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Abstract
Randomized algorithms depend on accurate sampling from probability distributions, as their correctness and

performance hinge on the quality of the generated samples. However, even for common distributions like

Binomial distribution, exact sampling is computationally challenging, leading standard library implementations

to rely on heuristics. These heuristics, while efficient, suffer from approximation and system representation

errors, causing deviations from the ideal distribution. Although seemingly minor, such deviations can accumulate

in downstream applications requiring large-scale sampling, potentially undermining algorithmic guarantees. We

propose statistical distance as a robust metric for analyzing the quality of samplers, quantifying deviations from

the ideal distribution. We derive rigorous bounds on the statistical distance for standard implementations of

samplers and demonstrate the practical utility of our framework and propose an interface extension that allows

users to control and monitor statistical distance via explicit input/output parameters.
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1. Motivation

Randomization stands as a cornerstone of computer science, permeating algorithm design from the

field’s earliest days to its cutting-edge developments. From Quicksort [1], one of the most widely-used

algorithms, to modern cryptographic protocols, randomization has proven indispensable in achieving

efficiency and functionality that deterministic approaches struggle to match. While the fundamental

question of whether randomization offers additional computational power over determinism remains

open, randomized algorithms have established themselves as the preferred choice in numerous domains,

including data structures [2], hash functions [3], and probabilistic data structures [4].

At the heart of every randomized algorithm lies its ability to sample from probability distributions.

The algorithm’s correctness and performance guarantees intrinsically depend on the quality of these

samples. For instance, a hash table’s performance relies on the uniformity of its hash function’s output

distribution, while a Monte Carlo algorithm’s accuracy depends on the fidelity of its random sampling

process. This fundamental reliance on sampling has led to the development of sophisticated sampling

algorithms implemented as standard library functions.

While specialized techniques exist for generating high-quality samples from certain distributions [5],

these approaches typically circumvent direct probability mass computation through transformations of

basic random processes. However, such techniques remain constrained to specific distributions exhibit-

ing particular mathematical properties. In practice, standard library implementations predominantly

rely on transformed rejection sampling [6, 7, 8], which necessitates explicit probability mass computa-

tion. These computations entail multiple arithmetic operations and specialized function evaluations,

including factorial and logarithm computations, thereby introducing approximation errors at each step.

The accumulation of these errors can significantly impact the statistical properties of the generated

samples, potentially compromising the theoretical guarantees of algorithms that depend on them.

In this work, we focus on analyzing standard library implementations of Binomial samplers, which

are largely based on transformed rejection sampling techniques [6, 7, 8]. These implementations require
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computation of Binomial distribution probability mass, denoted by 𝑏𝑛,𝑝(𝑘), necessitating approximations

of factorial terms [9], logarithmic computations [10], and various arithmetic operations. While such

approximations enable efficient sampling, they introduce systematic deviations from the ideal Binomial

distribution that current implementations neither quantify nor report to users. These deviations can

accumulate and potentially trigger cascading failures in downstream applications [11, 12]. Despite the

widespread adoption of these libraries, there exists no documentation providing precise analysis of

accumulated errors.

The primary research problem we address is: how to develop a rigorous methodology to analyze the

errors in existing samplers to provide meaningful measurement of their impact on downstream applications?

This question is particularly pertinent given the increasing reliance on randomized algorithms in critical

applications, where understanding and quantifying sampling errors becomes crucial for ensuring system

reliability and correctness.

Our first contribution is a rigorous framework for analyzing the quality of existing samplers through

the lens of statistical distance. We advocate statistical distance as a theoretically sound metric for

quantifying sampler quality, owing to its fundamental property of indistinguishability. Let 𝑃 and 𝑄
be two probability distributions with statistical distance at most 𝜂, i.e., 𝑑𝑇𝑉 (𝑃,𝑄) ≤ 𝜂. Then, for

any statistical test 𝑇 (even computationally unbounded), the difference in its acceptance probabilities

when run on samples from 𝑃 versus samples from 𝑄 cannot exceed 𝜂. This fundamental property has

profound implications for sampler quality analysis: if a sampler’s output distribution has a statistical

distance 𝜂 from the ideal distribution, then the downstream application cannot experience an error

greater than 𝜂, regardless of its computational sophistication. Building on this theoretical foundation,

we present a detailed analysis of state-of-the-art implementations, deriving concrete bounds on their

deviation from the ideal distributions through careful decomposition of numerical approximation errors.

