
Learning to Refine: An Agentic RL Approach for Iterative
SPARQL Query Construction
Floris Vossebeld1,2, Shenghui Wang1

1Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, Drienerlolaan 5, 7522 NB Enschede,
The Netherlands
2Microsoft Netherlands, Evert van de Beekstraat 354, 1118 CZ Schiphol, The Netherlands

Abstract
Generating complex, logically-sound SPARQL queries for multi-hop questions remains a critical bottleneck for
Knowledge Graph Question Answering, as the brittle nature of one-shot generation by Large Language Models
(LLMs) hinders reliable interaction with structured data. Current methods lack the adaptive policies needed
to dynamically debug queries based on real-time execution feedback. This paper introduces a novel agentic
framework where an LLM learns a resilient policy for the sequential process of iterative SPARQL construction. We
show that a compact 3B-parameter model, trained exclusively via outcome-driven Reinforcement Learning (GRPO)
without supervised fine-tuning, can learn effective policies for this task, discovering how to systematically recover
from execution errors and refine its queries toward a correct answer. On a curated, executable single-answer
subset of LC-QuAD 2.0, our agent achieves 49.7% accuracy post-entity-linking, a significant 17.5 percentage
point improvement over the strongest iterative zero-shot baseline. Further analysis reveals that while the agent’s
capability is driven by RL, its performance is enhanced by an explicit deliberative reasoning step that acts as a
cognitive scaffold to improve policy precision. This work presents a generalizable blueprint for teaching agents
to master formal, symbolic tools through interaction, bridging the gap between probabilistic LLMs and the
structured world of Knowledge Graphs.

Keywords
Knowledge Graph Question Answering, Agentic Language Models, SPARQL Query Generation, Reinforcement
Learning, Iterative Query

1. Introduction

Knowledge Graphs (KGs) like DBpedia [1] and Wikidata [2] structure vast information as entities linked
by relations [3]. Answering natural language questions using these graphs, Knowledge Graph Question
Answering (KGQA), is vital for applications from search to decision support [4, 5]. While single-hop
KGQA is well studied, multi-hop questions, requiring reasoning across multiple entities and relations,
remain a major challenge due to combinatorial path explosion [6], KG incompleteness [7], and semantic
ambiguity [8].

Traditional KGQA methods such as semantic parsing [9], retrieval-based approaches [10], and KG
embeddings [11] often apply static reasoning strategies. These methods typically generate a SPARQL
query in a single pass or retrieve a fixed subgraph, lacking mechanisms for iterative refinement. As a
result, they struggle with long or error-prone queries, and fail to recover from intermediate execution
failures.

Large Language Models (LLMs) have recently shown strong capabilities in structured reasoning,
particularly when supported by techniques like Chain-of-Thought prompting [12]. Agentic frameworks
such as ReAct [13] and StructGPT [14] allow LLMs to combine reasoning with tool use. However, many
of these methods either rely on predefined tools or prompting schemes, and do not learn adaptive
interaction policies through feedback.

RAGE-KG 2025: The Second International Workshop on Retrieval-Augmented Generation Enabled by Knowledge Graphs, co-located
with ISWC 2025, November 2–6, 2025, Nara, Japan
†
Work performed while the author was an Intern at Microsoft Netherlands (Feb-Jul 2025). The views expressed are the author’s
and do not necessarily reflect those of Microsoft Corporation.
Envelope-Open f.r.vossebeld@student.utwente.nl (F. Vossebeld); shenghui.wang@utwente.nl (S. Wang)
Orcid 0000-000X-XXXX-XXXX (F. Vossebeld); 0000-0003-0583-6969 (S. Wang)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:f.r.vossebeld@student.utwente.nl
mailto:shenghui.wang@utwente.nl
https://orcid.org/0000-000X-XXXX-XXXX
https://orcid.org/0000-0003-0583-6969
https://creativecommons.org/licenses/by/4.0/deed.en


Consider the question “Which actors starred in movies directed by the director of Inception?” An-
swering this requires identifying the film, finding its director, retrieving the director’s other films, and
then the actors in those films, each step relying on correct schema navigation, relation selection, and
entity disambiguation. Translating this full path into a correct SPARQL query in one shot is error-prone.
An alternative is to incrementally build and test parts of the query, adapt based on results, and correct
mistakes mid-way, requiring interaction with the KG as a semantic environment.

While integrating LLMs with KGs is actively researched [15, 16, 14], methods often rely on fixed
interaction logic, prompting strategies applied to base models, or using KG information primarily as
retrieved context. They typically do not involve fine-tuning the model specifically to learn adaptive
policies for the iterative construction of structured SPARQL queries based on execution feedback, which
is crucial for handling the complexity and potential errors inherent in multi-step KG interactions.

This paper addresses this gap by proposing an agentic framework in which a language model learns
a policy for iterative SPARQL query construction through interaction with a knowledge graph. The
agent operates in a think–act–observe loop: it reasons about the current state (<think>), generates
a SPARQL query or final answer (<query>, <answer>), and receives execution feedback from the KG
(<query_result>). Rather than relying on static, one-shot generation, the agent adapts its strategy
based on results, including errors or empty outputs, progressively refining its queries. To enable
this behavior, we fine-tune a compact LLM using Group Relative Policy Optimization (GRPO), a
reinforcement learning algorithm designed for sparse, outcome-based rewards. The agent learns not
only to generate queries, but to interpret feedback and dynamically debug or explore, improving
robustness in complex multi-hop scenarios.

This motivates the following research questions:

Research questions

RQ1: How can an LLM learn to iteratively build and refine SPARQL queries using execution
feedback to answer complex multi-hop KG questions?

RQ2: Can reinforcement learning effectively train such an agent to produce accurate answers from
outcome signals alone?

RQ3: How does this iterative, RL-guided approach compare with static or prompt-only baselines
on the LC-QuAD 2.0 benchmark?

The remainder of this thesis details related work (§2), presents our methodology (§3), details the
experiments and results (§4 and §5), and discusses the findings and discussion and conclusions (§6).

