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Abstract
Large Language Models (LLMs) are powerful but prone to hallucinations and factual inconsistencies, especially in
knowledge-intensive tasks. In this work, we explore the integration of structured ontological knowledge into LLM
prompts as a strategy to enhance factual accuracy and reliability. Using the Pizza Ontology as a showcase, we probe
how different levels of domain grounding—ranging from base prompts to ontology-informed prompts—affect the
factual accuracy of LLM responses. We tested different instruction-tuned last-generation LLMs from the Qwen
and Llama families, ranging from 0.5 to 72 billion parameters, on a dataset of approximately 51 questions requiring
various types of reasoning. Our results show that injecting ontological axioms into prompts improves response
accuracy, demonstrating that formal domain knowledge can significantly reduce hallucinations. This proof-of-
concept study highlights the potential for combining symbolic approaches with LLMs and lays the groundwork for
more reliable, explainable AI systems. Our codebase is available at https://github.com/HamedBabaei/OntoTruth.
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1. Introduction

It has often been claimed that knowledge graphs (KGs) such as Wikidata can serve as a kind of “ground
truth” for AI systems, especially as large language models (LLMs) have become increasingly prone
to generating hallucinated content [1, 2, 3]. While LLMs excel at generating fluent and coherent text,
their outputs often suffer from factual inconsistencies and fabricated details. These issues are not mere
imperfections; they pose serious risks to trust and reliability in high-stakes domains such as conservation
planning, healthcare, and education, and more broadly hinder the use of LLMs for knowledge-intensive
tasks.

To address these challenges, there is a growing interest in retrieval-augmented generation (RAG),
where outputs from LLMs are guided or constrained by retrieved knowledge from external sources.
Among such sources, ontologies and structured knowledge graphs offer a compelling advantage: they
encode domain knowledge in a logic-based, verifiable manner. This makes them not only useful for
guiding generation, but also for retrieving precise, context-aware information that can anchor LLM
responses.
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However, realizing this vision presents several key challenges. One central challenge is efficient
retrieval and injection: how do we select and embed relevant ontology fragments into the LLM’s context?
Addressing this requires controlled experimentation to disentangle the effects of ontological grounding
from the LLM’s own latent knowledge. To explore the usefulness and feasibility of providing ontological
knowledge through LLM prompts, our research has been guided by the following research questions:

• RQ1. To what extent can domain-specific ontological knowledge reduce hallucinations and
factual errors in LLM outputs?

• RQ2. What are the practical challenges and limitations when providing ontological sources as
part of an LLM prompt?

Given a question 𝑄 and a domain ontology 𝑂𝑛𝑡𝑜, our objective is to generate a response 𝑅 that
incorporates domain-specific knowledge retrieved from 𝑂𝑛𝑡𝑜, where 𝑂𝑛𝑡𝑜 includes its asserted axioms
and may additionally be extended with reasoner-inferred knowledge. By doing so, we aim to ground
LLM outputs in structured knowledge, thereby reducing hallucinations and improving transparency
- both of which are critical for building more reliable AI systems. While preliminary and limited in
scope, this study serves as an initial step toward future neuro-symbolic systems that combine the
generalization ability of LLMs with the rigor of ontological reasoning. Specifically, this paper makes
the following contributions:

• We introduce a proof-of-concept framework that grounds LLM outputs in structured domain
ontologies via prompt injection.

• We design controlled experiments using the well-known Pizza Ontology (PO) to systematically
evaluate how ontology-informed prompting affects hallucination reduction and factual consis-
tency.

• We present a quantitative comparison of LLM responses across multiple categories of reasoning
and ontology-materialized settings.

• We analyze both the benefits and the limitations of ontology-based grounding, offering a roadmap
for future neuro-symbolic integration.

Our approach aims to improve the reliability, factual accuracy, and contextual relevance of LLM
outputs by incorporating structured ontological knowledge across the input, reasoning, and output
stages. In this setup, the ontology is treated as the primary source of truth, while the LLM’s internal
knowledge may be incomplete or inaccurate. Since we use a simple, common-sense ontology designed
for instructional purposes, this assumption may not always hold — there can be cases where the LLM
knows more than the ontology. However, in the case of complex ontologies that represent specialized
domains, which are the main focus of our approach, we expect the ontology to offer a more complete
and authoritative knowledge base.

