3.1. Let A be a randomized algorithm that uses randomness from a source distribution P, and let
BAD be an event in the output of A. If P is replaced by another distribution (), then the probability of the
event BAD is bounded by the statistical distance between:

Pllfj(.A(w; r) € BAD) — PEQ(A(:E; r) € Bap)| < dpy (P, Q).

rev ey

Proof. Let B C () be the set of random strings (or, numbers) that trigger the event BAp. Then we can
equate the above term with |P(B) — Q(B)|. Therefore using Definition 3.1, we have |P(B) — Q(B)| <

supycq |[P(A) — Q(A)| = drv (P, Q). O

3.2. Integrating Analysis in Applications

The correctness of randomized algorithms typically relies on access to exact samples from a target
distribution P. However, in practice, algorithms must use samplers that draw from an approximate
distribution @), potentially compromising their theoretical guarantees. We propose a systematic frame-
work for incorporating these approximations while maintaining rigorous error bounds through minimal
modifications to existing algorithms and their analyses.

Algorithm Modification. Let A be a randomized algorithm that requires samples from distribution
P. We modify A to explicitly track and bound the accumulated error from using an approximate
sampler as follows: (1) Introduce an error budget parameter d; representing the maximum allowable
error due to sampling approximations. (2) Initialize an error accumulator ¢’ <— 0. (3) For each sampler
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invocation, update the accumulated error: ¢’ <— ¢’ + dpy (P, Q) where dry (P, Q) is the pre-computed
statistical distance bound. (4) If &’ > §1, abort execution.

Analysis Modification. Let d2 denote the original error probability of algorithm .4 assuming access
to exact samples from P. After incorporating the sampling approximation error ds, the total error
probability ¢ is bounded by: § < d; + J2. This framework maintains theoretical guarantees while
transparently accounting for sampling approximations. The modifications are minimal and the analysis
remains straightforward.

An alternative approach would be to directly analyze algorithm .4 with respect to the approximate
distribution ). However, this presents several challenges. The target distribution P often possesses
mathematically convenient properties that facilitate analysis, while the implementation-specific ()
may lack such properties, making direct analysis intractable. Furthermore, updates to the underlying
sampler implementation would inevitably necessitate re-analysis of every dependent algorithm.

4. Our Current Results

The results presented in this section are based on the standard Binomial sampling algorithm [6], which
is widely-used in practice. Let b, , denote the ideal Binomial distribution with parameters n and p,
defined as:

n
bulh) = ()= ke 0

We analyze the statistical distance between the distribution generated by the standard Binomial
sampler and the ideal Binomial distribution. The key result is a bound on this statistical distance, which
quantifies the error introduced by the sampling process.
Theorem 4.1. Let the precision of the context be > max(2[logyn], [—logy p]), and let bEfgSamp
denote the distribution from which BinSamp samples are drawn. The statistical distance between bE:gsamp
and by, ;, is given by:

drv (bn.p, begsamp) < (1110€ + 3cp + ¢ + ac)ne + 15¢ + o(e)

where c, o are constants depending on the sampler, ( denotes the error bound due to the factorial approxi-
mation, € = 2% represents the unit round-off error, and o(¢€) denotes higher order terms.

4.1. A Case Study: DNF Counting

This case study demonstrates how our proposed bounds on the statistical distance between the sam-
pler and the Binomial distribution can be easily integrated into practical tools. To demonstrate the
applicability of the bounds, we utilize them in conjunction with an off-the-shelf Binomial sampler
to implement the DNF Counting algorithm APSEst [19]. This case study illustrates how our results
allow users to maintain the theoretical guarantees of APSEst. Computing bounds on dry between
the Binomial distribution and the sampler, users can adjust the confidence parameter § in APSEst to
account for errors from the underlying Binomial sampler, thereby ensuring correctness with theoretical
guarantee.

Algorithm Modification

We demonstrate how the APSEst algorithm can be easily modified to incorporate our statistical distance
bounds. We denote this modified version as APSEst2 (Algorithm 1) with the modifications highlighted.
The primary difference between APSEst and APSEst2 lies in handling the confidence parameter ¢ to
account for the errors due to the underlying binomial sampler. Specifically, APSEst2 introduces an
additional parameter x € [0, 1] to adjust the error budget for the sampler. In particular, ¢ is allocated as
the error budget for the sampler, while (1 — k)¢ is reserved for the algorithm itself. If the accumulated
error due to the sampler exceeds its budget, APSEst2 halts immediately and returns Fail. The user can
restart the algorithm with a larger value of k to accommodate an increased error budget.
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Algorithm 1: APSEst2(p, ¢, 6, k)
(The modifications from APSEst — APSEst2 are highlighted)

1 01 < KO
252(—(1—/%)5

3 Initialize T' < (bg(‘l/‘szw)

4 Initialize p < 1, X < ()

50 0

6 fori=1tomdo

7 for allo € X do

8 if o F ¢; then

‘ remove o from X

10 N; < BinSamp(|sol(p;)|, p)
11 0 — & + 5|Sol(%)|7p

12 if &' > 61 then

13 ‘ return Fail

14 Add N; distinct random solutions of ¢; to X

15 while | X| > T do

16 p < Dp/2

17 Throw away each element of X with probability %

9

18 Output %

Analysis Modification

We now illustrate how the analysis of APSEst can be easily adapted to APSEst2. Let |sol(y)| denote
the number of solutions of the DNF formula ¢. We are concerned with the event % ¢ (1£¢)|sol(p)|.
which we will refer to as Bap. Note that §; = k0 is the error budget for the sampler, and §; = (1 —k)J is
the error budget for the algorithm. By the correctness guarantee of APSEst, Pry,  (Bap) < d2. During

the execution of APSEst2, if the algorithm invokes the sampler ¢ times with parameters (n;, p;), then
from Lemma 1, we have

t
Pr (Bap) < Pr(Bap) + ZdTV i i meSamp)

bBinSamp bn,p . nisPi
n,p =1

Suppose during the execution, the computed dry bounds using Theorem 1 are given by

Omypys Onypgs -2 0h, . andlet & = St 81, ».- Therefore, if APSEst2 does not halt and returns Fail,
then t
JPr(Bap) < Pr(Bap) + > " dry (b, p,, bE"S2P) < by + 8’ < Gy + 61 < 0.
bnlyrlp am n,p Z:1

Thus, by the correctness of APSEst, the count returned by APSEst2 is within the ¢ error bound. If
APSEst?2 halts and returns Fail, this implies that the error budget has been exceeded.

5. Proposal for Future Work

In this work, we first identified the sources of deviation in the practical implementations of standard
binomial samplers. We observed that exact sampling from distributions is infeasible in practice due
to high runtime overhead; thus, implementations inevitably introduce deviations. Accordingly, we
proposed the usage of statistical distance as the quality metric owing to its ability to allow end users to
obtain sound bounds on the bad events. We also presented a case study demonstrating the minimal
effort required by system designers to incorporate the reported deviation bounds into their systems.
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While our current work establishes a foundational framework, there are several limitations and
opportunities for future enhancement. The current analysis relies on several simplifying assump-
tions—for instance, uniformity in the error distribution—which may not hold in more general settings.
Additionally, the reported bounds are not yet tight and can be refined for greater accuracy, making
this an important avenue for further research. Moreover, the principles of quality measurement can be
extended to samplers for other distributions. Developing a general framework for error reporting across
various types of samplers would be a valuable contribution to the field. Finally, proposing efficient
sampling schemes that can achieve the desired statistical distance with minimal overhead is an open
problem that warrants further investigation.
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