2. Related work

Multi-hop KGQA requires combining structured reasoning, language understanding, and interaction.
We review prior work on traditional KGQA methods, agentic LLMs, and reinforcement learning,
highlighting how our approach integrates symbolic interaction, tool-based reasoning, and adaptive
query construction to address the unique challenges of multi-hop KGQA.

Multi-hop KGQA and traditional approaches Knowledge Graph Question Answering (KGQA)
maps natural language questions to structured answers by reasoning over triples in a knowledge
graph (KG) [5, 10]. While single-hop questions can be resolved through direct relations, multi-hop
KGQA requires compositional reasoning across multiple entities and relations [17, 18]. This increases
complexity due to path explosion [6], KG incompleteness and noise [7], and semantic ambiguity [8].

Traditional KGQA methods fall into three categories: semantic parsing, retrieval-based approaches,
and embedding-based reasoning. Semantic parsing methods aim to generate formal queries such
as SPARQL [9, 19], but are brittle to linguistic variation and require substantial supervision [20, 21].
Retrieval-based methods extract subgraphs for ranking [10, 6] but often struggle with complex logic.



Embedding-based approaches reason in vector space [11, 17], sacrificing interpretability and logical pre-
cision. Critically, these approaches apply fixed computation and lack iterative refinement mechanisms
based on intermediate feedback, hindering performance on complex multi-hop tasks.

Agentic LLMs and symbolic interaction in KGQA Recent work leverages LLMs as agents that
combine internal reasoning with external actions. Agentic frameworks such as ReAct [13] and MRKL
[22] allow LLMs to operate in a loop of <think> → <act> → <observe>, interacting with tools to solve
complex tasks. In KGQA, systems like StructGPT [14] and Think-and-Graph [23] extend this idea by
giving LLMs access to navigation tools (e.g., retrieving neighbors or relations). However, these tools
are often predefined, and reasoning policies are static or heuristic-driven, limiting adaptivity.

Our work shifts the focus from tool-based navigation to formal query generation. Inspired by ARTIST
[24], we treat SPARQL construction as the agent’s primary action. The model alternates between
<think>, <query>, and <answer> tags, learning to refine its reasoning through symbolic interaction
with the KG. This reframes KGQA as a dynamic decision-making process grounded in executable
feedback.

This strategy also relates to test-time compute scaling [25], where additional reasoning effort is allo-
cated adaptively. Some approaches use inference-time sampling or search [26, 27]; others explicitly train
models to optimize reasoning under compute constraints [28, 29]. Our work falls in the latter category,
focusing on training an agent to effectively use interaction cycles for symbolic query refinement.

Reinforcement learning for iterative query generation While supervised fine-tuning enables
LLMs to imitate reasoning (e.g., Chain-of-Thought prompting [30]), it relies heavily on high-quality
demonstrations and struggles with long-horizon credit assignment. Reinforcement learning (RL) offers
a more flexible alternative, enabling agents to learn from outcome-based interaction.

We build on Group Relative Policy Optimization (GRPO), a recent RL algorithm designed for sparse,
symbolic environments. GRPO has shown success in math problem solving [28], SQL generation [31],
and general tool use [24]. In our setting, GRPO allows a compact LLM to learn symbolic refinement
strategies from task-level rewards alone, recovering from syntax errors, adapting query structure,
and issuing exploratory probes. This enables robust multi-hop reasoning without requiring step-level
supervision or hand-coded recovery heuristics.

3. Methodology

Our approach transforms multi-hop KGQA from a one-shot generation task into an iterative, sequential
decision-making problem. We developed an autonomous agent, powered by a Large Language Model
(LLM), that learns an optimal policy for constructing and refining SPARQL queries through live in-
teraction with a Knowledge Graph (KG). The agent operates within a Reinforcement Learning (RL)
framework, where its behavior is optimized to maximize a reward signal reflecting the accuracy and
validity of its actions.

The agent’s core is an interaction loop, conceptually illustrated in Figure 1. In each turn, the agent:
1) analyzes the history of the task, including the initial question and all previous KG interactions;
2) reasons about the next best step within a <think> block; and 3) acts by generating either a new
SPARQL query (<query>) or a final answer (<answer>). This cycle repeats until the agent confidently
terminates the process. This section details the formal problem definition, the mechanics of the agent-
environment interaction, and the RL-based training process used to learn the query refinement policy.

3.1. Formalism: an agentic Markov Decision Process

We model the iterative query construction task as a finite-horizon Markov Decision Process (MDP),
defined by the tuple (𝒮 ,𝒜 , 𝒫 ,ℛ, 𝛾 ).



Knowledge 

Graph 


(SPARQL Endpoint)

Execution Environment

Parses agent output; 
Executes SPARQL 
from \querytag

Agent policy

LLM (frozen)

QLoRa adapters 
(trainable)

..(previous history).. 
<think>Reasoning about 

last result... </think> 
<query> 


SELECT ?x WHERE { ... } 
</query>

EntityLinker

Final response

User question

NL question

Input tokens: 
<master-prompt> 
+ TopicEntities

Token stream 
includes 

 , 

 or 

<think>
<query>
<answer> <answer></answer>

<query_result> ... </query_result> tokens

Execute

SPARQL

query

Figure 1: The end-to-end agentic inference loop. The agent policy (LLM + QLoRA adapters) receives the current
state (question and history) and generates reasoning (<think>) followed by an action: either a SPARQL query
(<query>) or the final answer (<answer>). The SPARQL query is executed against the KG, with the outcome
(<query_result>) updating the state for the next iteration. The loop terminates when the agent produces an
answer.

Table 1
Key components of the agentic KGQA framework.

Component Role and implementation

Agent policy (𝜋𝜃) An instruction-tuned LLM (Qwen2.5-3B-Instruct) with QLoRA adapters (𝜃) that gen-
erates think-act sequences.

Environment Executes SPARQL queries against a self-hosted Wikidata endpoint and returns struc-
tured feedback (<query_result>).