The rest of the paper is organized as follows: Section 2 discusses related work, Section 3 presents our
conceptual architecture for automatic LLM response generation grounded in ontological knowledge,
Section 4 describes our experimental setup and results, and Section 5 concludes the paper. The work
reported in this paper is based on a joint student research project at ISWS2025, the International
Semantic Web Research Summer School.1

2. Related Work

Recently, there has been growing interest in combining ontologies with LLMs to join the strengths of
both approaches. Several studies have explored neuro-symbolic integration frameworks that translate
LLM-generated text into logical forms, which are then checked for consistency against ontological
axioms. For instance, [4] proposes a pipeline using OWL ontologies and symbolic reasoners to detect
inconsistencies in LLM-generated statements, providing iterative feedback to reduce hallucinations

1https://2025.semanticwebschool.org/
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and enhance semantic coherence. Similarly, [5] improves question-answering systems by validating
and repairing LLM-generated SPARQL queries using ontological constraints, resulting in significant
accuracy gains in enterprise database contexts. Finally, [6] envisions a reasoning-based loop in which
eventual inconsistencies of the LLM output with the ontology are found, verbalized, and used to attempt
to repair the LLM output.

Beyond strict logical consistency, other studies investigate softening the rigidity of ontological
reasoning by incorporating the flexibility of LLMs. [7] introduces a neurosymbolic approach where LLMs
modulate rule activations in knowledge graphs, balancing robustness with adaptability in reasoning.
Moreover, ontology-driven prompt tuning has been proposed to incorporate domain knowledge directly
into LLM inputs. For example, [8] demonstrates improved task and motion planning in robotics
by enriching prompts with ontology-based context and environment state descriptions, resulting in
semantically valid and context-aware plans.

In domains involving viewpoint analysis, hybrid human-LLM frameworks use LLMs to identify and
classify perspectives within news media, as shown by [9]. This approach leverages LLMs’ linguistic ca-
pabilities guided by ontological categories to support scalable, automated content analysis. Investigating
the domain adaptability of LLMs, [10] conduct controlled experiments revealing that off-the-shelf LLMs
mainly rely on learned lexical senses rather than true semantic reasoning when extracting structured
knowledge. However, fine-tuning LLMs on domain-specific data can improve their performance in
ontology learning tasks involving arbitrary domain terms.

Such a fine-tuning may itself be driven by an ontology: for instance, [11] improves the performance
of LLMs of evaluating sentence similarity by “infusing” knowledge from a biomedical ontology. This
is done through contrastive learning over a dataset of couples of similar and dissimilar definitions of
relevant medical concepts generated from the ontology with the help of another LLM. The work in [12]
also employs a pipeline that uses an ontology and enhances LLM prediction of protein interactions. In
this case, the ontology is utilized in two ways: the topology of the network of entities in the ontology
serves as the base for a GNN, and the ontology is used to build a corpus for fine-tuning an LLM; then
both the LLM and the GNN concur to the interaction prediction. Similarly, [13] also employs ontologies
to produce a domain-specific corpus to be used for fine-tuning LLMs. However, in this case, the corpus
is obtained by leveraging reasoning algorithms.

Instead of relying on fine tuning and inductive bias, which may be costly and difficult to implement,
[14] relies on ontology-driven prompt-engineering to augment LLMs with ontological knowledge: an
ontology detailing how system engineering tasks are structured is used to enhance chain-of-thought and
few-shot learning strategies, improving a conversational agent in assisting system engineers with data
management, requirement refining and specification clarification. The works [15] and [16] also choose
to employ prompt engineering to supply ontological knowledge to an LLM, this time in the context of
translating natural language questions in SPARQL. In particular, in addition to the baseline of providing
the natural language question without additional information, the first work appends to the prompt
the relevant classes and relations to be used, while the second work makes use of three additional
prompt extensions: (i) a list of all the classes and properties of the ontology to be queried is supplied,
(ii) all paths of certain length that are possible in the ontology are supplied, possibly (iii) filtered to
maintain only relevant classes and properties. Both papers report a strong increase in accuracy with
these prompting strategies.