We propose an extension to sampler interfaces that exposes statistical distance as an input/output

parameter, enabling users to control the sampling accuracy.

We believe our work highlights a fundamental challenge in randomized computation: the need for

rigorous analysis of sampler implementations to establish precise error bounds and enhance trust in

randomized algorithms. Our approach of integrating error analysis into algorithmic frameworks opens

new avenues for developing robust randomized algorithms that maintain both theoretical guarantees

and practical efficiency. This work will likely motivate the broader community to examine and enhance

the reliability of randomized computation implementations, particularly in the context of standard

library functions that serve as building blocks for numerous algorithms.

2. Related Work

Considerable effort has been devoted to designing samplers that generate samples with arbitrary

precision and provably no deviation from the original distribution, a concept referred to as exact

sampling. This line of work dates back to Von Neumann and has been further developed in studies

such as Karney [5], which propose arbitrarily precise algorithms for sampling from distributions like

the normal and exponential distributions. Similar significant attention has been given to designing

exact Binomial samplers [13, 14] as well. But these algorithms are often impractical for large-scale

applications due to their high computational complexity, which is typically linear in the size of the

sample space. Constant time sampling algorithms for binomial distributions are categorized under

the framework of transformed rejection sampling [15]. These algorithms achieve a sampling time

complexity of 𝑂(1), but at the cost of approximations. The framework needs to evaluate the probability

mass function, which is computationally expensive unless approximated.

The impact of numerical accuracy on computational programs has been extensively studied. Signifi-

cant research has been conducted to analyze errors in arithmetic operations [16]. Recently, Blanchard

et al. [17], Bonnot et al. [18] have explored how these errors affect the performance of functions such

as log-sum-exp and softmax. These studies underscore the critical need to account for the inherent

numerical errors when designing algorithms and assessing their performance.
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3. Proposal for Extending Sampler Interfaces

Since exact sampling from distributions such as Binomial distribution is computationally expensive

for most parameters of interest, the standard libraries rely on approximations to achieve practical

efficiency. While these approximations significantly reduce time complexity, they introduce deviations

from the actual distribution, effectively causing the samples to come from a distribution different from

the intended one. Therefore, we need to focus on a fundamental question: how do we make systems that

rely on samplers trustworthy?

Simply ignoring these deviations is not advisable, as they can have cascading effects that compromise

the correctness of the entire system. Often, a user designs a randomized algorithm𝒜 to solve a particular

problem, with an upper bound 𝛿 on its failure probability. If 𝒜 relies on a standard Binomial sampler

without knowledge of the sampler’s quality, the program may experience a higher failure rate due to

approximations in the underlying samplers.

3.1. Statistical Distance as Quality Metric

Our proposal immediately raises the question: how should one measure the quality of the sampler?

To this end, we first focus on the fact that the objective of the measurement of quality is to allow the

end user to quantify the impact of the usage of the sampler. There are several metrics, such as KL-

divergence, statistical distance, and Hellinger distance, that have been proposed in the literature focused

on probability distributions that seek to quantify the distance between two probability distributions. In

this regard, a natural question is to ask what distance metric we should choose. To this end, we propose

the usage of statistical distance (Definition 3.1) as the metric to report the quality.

Definition 3.1 (Statistical Distance). Suppose two distributions 𝑃,𝑄 are defined over the set Ω. Then,

𝑑𝑇𝑉 (𝑃,𝑄) =
1

2

∑︁
𝑥∈Ω
|𝑃 (𝑥)−𝑄(𝑥)| = sup

𝐴⊆Ω
|𝑃 (𝐴)−𝑄(𝐴)|.

Our proposal for statistical distance stems from its ability to allow end users to derive the worst-case

bounds on the behavior of the system in a black-box manner.

Lemma 3.1. Let 𝒜 be a randomized algorithm that uses randomness from a source distribution 𝑃 , and let

Bad be an event in the output of 𝒜. If 𝑃 is replaced by another distribution 𝑄, then the probability of the

event Bad is bounded by the statistical distance between:⃒⃒⃒⃒
Pr
𝑟∼𝑃

(𝒜(𝑥; 𝑟) ∈ Bad)− Pr
𝑟∼𝑄

(𝒜(𝑥; 𝑟) ∈ Bad)

⃒⃒⃒⃒
≤ 𝑑𝑇𝑉 (𝑃,𝑄).