State (𝑠𝑡) The full, structured conversation history, including all prior agent actions and environ-
ment observations.

Action (𝑎𝑡) A text generation containing a <think> block followed by either a <query> or <answer>
block.

Reward (𝑅(𝜏)) A terminal, composite reward signal evaluating structural validity, final answer correct-
ness, and efficiency.

Learning algorithm Group Relative Policy Optimization (GRPO) to fine-tune the policy 𝜋𝜃 based on the
outcome-based reward 𝑅(𝜏).

State (𝑠𝑡 ∈ 𝒮) A state is the full conversation history at turn 𝑡. It is a structured text sequence com-
prising the initial prompt, the user’s question, and all subsequent agent turns and environment
observations: 𝑠𝑡 = (prompt, 𝑚1, 𝑜1, 𝑚2, 𝑜2, …).

Action (𝑎𝑡 ∈ 𝒜) An action is the complete text sequence generated by the agent in a single turn. It must
conform to one of two valid structures: a reasoning block followed by a query, or a reasoning
block followed by a final answer.

𝑎𝑡 = {
<think>...</think> <query>...</query>

<think>...</think> <answer>...</answer>

The action space 𝒜 is the vast set of all possible text generations that adhere to this format.

Transition function (𝒫) The state transition 𝑃(𝑠𝑡+1 ∣ 𝑠𝑡, 𝑎𝑡) is largely deterministic. Given state 𝑠𝑡 and
a query action 𝑎𝑡, the environment executes the SPARQL query from 𝑎𝑡. The resulting observation
𝑜𝑡+1 (the content of the <query_result> block) is appended to the history to form the next state



𝑠𝑡+1 = 𝑠𝑡 ∘ 𝑎𝑡 ∘ 𝑜𝑡+1. The episode terminates if the agent produces an answer action, exceeds the
maximum number of turns, or generates a malformed action.

Reward function (ℛ) The reward 𝑅(𝜏) is a terminal, outcome-based reward assigned at the end of a
full trajectory 𝜏. It is a composite signal designed to evaluate the success of the agent’s multi-turn
strategy, as detailed in Section 3.3.1.

Policy (𝜋𝜃) The agent’s policy is the LLM itself, parameterized by a set of trainable QLoRA adapter
weights 𝜃. The policy 𝜋𝜃(𝑎𝑡 ∣ 𝑠𝑡) maps the current state (history) to a probability distribution over
the action space. Our objective is to find the optimal weights 𝜃∗ that maximize the expected
terminal reward.

3.2. Agent–environment loop

One interaction turn

1. Think → Act : 𝜋𝜃 appends a <think> block plus either <query> (SPARQL) or <answer>.

2. Environment :

2.1. <answer> ⇒ episode ends.
2.2. <query> ⇒ KG executes; reply comes back as <query_result>.
2.3. malformed output ⇒ abort and error flag.

3. Loop until success or turn limit 𝑇max.

3.2.1. Knowledge‐graph execution environment

For RL we require a fast, quota-free SPARQL endpoint. We therefore deploy a containerised qEnd-
point (truthy Wikidata HDT) inside our Azure VNet. A lightweight aiohttp client issues queries
asynchronously, with an in-memory LRU cache, pre-flight syntax checks (rdflib), and automatic
retry/back-off. The result is a private, low-latency endpoint that sustains the thousands of queries
demanded by training.

3.2.2. Agent Prompting and Structured Actions.

The agent’s policy is guided by a detailed system prompt, which provides task instructions, defines the
required interaction format, and includes few-shot examples of successful refinement trajectories.

A critical technique during RL training is loss masking. The policy’s parameters 𝜃 are updated
only based on the log-probabilities of tokens generated by the agent (i.e., within <think>, <query>,
and <answer>). Tokens from the environment (the initial prompt and all <query_result> blocks) are
masked out from the loss calculation. This follows best practices from frameworks like ARTIST [24]
and focuses the learning signal squarely on the agent’s decision-making policy, rather than wasting
capacity trying to predict deterministic environment outputs.

3.3. Policy optimization via Group Relative Policy Optimization (GRPO)

We used Reinforcement Learning to fine-tune the agent’s policy, specifically choosing Group Relative
Policy Optimization (GRPO) [28]. This allows the agent to learn complex, sequential strategies from
interactive experience and sparse, outcome-based rewards.

We fine-tuned the agent’s policy using Group Relative Policy Optimization (GRPO) [28], a reinforce-
ment learning algorithm well-suited to sparse, outcome-based tasks. GRPO compares the terminal
reward of each trajectory against others in a group sampled from the same prompt, using relative per-
formance to compute an advantage signal. This enables learning effective query refinement strategies
without requiring a learned value function.



Batch & group 
sampling

Sample batch of 
questions


and generate G 
rollouts



Compute rewards

Compute composite 
reward R_total: 
outcome + process + 
format - cost

Compute GRPO 
gradients

Compute policy-
gradient (GRPO 
advantage)

Update LoRa 
adapters

Apply LoRA adapter 
update (QLoRA)

Agent inference loop

LLM 
policy

Tools

Figure 2: The end-to-end RL fine-tuning cycle. A batch of questions is sampled, and for each, the agent (LLM +
LoRA adapters) generates 𝐺 rollouts using the iterative inference loop. The composite reward 𝑅(𝜏) is computed
for each trajectory. GRPO uses these rewards to calculate a policy gradient, which is then used to update the
LoRA adapter weights.

3.3.1. Reward design for effective learning

Terminal reward 𝑅(𝜏)

𝑅(𝜏) = {
−1, if trajectory not structurally valid,

1 + 𝑅ans(𝜏 ) − (0.1 𝑁err + 0.02 𝑇), otherwise.

Structural validity correct tag format and termination with <answer>.

Answer term 𝑅ans(𝜏 ) = {
+0.5 if judge deems the answer correct,
−0.2 otherwise

Cost term 0.1 𝑁err +0.02 𝑇, where 𝑁err is the number of failed SPARQL executions and
𝑇 the number of agent turns.