While these works collectively illustrate the promise of integrating ontologies with LLMs for enhanced
reasoning, accuracy, and contextual understanding, none are focused on studying the impact of supplying
ontologies as structured inputs directly during the generation process itself to mitigate hallucinations.
Our work fills this gap by empirically demonstrating that ontology-informed prompts improve factual
reliability and constrain the output space of LLMs in knowledge-intensive applications.



Figure 1: Overview of the proposed approach for ontology-informed LLM response generation.

Figure 2: A representation of the main classes and properties of the Pizza Ontology, obtained using the Graffoo

library for yEd (see https://essepuntato.it/graffoo/)

3. Conceptual Architecture

Figure 1 depicts a conceptual overview of the proposed method for automatic or semi-automatic LLM
response generation while taking factual information from ontological resources into account. In the
introduced framework, a question 𝑄 is processed alongside an ontological resource 𝑂𝑛𝑡𝑜 to construct
a knowledge-enriched input. This prompt is then fed into the LLM, which generates a response 𝑅. The
output may subsequently be evaluated for its relevance and correctness against gold-standard responses.
In the following sections, we provide details on the ontological resources used, the prompting strategies
applied, and key experimental considerations.

3.1. Ontological Resources

For our investigation, we use the popular Pizza Ontology (PO) as our main source of structured domain
knowledge. Originally introduced to illustrate the capabilities of OWL-DL [17], PO has become a
canonical example in the Semantic Web community. It is openly available (see https://protege.stanford.
edu/ontologies/pizza/pizza.owl) and demonstrates a rich variety of OWL constructs, including domain
and range restrictions, class hierarchies, qualified existential and universal quantifiers, enumerations,
disjointness, cardinality constraints, and transitive properties.

PO is relatively small and well-structured, consisting of 100 classes, 8 object properties, and 800
axioms in total, of which 322 are logically more advanced. Its class hierarchy, starting from owl:Thing,
branches into two top-level disjoint classes: DomainThing and ValuePartition. The first branch is
devoted to genuine domain elements such as Country, Pizza, PizzaTopping, and PizzBase, along
with various subclasses of these, both primitives (e.g. PizzBase, Margherita, etc.) and defined (e.g.
CheesyPizza). The second branch is used to establish a list of property values, specifically the range
of the hasSpiciness object property, which is partitioned into three classes. In addition, all primitive
sister classes are disjoint. The ontology also emphasizes relationships using various object properties.
For instance, hasIngredient, which is a transitive property subsuming hasBase and hasTopping
and expresses a generic relationship between types of food.

We chose the PO for three main reasons. First, it is well-known and widely cited, ensuring repro-
ducibility and familiarity within the community. Second, it models a domain that is both formalized
and intuitively understood, overlapping with common-sense knowledge that LLMs are likely to have
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Prompt (.)

You are a specialized model for answering questions using ontology-based knowledge.

Refer to the following Pizza Ontology when responding to questions:

{ontology}

Provide a clear and concise answer to the following question.

Focus strictly on pizza-related topics.

Avoid extra explanation or unrelated details.

Question: {question}
Answer:

Figure 3: Illustration of the Prompt(.) template used for controlled prompt engineering. The {question}
placeholder represents the competency question (Q). Gray text corresponds to the base prompt Prompt(Q),

red text is added in Prompt(Q+Onto) to incorporate ontological context, and blue text is used in

Prompt(Q+Domain) to emphasize domain-specific constraints.

encountered during pretraining. This makes it ideal for testing whether LLMs can align their internal
representations with structured semantic input. Third, its axiomatic richness and logical depth enable
the construction of competency questions with diverse reasoning requirements, ranging from simple
lookups to complex inference tasks involving subclass hierarchies, disjointness, and cardinality con-
straints. Additionally, working with a logically consistent and compact ontology like PO allows us
to isolate and analyze the effects of ontology-grounded prompting in a controlled and interpretable
experimental setting.