Proof. Let 𝐵 ⊆ Ω be the set of random strings (or, numbers) that trigger the event Bad. Then we can

equate the above term with |𝑃 (𝐵)−𝑄(𝐵)|. Therefore using Definition 3.1, we have |𝑃 (𝐵)−𝑄(𝐵)| ≤
sup𝐴⊆Ω |𝑃 (𝐴)−𝑄(𝐴)| = 𝑑𝑇𝑉 (𝑃,𝑄).

3.2. Integrating Analysis in Applications

The correctness of randomized algorithms typically relies on access to exact samples from a target

distribution 𝑃 . However, in practice, algorithms must use samplers that draw from an approximate

distribution 𝑄, potentially compromising their theoretical guarantees. We propose a systematic frame-

work for incorporating these approximations while maintaining rigorous error bounds through minimal

modifications to existing algorithms and their analyses.

Algorithm Modification. Let 𝒜 be a randomized algorithm that requires samples from distribution

𝑃 . We modify 𝒜 to explicitly track and bound the accumulated error from using an approximate

sampler as follows: (1) Introduce an error budget parameter 𝛿1 representing the maximum allowable

error due to sampling approximations. (2) Initialize an error accumulator 𝛿′ ← 0. (3) For each sampler
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invocation, update the accumulated error: 𝛿′ ← 𝛿′ + 𝑑𝑇𝑉 (𝑃,𝑄) where 𝑑𝑇𝑉 (𝑃,𝑄) is the pre-computed

statistical distance bound. (4) If 𝛿′ > 𝛿1, abort execution.

Analysis Modification. Let 𝛿2 denote the original error probability of algorithm 𝒜 assuming access

to exact samples from 𝑃 . After incorporating the sampling approximation error 𝛿2, the total error

probability 𝛿 is bounded by: 𝛿 ≤ 𝛿1 + 𝛿2. This framework maintains theoretical guarantees while

transparently accounting for sampling approximations. The modifications are minimal and the analysis

remains straightforward.

An alternative approach would be to directly analyze algorithm 𝒜 with respect to the approximate

distribution 𝑄. However, this presents several challenges. The target distribution 𝑃 often possesses

mathematically convenient properties that facilitate analysis, while the implementation-specific 𝑄
may lack such properties, making direct analysis intractable. Furthermore, updates to the underlying

sampler implementation would inevitably necessitate re-analysis of every dependent algorithm.

4. Our Current Results

The results presented in this section are based on the standard Binomial sampling algorithm [6], which

is widely-used in practice. Let 𝑏𝑛,𝑝 denote the ideal Binomial distribution with parameters 𝑛 and 𝑝,

defined as:

𝑏𝑛,𝑝(𝑘) =

(︂
𝑛

𝑘

)︂
𝑝𝑘(1− 𝑝)𝑛−𝑘, 𝑘 ∈ [0, 𝑛].

We analyze the statistical distance between the distribution generated by the standard Binomial

sampler and the ideal Binomial distribution. The key result is a bound on this statistical distance, which

quantifies the error introduced by the sampling process.

Theorem 4.1. Let the precision of the context be 𝛽 ≥ max(2⌈log2 𝑛⌉, ⌈− log2 𝑝⌉), and let 𝑏BinSamp
𝑛,𝑝

denote the distribution from which BinSamp samples are drawn. The statistical distance between 𝑏BinSamp
𝑛,𝑝

and 𝑏𝑛,𝑝 is given by:

𝑑𝑇𝑉 (𝑏𝑛,𝑝, 𝑏
BinSamp
𝑛,𝑝 ) ≤ (1110𝜖+ 3𝑐𝜌+ 𝑐+ 𝛼𝑐)𝑛𝜖+ 15𝜁 + 𝑜(𝜖)

where 𝑐, 𝛼 are constants depending on the sampler, 𝜁 denotes the error bound due to the factorial approxi-

mation, 𝜖 = 1
2𝛽

represents the unit round-off error, and 𝑜(𝜖) denotes higher order terms.

4.1. A Case Study: DNF Counting

This case study demonstrates how our proposed bounds on the statistical distance between the sam-

pler and the Binomial distribution can be easily integrated into practical tools. To demonstrate the

applicability of the bounds, we utilize them in conjunction with an off-the-shelf Binomial sampler

to implement the DNF Counting algorithm APSEst [19]. This case study illustrates how our results

allow users to maintain the theoretical guarantees of APSEst. Computing bounds on 𝑑𝑇𝑉 between

the Binomial distribution and the sampler, users can adjust the confidence parameter 𝛿 in APSEst to

account for errors from the underlying Binomial sampler, thereby ensuring correctness with theoretical

guarantee.