3.3.2. Training Protocol and Implementation.

The policy 𝜋𝜃 was fine-tuned using QLoRA [32] with the Unsloth library’s optimizations for memory
and speed. The training, depicted in Figure 2, was executed on an Azure ML compute cluster with
NVIDIA H100 GPUs. The GRPO training loop proceeds as follows:

1. Rollout generation: Sample a batch of questions. For each question, generate 𝐺 = 16 full
agentic trajectories using the current policy 𝜋𝜃.

2. Reward calculation: Compute the composite reward 𝑅(𝜏) for each of the 𝐺 trajectories.

3. Policy update: Use the GRPO objective to calculate the policy gradient, where trajectories with
a reward greater than their group’s average contribute positively.

4. Parameter update: Update the LoRA adapter weights 𝜃 via the AdamW optimizer, applying loss
masking and KL-divergence regularization to maintain stability.

This cycle repeats, progressively improving the agent’s policy.

3.4. Design choices and scope

Several key design choices shaped this research. A key design choice was to proceed directly to RL
fine-tuning, deliberately bypassing a supervised fine-tuning (SFT) phase on gold trajectories. This tests
a critical hypothesis for the field: can the combination of a powerful base model’s instruction-following
ability and a well-designed RL reward signal be sufficient to learn complex, tool-using behaviors, thereby
reducing the dependency on costly, expert-curated demonstration data? Second, our reward function’s
heavy penalty for structural and execution errors was a deliberate choice to force the agent to prioritize



generating valid and executable SPARQL above all else. Finally, we must acknowledge two critical
scope limitations that bound our claims: our system’s performance is evaluated on a curated subset of
single-answer questions, and it relies on pre-linked entities provided in the dataset. We did not address
the significant challenges of entity linking or multi-answer aggregation, which remain out of scope for
this thesis.

4. Experimental Setup

This section outlines the experimental setup used to evaluate our agentic reinforcement learning
approach to multi-hop KGQA. We describe the dataset curation process, model configuration, and
knowledge graph environment, followed by training details and a report on compute and energy usage
for reproducibility. We then present the comparative baselines and the evaluation methodology used to
assess performance.

4.1. Dataset

Following §3.2.1, we re-execute every gold query of LC-QuAD 2.0 against the frozen 2023-12-21Wikidata
HDT dump and keep a triple ⟨𝑞, 𝑞𝑢𝑒𝑟𝑦 , 𝑎𝑛𝑠𝑤𝑒𝑟⟩ only if the query (i) succeeds, (ii) returns exactly one
row, and (iii) yields a valid RDF term. The resulting corpus preserves entity, literal, and boolean answers
while discarding noisy items (Table 2).

Table 2
Curated single-binding subset of LC-QuAD 2.0.

Split Original size Curated size

Train 19 344 5 112
Test 4 836 1 279

4.2. Core models and KG environment

We use the unsloth/Qwen2.5-3B-Instruct-bnb-4bit model1, selected for its instruction-following
quality and compatibility with 4-bit QLoRA fine-tuning. Parameter-efficient training is performed using
Unsloth’s QLoRA implementation with commonly used hyperparameters: rank 64, 𝛼 = 16, dropout
0.05, learning rate 5 × 10−6, group size 𝐺 = 16, KL coefficient 𝛽 = 0.04, and batch size 128. These values
were selected through light, manual trial-and-error only; No systematic hyperparameter tuning was
conducted.

The agent interacts with a private SPARQL endpoint (qEndpoint v2.5.2) loaded with the 2023-12-21
“truthy” HDT dump of Wikidata. All SPARQL queries are executed asynchronously with memoization,
exponential backoff, and a 3-second timeout.

4.3. Training and compute setup

We fine-tune the agent using Group Relative Policy Optimization (GRPO), a reinforcement learning
algorithm well-suited for sparse, outcome-based rewards. At each update step, 𝐺 = 16 full roll-outs
are sampled for each of 128 training questions. Terminal rewards are computed based on final answer
correctness (see Section 3.3.1), and the LoRA weights are optimized using AdamW with a learning rate
of 5 × 10−6 and KL coefficient 𝛽 = 0.04. Each interaction episode is capped at ten <think>–<query>
cycles, and individual SPARQL executions are limited to a 3-second timeout.

Training is performed over a single epoch, converging in 11.5 hours on an NVIDIA H100 GPU (94
GB). This process consumed approximately 4.6 kWh of energy, which corresponds to an estimated 1.7

1Model commit ID 2672b58 on the HuggingFace Hub



kg CO2e under the 2024 Dutch grid emission factor (0.37 kg CO2e/kWh). While the model is relatively
compact, reinforcement learning remains computationally intensive, and further work is needed to
evaluate the scalability and energy efficiency of this approach at larger scales or across multiple domains.

4.4. Comparative baselines

We compare our agentic RL model to three baselines:

B1: Direct QA (Zero-Shot CoT) The base model answers from its parametric knowledge only,
prompted with two chain-of-thought exemplars.

B2: One-Shot SPARQL A single-turn prompt instructs the model to emit a full SPARQL query;
decoding uses temperature 0.2 and top-p 0.95.

B3: Prompt-Guided Iterative Agent Our think-query loop without RL; identical prompt as the RL-
tuned agent and greedy decoding.

4.5. Evaluation protocol and metrics

We evaluate KG-based agents using three key end-to-end metrics: answer accuracy, query executability,
and interaction length.

Accuracy Correctness is determined by a frozen LLM-based evaluator (GPT-4o-nano) shared across
all systems, including Direct QA. The evaluator receives the question, gold scalar binding, and the
model’s <answer> response, and returns a Boolean verdict along with a justification. This allows
for semantically equivalent but non-identical answers—e.g., paraphrasing, formatting differences,
or unit conversions—to be marked as correct, unlike exact string matching.

Executability rate The proportion of all SPARQL queries generated by a system that are syntactically
valid and execute successfully against the KG—computed as total successful executions divided
by the total number of queries issued across the test set.