3.2. Grounding LLMs with Ontological Knowledge

Given a question 𝑄 and a domain ontology 𝑂𝑛𝑡𝑜, we aim to enhance the LLM response 𝑅 by contextu-
alizing it with ontologically relevant knowledge. Three distinct methodologies are proposed:
1. Evaluating LLMs’ Factual Recall. To assess the extent to which LLMs alone can answer factual
questions, we employ a standard zero-shot prompting setup Prompt(Q) according to Figure 3. This
allows us to evaluate whether the models can retrieve and utilize relevant information to generate
appropriate responses to user queries 𝑄 without additional information.
2. Domain-Specific Factual Retrieval. This step evaluates the extent to which LLMs can retrieve
factual information when constrained to a specific domain context, as demonstrated in the Prompt(Q
+ Domain) setup. By explicitly instructing the model to focus on a particular domain – here, it is
pizzas and their ingredients – we assess how effectively it can filter out irrelevant knowledge and recall
domain-specific facts. This evaluation provides insight into the LLM’s ability to follow contextual
boundaries and generate responses aligned with specialized knowledge.
3. Injecting Ontologies for Factual Knowledge Retrieval. In this step, we explicitly incorporate
ontological knowledge into the prompt using the Prompt(Q + Onto). By embedding relevant ontology
axioms or excerpts directly into the Prompt(.), we aim to guide the LLM toward generating responses
grounded in structured, formalized knowledge. This allows for evaluating the model’s capacity to
utilize ontological facts for answering the 𝑄, and to assess how well it can interpret and leverage such
symbolic information when generating factual responses.

4. Evaluations

4.1. Experimental Setups

Evaluation Dataset. Since the PO does not include an official set of competency questions (CQs),
we constructed a tailored set of 60 questions designed to reflect the ontology’s expressiveness. These
questions serve both as evaluation probes and as tools to examine how large language models handle
different types of reasoning—including factual recall, subclass hierarchies, property composition, and
inconsistency detection—under varying prompting strategies. We organized the questions into six



reasoning categories: individual-level facts (IND), subclass/type hierarchy (SUB), property usage (PROP),
disjointness and inconsistency (DISJ), cardinality constraints (CARD), and logical/semantic composition
(LOGIC). These categories represent a spectrum of ontological reasoning complexity, from simple fact
retrieval to more advanced semantic inference involving multiple axioms. Since the Pizza Ontology lacks
concrete individuals, we use specific named concepts such as MargheritaPizza to simulate instance-
level reasoning in the IND category. Specifically, IND questions target properties or attributes directly
associated with these named concepts. A detailed overview of the categories—including definitions
and the number of questions per category—is provided in Table 1. The raw datasets are available at
https://github.com/HamedBabaei/OntoTruth/blob/main/dataset/60qas.md.

Table 1
Reasoning categories used in the evaluation, along with their descriptions. The stats represent the finalized sets.

Category Reasoning Level Description Total
CARD Cardinality restrictions Uses OWL restrictions like exactly, some, min 4

DISJ Disjointness and inconsistency checking Uses disjointWith and detects illegal combinations 11

IND Individual-level fact Uses asserted knowledge about named concepts 7

LOGIC Logical/semantic composition (complex queries) Involves inference across multiple dimensions or conjunctions 6

PROP Object/Data property usage Uses properties such as hasTopping, hasBase, etc. 9

SUB Subclass/Type hierarchy Uses subClassOf or instance type inference 14

Total number for questions after excluding flawed questions. 51

To evaluate consistency, each question was independently answered by two annotators. Moreover,
to estimate annotator agreement, we employed two complementary methods: semantic similarity
scoring [18] and the LLMs-as-Judge approach [19, 20]. While similarity-based metrics provide a general
sense of alignment, they often struggle to accurately capture agreement in complex ontological contexts
– particularly when responses involve subtle distinctions, long-form content, or structured knowledge
that’s hard to quantify via simple vector similarity. Additionally, traditional methods typically overlook
the ontological structure that underpins the question-answer pairs. To address these limitations, we
used the LLMs-as-Judge framework with GPT-4o [21]. This method evaluates agreement by considering
the full context—including the ontology, the question, and both annotators’ answers—and making a
holistic judgment.

Our prompt, illustrated in Figure 4, asks the Judge LLM to (1) determine whether the answers agree
or disagree, (2) explain the nature of any disagreement (e.g., differences in selected entities, relations,
interpretations, or omissions), and (3) synthesize a final, unified answer [22]. Moreover, we manually
checked the synthesized final answers that showed a combination of both answers by annotators
or a clear version of them in cases where annotators agreed. These well-represented responses are
well-formatted for the evaluation of LLMs in later steps. The LLM-as-Judge evaluation can be accessed
via https://github.com/HamedBabaei/OntoTruth/blob/main/dataset/AI-Judger.json.