Algorithm Modification

We demonstrate how the APSEst algorithm can be easily modified to incorporate our statistical distance

bounds. We denote this modified version as APSEst2 (Algorithm 1) with the modifications highlighted.

The primary difference between APSEst and APSEst2 lies in handling the confidence parameter 𝛿 to

account for the errors due to the underlying binomial sampler. Specifically, APSEst2 introduces an

additional parameter 𝜅 ∈ [0, 1] to adjust the error budget for the sampler. In particular, 𝜅𝛿 is allocated as

the error budget for the sampler, while (1− 𝜅)𝛿 is reserved for the algorithm itself. If the accumulated

error due to the sampler exceeds its budget, APSEst2 halts immediately and returns Fail. The user can

restart the algorithm with a larger value of 𝜅 to accommodate an increased error budget.
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Algorithm 1: APSEst2(𝜙, 𝜀, 𝛿, 𝜅)
(The modifications from APSEst→ APSEst2 are highlighted)

1 𝛿1 ← 𝜅𝛿

2 𝛿2 ← (1− 𝜅)𝛿

3 Initialize 𝑇 ←
(︁
log(4/𝛿2)+log𝑚

𝜀2

)︁
4 Initialize 𝑝← 1, 𝑋 ← ∅
5 𝛿′ ← 0
6 for 𝑖 = 1 to 𝑚 do
7 for all 𝜎 ∈ 𝑋 do
8 if 𝜎 ⊨ 𝜙𝑖 then
9 remove 𝜎 from 𝑋

10 𝑁𝑖 ← BinSamp(|sol(𝜙𝑖)|, 𝑝)
11 𝛿′ ← 𝛿′ + 𝛿𝑖|sol(𝜙𝑖)|,𝑝

12 if 𝛿′ > 𝛿1 then
13 return Fail
14 Add 𝑁𝑖 distinct random solutions of 𝜙𝑖 to 𝑋
15 while |𝑋| > 𝑇 do
16 𝑝← 𝑝/2
17 Throw away each element of 𝑋 with probability

1
2

18 Output
|𝑋|
𝑝

Analysis Modification

We now illustrate how the analysis of APSEst can be easily adapted to APSEst2. Let |sol(𝜙)| denote

the number of solutions of the DNF formula 𝜙. We are concerned with the event
|𝑋|
𝑝 /∈ (1± 𝜀)|sol(𝜙)|,

which we will refer to as Bad. Note that 𝛿1 = 𝜅𝛿 is the error budget for the sampler, and 𝛿2 = (1−𝜅)𝛿 is

the error budget for the algorithm. By the correctness guarantee of APSEst, Pr𝑏𝑛,𝑝(Bad) ≤ 𝛿2. During

the execution of APSEst2, if the algorithm invokes the sampler 𝑡 times with parameters (𝑛𝑖, 𝑝𝑖), then

from Lemma 1, we have

Pr
𝑏BinSamp
𝑛,𝑝

(Bad) ≤ Pr
𝑏𝑛,𝑝

(Bad) +

𝑡∑︁
𝑖=1

𝑑𝑇𝑉 (𝑏𝑛𝑖,𝑝𝑖 , 𝑏
BinSamp
𝑛𝑖,𝑝𝑖 ).

Suppose during the execution, the computed 𝑑𝑇𝑉 bounds using Theorem 1 are given by

𝛿1𝑛1,𝑝1 , 𝛿
2
𝑛2,𝑝2 , . . . , 𝛿

𝑡
𝑛𝑡,𝑝𝑡 , and let 𝛿′ =

∑︀𝑡
𝑖=1 𝛿

𝑖
𝑛𝑖,𝑝𝑖 . Therefore, if APSEst2 does not halt and returns Fail,

then

Pr
𝑏BinSamp
𝑛,𝑝

(Bad) ≤ Pr
𝑏𝑛,𝑝

(Bad) +
𝑡∑︁

𝑖=1

𝑑𝑇𝑉 (𝑏𝑛𝑖,𝑝𝑖 , 𝑏
BinSamp
𝑛𝑖,𝑝𝑖 ) ≤ 𝛿2 + 𝛿′ ≤ 𝛿2 + 𝛿1 ≤ 𝛿.

Thus, by the correctness of APSEst, the count returned by APSEst2 is within the 𝜀 error bound. If

APSEst2 halts and returns Fail, this implies that the error budget has been exceeded.