Average turns The mean number of agent interaction steps per question. While not a performance
metric, it serves as a diagnostic indicator of the agent’s reasoning depth and adaptivity.

5. Results

5.1. Quantitative performance

Our primary experiment evaluates the RL-Tuned Iterative Agent against increasingly capable base-
lines. As shown in Table 3, performance steadily improves with greater interactivity. Relying on
parametric knowledge (B1) yields 16.3% accuracy. A single SPARQL query (B2) improves this to
19.7%, though hampered by a low 47.7% executability rate. The prompt-guided iterative agent (B3)
demonstrates the value of a refinement loop, reaching 32.2% accuracy.

Our RL-Tuned Agent marks a transformative leap, achieving a final accuracy of 49.7%—an absolute
improvement of 17.5 percentage points over the strongest baseline. This gain is driven by a learned policy
for interaction, evidenced by the executability rate soaring to 81.0%. The improvement is statistically
significant, confirmed by McNemar’s test on the discordant pairs (𝑛RL-correct, baseline-wrong = 354 vs.
𝑛RL-wrong, baseline-correct = 130), yielding 𝜒2(1) = 102.75, 𝑝 ≪ .001.



Table 3
End-to-end performance on the curated LC-QuAD 2.0 test set (N=1,279). Our RL-Tuned agent outper-
forms all zero-shot baselines, demonstrating the effectiveness of learning from interaction.

Model / Approach Exec. Rate (%) Acc. (%) Pass@5 (%)

Parametric Baseline (No KG Interaction)

B1: Direct QA (CoT) - 16.3 35.1

SPARQL-based Baselines (Zero-Shot)

B2: One-Shot SPARQL 47.7 19.7 47.2
B3: Prompt-Guided Agent 54.7 32.2 61.7

Our Method (RL Fine-Tuned)

RL-Tuned Agent 81.0 49.7 77.7

5.2. Ablation: deconstructing agent performance

To isolate the sources of this gain, we trained a purely Reactive agent (no <think> block) with the same
RL process. Table 4 shows this agent still achieved 48.1% accuracy, confirming that outcome-driven RL
is the primary engine of performance, capable of learning effective strategies from interaction alone.
However, our main Deliberative agent performed best (49.7%), suggesting the <think> block acts as a
powerful cognitive scaffold. By prompting the model to externalize its plan, the structure regularizes
the learning process, leading to a more precise final policy.

Table 4
Performance of Deliberative vs. Reactive agents. Both were trained for one epoch with GRPO.

Model / Approach Exec. Rate (%) Accuracy (%)

Agent-RL (Reactive) 82.3 48.1
Agent-RL (Deliberative) 81.0 49.7

5.3. Analysis of learning dynamics

Figure 3 shows the agent learns its policy in layers. Optimizing for reward (a) first drives mastery of
SPARQL syntax, as the executability rate (c) rapidly saturates. This foundational skill then enables the
agent to improve its semantic reasoning, reflected in the steady rise of in-batch accuracy (b). Crucially,
this improved performance is matched by greater efficiency; the average number of turns required per
question trends downward (d). The agent learns to be more direct and effective, not just to succeed
through brute-force trial and error.

5.4. Qualitative and error analysis

5.4.1. Error analysis: a shift to higher-quality failures.

Reinforcement learning induces a crucial shift from syntactic incompetence to semantic reasoning
errors (Figure 4). The zero-shot baselines were plagued by fundamental failures: 57% of the One-Shot
agent’s failures were due to execution errors or refusing to generate a query at all. In stark contrast,
our RL-tuned agent nearly eliminated these issues, with such errors accounting for a negligible fraction
of failures. Its primary failure mode became Incorrect Logic (72.5% of its own failures). The baselines
fail because they cannot ”speak SPARQL” correctly; our agent has mastered the tool’s language and
now fails on the much harder problem of reasoning correctly with it.



(a) Smoothed Average Reward (b) In-Batch Accuracy (%)

(c) In-Batch Executability Rate (%) (d) Average Agent Turns

Figure 3: Training dynamics of the RL-Tuned Agent over one epoch (40 training steps). The plots
illustrate a layered learning process: the agent is optimized for reward (a), which drives improvements
first in query syntax (c) and then in semantic accuracy (b). Simultaneously, the agent learns task
efficiency, reducing the average number of turns required to find an answer (d).

5.4.2. Case study: learned resilience and strategic decomposition.

To illustrate the learned policy, we analyzed behavior on the complex question: “Name the Han dynasty
capital city with a twin town called Plovdiv.”. A direct query fails. Our RL-Tuned agent correctly
diagnosed this, pivoted to an exploratory query to find all cities twinned with Plovdiv, and then used a
second verification query on the candidates to find the correct answer. This dynamic decomposition, a
direct result of RL training, contrasts sharply with the baseline, which became trapped in syntax and
logic errors.

6. Discussion and Conclusion

This work demonstrates that outcome-driven reinforcement learning (RL) enables compact language
models to learn robust, multi-hop reasoning strategies over knowledge graphs. Our agent, trained
using GRPO, significantly outperforms static and zero-shot baselines—closing the gap between symbolic
structure and neural flexibility. Beyond raw accuracy, we observe emergent behaviors such as adaptive
“compute scaling” and strategic query decomposition, showing that the agent learns to allocate effort
based on task complexity.

These findings suggest that even small LLMs, when trained with structured feedback, can learn



B2:
One-Shot

B3:
Prompt-Guided

RL-Agent
(Reactive)

RL-Agent
(Deliberative)

0

200

400

600

800

1,000

43
9

43
6

57
2 46
631
7

35
7

67

17
027
1

74 25 7Fa
ilu

re
C
ou

nt
on

Te
st
Se
t
(N

=1
,2
79
)

Breakdown of Failure Modes by Model

Execution failure Refused to query Incorrect logic

Figure 4: Absolute counts of failure modes on the test set. Reinforcement learning dramatically reduces
fundamental errors like execution failures and refusal to query. This shifts the primary challenge for the trained
agents from generating valid syntax to formulating correct logical plans.

to navigate symbolic environments through interaction. While preliminary, this work highlights a
promising direction for combining language models and formal reasoning in a more adaptive and
interpretable way.