Using the similarity-based approach, we observed an inter-annotator agreement rate of 48%. In
contrast, the LLMs-as-Judge method yielded a substantially higher agreement rate of 76%, demonstrating
its effectiveness in capturing more similar answers. During this evaluation, we also identified 9 questions
as fundamentally flawed or ill-formed; these were excluded from subsequent analysis. So, the final QA
dataset consisted of 51 questions, which were used for further evaluations. Table 2 represents examples
of question and answer pairs per reasoning level categories.

Experimental Models. We evaluated a diverse set of instruction-tuned LLMs from the LLaMA-3 [23]
and Qwen2.5 [24] families (see Table 3), grouped into three size categories: small, medium, and
large. The small category includes Llama-3.2-1B-Instruct2 and Qwen2.5-0.5B-Instruct3,
representing models with fewer than 1B parameters, suitable for lightweight reasoning tasks. The
medium category consists of Llama-3.1-8B-Instruct4 and Qwen2.5-7B-Instruct5, offering a

2https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
3https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct
4https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
5https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
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https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct


Table 2
Examples of questions and answers per category from the evaluation dataset.

Category Question Answer
CARD Which pizzas are built using a ThinAndCrispyBase? Real Italian Pizza, Napoletana, Veneziana

DISJ What toppings are considered disjoint from MeatTopping? VegetableTopping, CheeseTopping, FishTopping, Herb-

SpiceTopping, FruitTopping, NutTopping, SauceTopping

IND What are the common toppings of a Margherita Pizza? Mozzarella and tomato

LOGIC What spicy meat topping is commonly found on American-style pizzas? Peperoni Sausage

PROP Which pizzas contain both OnionTopping and PepperTopping? Pollo Ad Astra, Sloppy Giuseppe, Cajun

SUB Is a QuattroFormaggiPizza classified as a CheesePizza? Yes

LLMs-as-Judge for Annotator Agreements

I have two annotators who answered the same question based on an ontology.

Compare their answers and judge whether they agree or disagree.

If they disagree, explain the nature of the disagreement (e.g., different entities, relations, interpretations,

or missing concepts).

Next, provide a single answer based on two annotators. This response should be straightforward with no

extra explanation.

<question>

question

</question>

<ontology>

ontology

</ontology>

<annotator-1-answer>

annotator1

</annotator-1-answer>

<annotator-2-answer>

annotator2

</annotator-2-answer>

Return your output in the following format:

{’agreement’: ’agree’, ’rationale’: ’...’, ’answer’: ’...’}

Figure 4: LLMs-as-Judge for annotator agreements.

Table 3
LLM Families.

LLM Context Lenght Source
LLaMA-3 Family 131K (≈100K words) Hugging Face

Qwen2.5 Family 32K (≈25K words) Hugging Face

trade-off between performance and computational efficiency. Finally, the large category includes
Llama-3.3-70B-Instruct6 and Qwen2.5-72B-Instruct7, representing high-capacity models ex-
pected to perform best on complex ontological reasoning tasks. This categorization enables us to
systematically investigate how model scale affects performance across various reasoning categories. In
addition, we are experimenting with different materializations of inferred consequences across ontology

6https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
7https://huggingface.co/Qwen/Qwen2.5-72B-Instruct

https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct


Table 4
Mean cosine similarity (in %) between gold and generated responses, using different LLMs across model

sizes (Small, Medium, Large). The Prompt(Q) column represents performance without using ontology, while

Prompt(Q+Domain) indicates a domain-specific specification added to the prompt. The remaining columns

show results using different materialized ontology formats within Prompt(Q+Onto): RDF/XML, Manchester

OWL Syntax, OWL Functional Syntax, and Turtle. Bolded values indicate the best performance within each row.

Category LLM Prompt(Q) Prompt(Q+Domain) Prompt(Q+Onto)
RDF Manchester Functional Turtle

Small
Qwen2.5-0.5B 39.7 40.5 34.7 12.7 29.3 28.6

Llama-3.2-1B 39.5 40.6 44.3 44.8 44.3 43.4

Medium
Qwen2.5-7B 43.8 45.1 57.1 52.9 51.4 53.3

Llama-3.1-8B 44.2 44.9 54.2 50.1 52.2 52.1

Large
Qwen2.5-72B 45.7 45.4 60.3 56.9 50.4 57.2

Llama-3.3-70B 46.4 45.7 55.2 48.1 39.7 46.8

formats to understand how the explicit presence of derived knowledge affects LLM reasoning. The
formats used include RDF/XML, Manchester OWL Syntax, OWL Functional Syntax, and Turtle.