5. Proposal for Future Work

In this work, we first identified the sources of deviation in the practical implementations of standard

binomial samplers. We observed that exact sampling from distributions is infeasible in practice due

to high runtime overhead; thus, implementations inevitably introduce deviations. Accordingly, we

proposed the usage of statistical distance as the quality metric owing to its ability to allow end users to

obtain sound bounds on the bad events. We also presented a case study demonstrating the minimal

effort required by system designers to incorporate the reported deviation bounds into their systems.
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While our current work establishes a foundational framework, there are several limitations and

opportunities for future enhancement. The current analysis relies on several simplifying assump-

tions—for instance, uniformity in the error distribution—which may not hold in more general settings.

Additionally, the reported bounds are not yet tight and can be refined for greater accuracy, making

this an important avenue for further research. Moreover, the principles of quality measurement can be

extended to samplers for other distributions. Developing a general framework for error reporting across

various types of samplers would be a valuable contribution to the field. Finally, proposing efficient

sampling schemes that can achieve the desired statistical distance with minimal overhead is an open

problem that warrants further investigation.

Declaration on Generative AI
During the preparation of this work, the author used ChatGPT to: Grammar and spelling check,

Paraphrase and reword. After using this service, the author reviewed and edited the content as needed

and takes full responsibility for the publication’s content.

References

[1] C. A. R. Hoare, Algorithm 64: quicksort, Communications of the ACM 4 (1961) 321.

[2] W. Pugh, Concurrent maintenance of skip lists, Citeseer, 1990.

[3] J. L. Carter, M. N. Wegman, Universal classes of hash functions, in: STOC, 1977.

[4] B. H. Bloom, Space/time trade-offs in hash coding with allowable errors, Communications of the

ACM 13 (1970) 422–426.

[5] C. F. Karney, Sampling exactly from the normal distribution, ACM Transactions on Mathematical

Software (TOMS) 42 (2016) 1–14.

[6] W. Hörmann, The generation of binomial random samples, Journal of statistical computation and

simulation 46 (1993) 101–110.

[7] W. Hörmann, The transformed rejection method for generating poisson random variables, Insur-

ance: Mathematics and Economics 12 (1993) 39–45.

[8] W. Hörmann, J. Leydold, G. Derflinger, W. Hörmann, J. Leydold, G. Derflinger, Transformed

density rejection (tdr), Automatic Nonuniform Random Variate Generation (2004) 55–111.

[9] C. Lanczos, A precision approximation of the gamma function, Journal of the Society for Industrial

and Applied Mathematics, Series B: Numerical Analysis 1 (1964) 86–96.

[10] J. M. Borwein, P. B. Borwein, The arithmetic-geometric mean and fast computation of elementary

functions, SIAM review 26 (1984) 351–366.

[11] K. Binder, D. W. Heermann, K. Binder, Monte Carlo simulation in statistical physics, volume 8,

Springer, 1992.

[12] N. T. Thomopoulos, Essentials of Monte Carlo simulation: Statistical methods for building simula-

tion models, Springer Science & Business Media, 2012.

[13] L. Devroye, Generating the maximum of independent identically distributed random variables,

Computers & Mathematics with Applications 6 (1980) 305–315.

[14] M. Farach-Colton, M.-T. Tsai, Exact sublinear binomial sampling, Algorithmica 73 (2015) 637–651.

[15] L. Devroye, Nonuniform random sample generation, Handbooks in operations research and

management science 13 (2006) 83–121.

[16] R. Brent, C. Percival, P. Zimmermann, Error bounds on complex floating-point multiplication,

Mathematics of Computation 76 (2007) 1469–1481.

[17] P. Blanchard, D. J. Higham, N. J. Higham, Accurately computing the log-sum-exp and softmax

functions, IMA Journal of Numerical Analysis 41 (2021) 2311–2330.

[18] P. Bonnot, B. Boyer, F. Faissole, C. Marché, R. Rieu-Helft, Formally verified rounding errors of the

logarithm sum exponential function, in: FMCAD, TU Wien Academic Press, 2024, pp. 251–260.

[19] K. S. Meel, N. Vinodchandran, S. Chakraborty, Estimating the size of union of sets in streaming

models, in: Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of

Database Systems, 2021, pp. 126–137.

44


	1 Motivation
	2 Related Work
	3 Proposal for Extending Sampler Interfaces
	3.1 Statistical Distance as Quality Metric
	3.2 Integrating Analysis in Applications

	4 Our Current Results
	4.1 A Case Study: DNF Counting

	5 Proposal for Future Work