Our evaluation was limited to a curated subset of LC-QuAD 2.0 with gold entity links and single-
answer queries. We did not address open-domain entity linking, incomplete or noisy KGs, or more
complex answer types such as lists or aggregations. Additionally, while our approach is lightweight in
model size, training with reinforcement learning remains computationally demanding. We conducted
experiments on a single H100 GPU, which limits our ability to assess scalability. Questions around
energy efficiency, training cost, and feasibility for broader deployment remain open and deserve closer
attention in future work.

Future work includes combining supervised fine-tuning with RL to reduce sample complexity;
extending to end-to-end KGQA by integrating a learned entity linker; adapting the framework to other
structured domains such as NL2SQL; and studying how the agent’s policy complexity scales with model
size and query difficulty.

Declaration on Generative AI

During the preparation of this work, the author(s) used GPT-4o in order to: (i) check grammar and
spelling, (ii) assist with LaTeX formatting, and (iii) provide sparring and critical feedback on sections.
After using this tool, the author(s) reviewed and edited the content as needed and take full responsibility
for the publication’s content.

References

[1] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hellmann, M. Morsey,
P. Van Kleef, S. Auer, C. Bizer, DBpedia – A large-scale, multilingual knowledge base extracted
from Wikipedia, Semantic Web 6 (2015) 167–195. URL: https://journals.sagepub.com/doi/full/10.
3233/SW-140134. doi:10.3233/SW-140134.

https://journals.sagepub.com/doi/full/10.3233/SW-140134
https://journals.sagepub.com/doi/full/10.3233/SW-140134
http://dx.doi.org/10.3233/SW-140134


[2] D. Vrandečić, M. Krötzsch, Wikidata: a free collaborative knowledgebase, Communications of the
ACM 57 (2014) 78–85. URL: https://dl.acm.org/doi/10.1145/2629489. doi:10.1145/2629489.

[3] A. Hogan, E. Blomqvist, M. Cochez, C. D’amato, G. D. Melo, C. Gutierrez, S. Kirrane, J. E. L. Gayo,
R. Navigli, S. Neumaier, A.-C. N. Ngomo, A. Polleres, S. M. Rashid, A. Rula, L. Schmelzeisen,
J. Sequeda, S. Staab, A. Zimmermann, Knowledge Graphs, ACM Computing Surveys 54 (2022)
1–37. URL: https://dl.acm.org/doi/10.1145/3447772. doi:10.1145/3447772.

[4] N. Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson, J. Taylor, Industry-scale knowledge graphs:
lessons and challenges, Communications of the ACM 62 (2019) 36–43. URL: https://dl.acm.org/
doi/10.1145/3331166. doi:10.1145/3331166.

[5] Y. Zhang, H. Dai, Z. Kozareva, A. J. Smola, L. Song, Variational Reasoning for Question Answering
with Knowledge Graph, 2017. URL: http://arxiv.org/abs/1709.04071. doi:10.48550/arXiv.1709.
04071, arXiv:1709.04071 [cs].

[6] H. Sun, T. Bedrax-Weiss, W. Cohen, PullNet: Open Domain Question Answering with Iterative
Retrieval on Knowledge Bases and Text, in: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), Association for Computational Linguistics, Hong Kong,
China, 2019, pp. 2380–2390. URL: https://www.aclweb.org/anthology/D19-1242. doi:10.18653/
v1/D19-1242.

[7] H. Ren, H. Dai, B. Dai, X. Chen, M. Yasunaga, H. Sun, D. Schuurmans, J. Leskovec, D. Zhou, LEGO:
Latent Execution-Guided Reasoning for Multi-Hop Question Answering on Knowledge Graphs,
in: M. Meila, T. Zhang (Eds.), Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, PMLR, 2021, pp. 8959–8970.
URL: https://proceedings.mlr.press/v139/ren21a.html.

[8] B. Y. Lin, X. Chen, J. Chen, X. Ren, KagNet: Knowledge-Aware Graph Networks for Common-
sense Reasoning, 2019. URL: http://arxiv.org/abs/1909.02151. doi:10.48550/arXiv.1909.02151,
arXiv:1909.02151 [cs].

[9] J. Berant, A. Chou, R. Frostig, P. Liang, Semantic Parsing on Freebase from Question-Answer
Pairs, in: D. Yarowsky, T. Baldwin, A. Korhonen, K. Livescu, S. Bethard (Eds.), Proceedings
of the 2013 Conference on Empirical Methods in Natural Language Processing, Association
for Computational Linguistics, Seattle, Washington, USA, 2013, pp. 1533–1544. URL: https://
aclanthology.org/D13-1160/.

[10] H. Sun, B. Dhingra, M. Zaheer, K. Mazaitis, R. Salakhutdinov, W. Cohen, Open Domain Question
Answering Using Early Fusion of Knowledge Bases and Text, in: Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing, Association for Computational
Linguistics, Brussels, Belgium, 2018, pp. 4231–4242. URL: http://aclweb.org/anthology/D18-1455.
doi:10.18653/v1/D18-1455.

[11] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, O. Yakhnenko, Translating Embeddings for
Modeling Multi-relational Data., in: Neural Information Processing Systems, 2013.

[12] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le, D. Zhou, Chain-of-
Thought Prompting Elicits Reasoning in Large Language Models, 2023. URL: http://arxiv.org/abs/
2201.11903. doi:10.48550/arXiv.2201.11903, arXiv:2201.11903 [cs].

[13] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, Y. Cao, ReAct: Synergizing Reasoning
and Acting in Language Models, 2023. URL: http://arxiv.org/abs/2210.03629. doi:10.48550/arXiv.
2210.03629, arXiv:2210.03629 [cs].