Evaluation Metrics. For automatic evaluation of generated responses, we computed the cosine
similarity between each LLM-generated answer and the corresponding gold answer using embeddings
from OpenAI’s text embedding model (specifically text-embedding-3-large8). This approach
provides a lightweight semantic similarity metric to estimate alignment between model outputs and
human-annotated references.

4.2. Results

RQ1. To what extent can domain-specific ontological knowledge reduce hallucinations and
factual errors in LLM outputs? According to Table 4, our results demonstrate that incorporat-
ing domain-specific ontological knowledge substantially reduces hallucinations and factual inaccu-
racies in LLM-generated answers. As shown in Table 4, performance with only the question prompt
(Prompt(Q)) yields relatively low alignment with gold answers across all model sizes—averaging
between ≈39–46%—indicating a considerable risk of hallucinations due to a lack of grounding.

Improvements obtained by introducing a lightweight domain-specific hint (Prompt(Q + Domain))
are marginal at best (not more than 1.3% gain), suggesting that merely indicating the domain context is
insufficient to significantly reduce factual errors. The most notable improvement is observed when using
Prompt(Q + Onto), where explicit ontological content is hard-coded into the prompt. For example,
larger LLMs like Qwen2.5-72B and Llama-3.3-70B achieve 60.3% and 55.2% alignment, respectively, under
RDF materialization—an increase of over 10 percentage points compared to domain-only Prompt(Q +
Domain) or question-only Prompt(Q) prompts. Similar trends are observed across medium and small
models, confirming that access to formal ontology structures consistently boosts performance. This
highlights that LLMs are indeed capable of retrieving information from materialized ontologies and
using it in their generated answers.

Further, Table 5 reveals that the benefits of ontological grounding are particularly pronounced in
reasoning-heavy categories such as IND (individual-level facts), SUB (subclass hierarchy), and PROP
(property usage), where structured definitions and relationships help models infer correct answers and
avoid hallucinated entities or unsupported claims. For instance, in the IND category, the accuracy of
Qwen2.5-7B rises dramatically from 51.2% to 82.3% with ontology grounding.

However, the results for small-scale LLMs show an opposite trend in certain categories, where
grounding sometimes reduces performance. We attribute this drop to the limited capacity of smaller
models to effectively parse and exploit structured ontology materializations, which can increase cognitive

8https://openai.com/index/new-embedding-models-and-api-updates/
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Table 5
Category-wise cosine similarity performance (%) of each LLM across two evaluation settings: Prompt(Q)
denoted as a (𝑃 ) and RDF-materialized ontology using Prompt(Q+Onto) denoted as a 𝑃 ′

. Results are grouped

by reasoning category (CARD, DISJ, IND, LOGIC, PROP, SUB) and model size (Small, Medium, Large).

Category LLM CARD DISJ IND LOGIC PROP SUB
𝑃 𝑃 ′ 𝑃 𝑃 ′ 𝑃 𝑃 ′ 𝑃 𝑃 ′ 𝑃 𝑃 ′ 𝑃 𝑃 ′

Small
Qwen2.5-0.5B 43.9 49.2 43.5 32.0 47.6 35.8 32.1 26.8 32.4 30.3 39.8 38.5

Llama-3.2-1B 48.1 42.8 44.0 52.8 47.2 47.4 30.7 32.1 28.8 37.8 40.5 46.1

Medium
Qwen2.5-7B 34.9 41.7 43.2 51.5 51.2 82.3 41.1 56.2 31.7 40.9 52.3 64.4

Llama-3.1-8B 31.5 53.1 41.3 50.8 49.9 74.2 38.3 32.8 35.6 49.2 55.5 59.6

Large
Qwen2.5-72B 46.7 46.9 51.5 57.9 54.4 78.2 33.9 45.4 37.6 65.1 46.9 60.4

Llama-3.3-70B 33.8 55.8 44.7 50.6 58.7 82.7 46.2 36.0 37.2 57.3 51.3 51.8

load instead of providing helpful constraints. In these cases, the additional symbolic structure may
overwhelm the model’s limited reasoning ability, leading to noisier outputs.