[14] J. Jiang, K. Zhou, Z. Dong, K. Ye, W. X. Zhao, J.-R. Wen, StructGPT: A General Framework for
Large Language Model to Reason over Structured Data, 2023. URL: http://arxiv.org/abs/2305.09645.
doi:10.48550/arXiv.2305.09645, arXiv:2305.09645 [cs].

[15] S. Pan, L. Luo, Y. Wang, C. Chen, J. Wang, X. Wu, Unifying Large Language Models and Knowledge
Graphs: A Roadmap, IEEE Transactions on Knowledge and Data Engineering 36 (2024) 3580–3599.
URL: http://arxiv.org/abs/2306.08302. doi:10.1109/TKDE.2024.3352100, arXiv:2306.08302 [cs].

[16] A. Chakraborty, Multi-hop Question Answering over Knowledge Graphs using Large Lan-
guage Models, 2024. URL: http://arxiv.org/abs/2404.19234. doi:10.48550/arXiv.2404.19234,

https://dl.acm.org/doi/10.1145/2629489
http://dx.doi.org/10.1145/2629489
https://dl.acm.org/doi/10.1145/3447772
http://dx.doi.org/10.1145/3447772
https://dl.acm.org/doi/10.1145/3331166
https://dl.acm.org/doi/10.1145/3331166
http://dx.doi.org/10.1145/3331166
http://arxiv.org/abs/1709.04071
http://dx.doi.org/10.48550/arXiv.1709.04071
http://dx.doi.org/10.48550/arXiv.1709.04071
https://www.aclweb.org/anthology/D19-1242
http://dx.doi.org/10.18653/v1/D19-1242
http://dx.doi.org/10.18653/v1/D19-1242
https://proceedings.mlr.press/v139/ren21a.html
http://arxiv.org/abs/1909.02151
http://dx.doi.org/10.48550/arXiv.1909.02151
https://aclanthology.org/D13-1160/
https://aclanthology.org/D13-1160/
http://aclweb.org/anthology/D18-1455
http://dx.doi.org/10.18653/v1/D18-1455
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://dx.doi.org/10.48550/arXiv.2201.11903
http://arxiv.org/abs/2210.03629
http://dx.doi.org/10.48550/arXiv.2210.03629
http://dx.doi.org/10.48550/arXiv.2210.03629
http://arxiv.org/abs/2305.09645
http://dx.doi.org/10.48550/arXiv.2305.09645
http://arxiv.org/abs/2306.08302
http://dx.doi.org/10.1109/TKDE.2024.3352100
http://arxiv.org/abs/2404.19234
http://dx.doi.org/10.48550/arXiv.2404.19234


arXiv:2404.19234 [cs].
[17] A. Saxena, A. Tripathi, P. Talukdar, Improving Multi-hop Question Answering over Knowledge

Graphs using Knowledge Base Embeddings, in: Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, Association for Computational Linguistics, Online,
2020, pp. 4498–4507. URL: https://www.aclweb.org/anthology/2020.acl-main.412. doi:10.18653/
v1/2020.acl-main.412.

[18] Y. Gu, S. Kase, M. Vanni, B. Sadler, P. Liang, X. Yan, Y. Su, Beyond I.I.D.: Three Levels of Gener-
alization for Question Answering on Knowledge Bases, in: Proceedings of the Web Conference
2021, 2021, pp. 3477–3488. URL: http://arxiv.org/abs/2011.07743. doi:10.1145/3442381.3449992,
arXiv:2011.07743 [cs].

[19] W.-t. Yih, M.-W. Chang, X. He, J. Gao, Semantic Parsing via Staged Query Graph Generation:
Question Answering with Knowledge Base, in: Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), Association for Computational Linguistics,
Beijing, China, 2015, pp. 1321–1331. URL: http://aclweb.org/anthology/P15-1128. doi:10.3115/
v1/P15-1128.

[20] P. Liang, M. I. Jordan, D. Klein, Learning Dependency-Based Compositional Semantics, 2011. URL:
http://arxiv.org/abs/1109.6841. doi:10.48550/arXiv.1109.6841, arXiv:1109.6841 [cs].

[21] W.-t. Yih, M. Richardson, C. Meek, M.-W. Chang, J. Suh, The Value of Semantic Parse Labeling
for Knowledge Base Question Answering, in: Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), Association for Computational
Linguistics, Berlin, Germany, 2016, pp. 201–206. URL: http://aclweb.org/anthology/P16-2033.
doi:10.18653/v1/P16-2033.

[22] E. Karpas, O. Abend, Y. Belinkov, B. Lenz, O. Lieber, N. Ratner, Y. Shoham, H. Bata, Y. Levine,
K. Leyton-Brown, D. Muhlgay, N. Rozen, E. Schwartz, G. Shachaf, S. Shalev-Shwartz, A. Shashua,
M. Tenenholtz, MRKL Systems: A modular, neuro-symbolic architecture that combines large
language models, external knowledge sources and discrete reasoning, 2022. URL: http://arxiv.org/
abs/2205.00445. doi:10.48550/arXiv.2205.00445, arXiv:2205.00445 [cs].

[23] J. Sun, C. Xu, L. Tang, S. Wang, C. Lin, Y. Gong, L. M. Ni, H.-Y. Shum, J. Guo, Think-on-Graph:
Deep and Responsible Reasoning of Large Language Model on Knowledge Graph, 2024. URL:
http://arxiv.org/abs/2307.07697. doi:10.48550/arXiv.2307.07697, arXiv:2307.07697 [cs].

[24] J. Singh, R. Magazine, Y. Pandya, A. Nambi, Agentic Reasoning and Tool Integration for LLMs
via Reinforcement Learning, 2025. URL: https://www.microsoft.com/en-us/research/publication/
agentic-reasoning-and-tool-integration-for-llms-via-reinforcement-learning/.

[25] C. Snell, J. Lee, K. Xu, A. Kumar, Scaling LLM Test-Time Compute Optimally can be More Effective
than Scaling Model Parameters, 2024. URL: http://arxiv.org/abs/2408.03314. doi:10.48550/arXiv.
2408.03314, arXiv:2408.03314 [cs].