In summary, domain ontologies act as strong factual anchors for LLMs. By injecting structured,
semantically rich knowledge directly into prompts, hallucinations and factual drift are significantly
reduced—especially in tasks that demand ontological reasoning. This highlights the value of knowledge-
informed prompting for reliable AI-assisted reasoning in complex domains.

RQ2. What are the practical challenges and limitations when providing ontological sources
as part of an LLM prompt? Our experiments and framework design reveal the following key issues:

• Complexity and Format of Ontologies. Ontologies can be encoded in multiple syntactic
materializations of consequences—RDF/XML, Manchester OWL, OWL Functional Syntax, Tur-
tle—each with different levels of human readability and parsing complexity. As shown in Table 4,
model performance varies substantially across these materializations, even when the underlying
knowledge remains the same. For example, a large LLM like Llama-3.3-70B performs best with
RDF, but shows degraded performance with Functional Syntax (e.g., 55.2% vs. 39.7%), likely due
to increased syntactic overhead. This illustrates a key limitation: "not all ontology encodings are
equally digestible to LLMs, and some may obscure rather than clarify semantic relationships".

• Context Length. Injecting ontological knowledge into prompts significantly increases context
length (See Table 3, this study’s LLMs are capable of supporting 32K to 131K input limits). Large
ontologies can contain hundreds of axioms, many irrelevant to the current query. While LLMs like
GPT-4o can handle long contexts, smaller models struggle with salience filtering—i.e., identifying
which parts of the ontology are relevant to a given question. This leads to noisy or hallucinated
outputs due to cognitive overload of key signals.

• Logical Axiom Processing. Ontologies often include constructs like disjointWith,
someValuesFrom, and cardinality constraints, which require non-trivial logical reason-
ing. As seen in Table 5, categories like CARD (cardinality) and LOGIC (complex reasoning)
exhibit lower and more variable averaged similarity scores even with ontology prompts. For
example, performance in LOGIC questions for Llama-3.3-70B drops from 46.2% (Prompt only) to
36.0% (with ontology), indicating that the presence of complex axioms can confuse models rather
than help them, unless carefully abstracted.

• Beyond Hard-Coded Knowledge. Unlike symbolic reasoners, LLMs lack built-in mechanisms
to dynamically query ontologies or perform deductive closure. Instead, they rely on pattern
recognition and latent knowledge, rather than formal, rule-based inference. This limits their
ability to validate claims that require multi-step deductions, indirect class/property chains, or
deeper reasoning over ontological structures. The static nature of prompt-based injection—where
entire ontologies are hard-coded into the input—further restricts the model’s ability to focus on
relevant portions of the knowledge base. This challenge underscores the promise of RAG enabled
by ontologies, where relevant triples or schema fragments can be selectively retrieved in real time



to guide LLM responses. Such systems could support goal-directed navigation over ontologies,
reducing context overload and enabling more accurate, semantically grounded generation without
requiring full ontology injection into every prompt.

In summary, while ontological resources provide valuable structured knowledge for LLM validation,
practical challenges related to ontology complexity, context limitations, logical reasoning, and the lack
of dynamic querying capabilities currently hinder their effective integration. Addressing these limita-
tions—particularly through approaches like RAG that enable selective, real-time ontology access—holds
promise for more robust and semantically grounded validation of LLM-generated claims.

5. Conclusions and Future Directions

In this paper, we presented an investigation for integrating ontological knowledge into LLM workflows
to improve factual accuracy. Using the pizza ontology as a case study, we showed that ontology-informed
prompts significantly reduce hallucinations. This confirms the importance of injecting domain-specific
ontological knowledge as a strong factual anchor for LLM generation. While effective for small, curated
ontologies, scaling this approach remains challenging due to token limits and the lack of formal reasoning
in LLMs. To overcome these limitations, we highlight the need for hybrid architectures that combine
LLMs with automated reasoners, and propose reinforcement learning with reasoning feedback as a
promising future direction. In future work, we plan to systematically evaluate the use of summarized
ontologies for prompt enrichment and assess their trade-offs in terms of accuracy improvements and
computational efficiency.
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