[26] X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdhery, D. Zhou, Self-Consistency
Improves Chain of Thought Reasoning in Language Models, 2023. URL: http://arxiv.org/abs/2203.
11171. doi:10.48550/arXiv.2203.11171, arXiv:2203.11171 [cs].

[27] S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, K. Narasimhan, Tree of Thoughts: Deliberate
Problem Solving with Large Language Models, 2023. URL: http://arxiv.org/abs/2305.10601. doi:10.
48550/arXiv.2305.10601, arXiv:2305.10601 [cs].

[28] Z. Shao, P. Wang, Q. Zhu, R. Xu, J. Song, X. Bi, H. Zhang, M. Zhang, Y. K. Li, Y. Wu, D. Guo,
DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models, 2024.
URL: http://arxiv.org/abs/2402.03300. doi:10.48550/arXiv.2402.03300, arXiv:2402.03300 [cs].

[29] H. Lightman, V. Kosaraju, Y. Burda, H. Edwards, B. Baker, T. Lee, J. Leike, J. Schulman, I. Sutskever,
K. Cobbe, Let’s Verify Step by Step, 2023. URL: http://arxiv.org/abs/2305.20050. doi:10.48550/
arXiv.2305.20050, arXiv:2305.20050 [cs].

[30] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, Y. Li, X. Wang, M. Dehghani,
S. Brahma, A.Webson, S. S. Gu, Z. Dai, M. Suzgun, X. Chen, A. Chowdhery, A. Castro-Ros, M. Pellat,
K. Robinson, D. Valter, S. Narang, G. Mishra, A. Yu, V. Zhao, Y. Huang, A. Dai, H. Yu, S. Petrov,

https://www.aclweb.org/anthology/2020.acl-main.412
http://dx.doi.org/10.18653/v1/2020.acl-main.412
http://dx.doi.org/10.18653/v1/2020.acl-main.412
http://arxiv.org/abs/2011.07743
http://dx.doi.org/10.1145/3442381.3449992
http://aclweb.org/anthology/P15-1128
http://dx.doi.org/10.3115/v1/P15-1128
http://dx.doi.org/10.3115/v1/P15-1128
http://arxiv.org/abs/1109.6841
http://dx.doi.org/10.48550/arXiv.1109.6841
http://aclweb.org/anthology/P16-2033
http://dx.doi.org/10.18653/v1/P16-2033
http://arxiv.org/abs/2205.00445
http://arxiv.org/abs/2205.00445
http://dx.doi.org/10.48550/arXiv.2205.00445
http://arxiv.org/abs/2307.07697
http://dx.doi.org/10.48550/arXiv.2307.07697
https://www.microsoft.com/en-us/research/publication/agentic-reasoning-and-tool-integration-for-llms-via-reinforcement-learning/
https://www.microsoft.com/en-us/research/publication/agentic-reasoning-and-tool-integration-for-llms-via-reinforcement-learning/
http://arxiv.org/abs/2408.03314
http://dx.doi.org/10.48550/arXiv.2408.03314
http://dx.doi.org/10.48550/arXiv.2408.03314
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2203.11171
http://dx.doi.org/10.48550/arXiv.2203.11171
http://arxiv.org/abs/2305.10601
http://dx.doi.org/10.48550/arXiv.2305.10601
http://dx.doi.org/10.48550/arXiv.2305.10601
http://arxiv.org/abs/2402.03300
http://dx.doi.org/10.48550/arXiv.2402.03300
http://arxiv.org/abs/2305.20050
http://dx.doi.org/10.48550/arXiv.2305.20050
http://dx.doi.org/10.48550/arXiv.2305.20050


E. H. Chi, J. Dean, J. Devlin, A. Roberts, D. Zhou, Q. V. Le, J. Wei, Scaling Instruction-Finetuned
Language Models, 2022. URL: http://arxiv.org/abs/2210.11416. doi:10.48550/arXiv.2210.11416,
arXiv:2210.11416 [cs].

[31] P. Ma, X. Zhuang, C. Xu, X. Jiang, R. Chen, J. Guo, SQL-R1: Training Natural Language to
SQL Reasoning Model By Reinforcement Learning, 2025. URL: http://arxiv.org/abs/2504.08600.
doi:10.48550/arXiv.2504.08600, arXiv:2504.08600 [cs].

[32] T. Dettmers, A. Pagnoni, A. Holtzman, L. Zettlemoyer, QLoRA: Efficient Finetuning of
Quantized LLMs, 2023. URL: http://arxiv.org/abs/2305.14314. doi:10.48550/arXiv.2305.14314,
arXiv:2305.14314 [cs].

http://arxiv.org/abs/2210.11416
http://dx.doi.org/10.48550/arXiv.2210.11416
http://arxiv.org/abs/2504.08600
http://dx.doi.org/10.48550/arXiv.2504.08600
http://arxiv.org/abs/2305.14314
http://dx.doi.org/10.48550/arXiv.2305.14314

	1 Introduction
	2 Related work
	3 Methodology
	3.1 Formalism: an agentic Markov Decision Process
	3.2 Agent–environment loop
	3.2.1 Knowledge‐graph execution environment
	3.2.2 Agent Prompting and Structured Actions.

	3.3 Policy optimization via Group Relative Policy Optimization (GRPO)
	3.3.1 Reward design for effective learning
	3.3.2 Training Protocol and Implementation.

	3.4 Design choices and scope

	4 Experimental Setup
	4.1 Dataset
	4.2 Core models and KG environment
	4.3 Training and compute setup
	4.4 Comparative baselines
	4.5 Evaluation protocol and metrics

	5 Results
	5.1 Quantitative performance
	5.2 Ablation: deconstructing agent performance
	5.3 Analysis of learning dynamics
	5.4 Qualitative and error analysis
	5.4.1 Error analysis: a shift to higher-quality failures.
	5.4.2 Case study: learned resilience and strategic decomposition.


	6 Discussion and Conclusion

