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Abstract

Recent advancements in the representation of knowledge via knowledge graphs have paved an intuitive way to
build scholarly knowledge for users and for artificial agents. Despite the expressiveness of knowledge graphs,
accessing these knowledge graphs requires proficiency in a query language such as SPARQL, presenting a barrier
for a multitude of users. In this study, we present a hybrid, end-to-end framework that (i) interprets user questions
expressed in natural language, (ii) classifies each query into one of four target categories (conferences, authors,
organizations, or papers) using a fine-tuned RoBERTa-Large model, (iii) synthesizes candidate SPARQL queries
via a large language model (GPT-40-mini) augmented with few-shot examples, and (iv) refines the raw query
results by reranking either the SPARQL output or, when necessary, fallback candidate items retrieved through
vector-space embeddings (indexed with FAISS). On a testbed of 92 manually crafted “gold-standard” SPARQL
queries, our automated pipeline achieved over 96% overlap with expert results (= 70% overlap in 89/92 cases),
with perfect consistency on conference, author, and organization queries and 90% coverage on paper queries
given the semantic nature of queries. Moreover, our query-type classifier achieved 99% accuracy, demonstrating
the reliability of schema selection. These results indicate that combining LLM-driven query synthesis with
embeddings-based reranking delivers a robust, user-centric interface to scholarly knowledge graphs, enabling
complex information retrieval without SPARQL expertise.
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1. Introduction

The contemporary development and widespread adoption of knowledge graphs have transformed the
way scholarly knowledge is represented and retrieved. These knowledge graphs, in the context of
scholarly knowledge, offer powerful tools for organizing and interpreting the vast and growing body of
scholarly content [1, 2]. Initiatives such as DBpedia [3] and Wikidata [4], along with more domain-
specific efforts like OpenResearch [5] and ScholarlyData [6], underscore the potential of knowledge
graphs to harmonize diverse metadata sources, enable sophisticated analytical queries, and foster deeper
insights into the structure and dynamics of academic research.

Despite their evident potential, these scholarly KGs primarily rely on SPARQL, a standardized query
language for RDF data, which is inherently complex and poses a significant barrier for widespread
adoption [7, 8]. Constructing effective SPARQL queries demands extensive knowledge of RDF schema
structure, semantic data models, and query syntax. These skills are rarely possessed by non-expert
users such as researchers, librarians, or policy-makers who often represent the primary beneficiaries of
such graphs [9].

In an effort to bridge this accessibility gap, various methods have been proposed to translate natural
language (NL) queries directly into structured query formats [10, 11]. Earlier approaches relied heavily
on manually crafted linguistic rules or structured templates, providing limited flexibility and requiring
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extensive maintenance [12]. Recent advancements leveraging machine learning, particularly deep learn-
ing and transformer-based language models, have opened promising avenues for more adaptive, scalable
query-generation methods [13, 14]. For instance, models like SPBERT and modern text-to-SPARQL
pipelines have significantly improved performance by learning syntactic and semantic representations
of SPARQL queries and domain knowledge jointly [12, 14]. Nonetheless, purely automated methods
still face challenges in consistently producing accurate and syntactically correct queries, particularly
for complex or nuanced user questions [11].

Furthermore, complementary research employing embedding-based retrieval techniques has demon-
strated significant success in handling semantic search and retrieval problems within knowledge bases
[15, 16]. Embeddings offer powerful mechanisms to approximate semantic similarity, enabling rapid
approximate-nearest-neighbor searches using high-dimensional vector representations, thus circum-
venting the strict matching constraints of purely symbolic query methods [17]. Tools such as FAISS
exemplify these advances by efficiently managing large-scale embedding indexes and enabling hybrid
or fallback retrieval strategies when symbolic queries fail [18].

Motivated by these recent developments, this paper introduces a novel hybrid approach designed
explicitly to simplify access to scholarly KGs for non-expert users. Our method synergistically combines
multiple contemporary techniques:

« Natural-language classification leveraging RoOBERTa-Large [13], fine-tuned to classify queries
into four target categories: conferences, authors, organizations, and papers.

+ Large Language Model (LLM)-based SPARQL generation, using GPT-40-mini [19], augmented
with type-specific few-shot examples, significantly improving the semantic precision of the
generated queries.

« Embedding-based reranking or fallback, utilizing vector-space embeddings (indexed via FAISS)
[18] to refine or directly retrieve results when symbolic SPARQL queries fail to return satisfactory
outputs.

We empirically demonstrate the effectiveness of our hybrid system through rigorous evaluations
against a set of 92 manually curated (*gold-standard”) SPARQL queries. Our pipeline achieves over 96%
overlap with expert-generated results, surpassing the 70% overlap threshold consistently, and demon-
strating perfect consistency in queries targeting conferences, authors, and organizations, alongside
robust performance on queries targeting research papers.

The subsequent sections are organized as follows: Section 2 presents related literature on Natural
Language-to-SPARQL translation, embedding-based retrieval, and hybrid approaches. Section 3 dives
into the background associated with this study, section 4 details our hybrid system architecture. Section
5 outlines the experimental setup, datasets, and evaluation metrics, followed by a detailed discussion of
results. Section 6 discusses limitations and future extensions. Section 7 concludes the study with an
intuitive summarization of findings.

2. Related Works

2.1. Natural-Language Interfaces to Knowledge Graphs

Early approaches to natural-language interfaces for querying structured knowledge graphs primarily
relied on rule-based grammars, templates, and manually engineered mappings between language
patterns and ontological constructs [1, 2]. Systems such as Sparklis [20] facilitated interactive query
formulation, allowing users to iteratively refine queries through structured templates. Despite their
effectiveness, these systems required extensive manual maintenance, making them difficult to scale
across large, evolving knowledge bases.

Recent advancements have shifted toward leveraging large language models (LLMs) to enhance
natural language interfaces for knowledge graphs. For instance, the EDGE system integrates LLMs to
facilitate natural language interactions with educational knowledge graphs, improving user experience



in data exploration [21]. Additionally, following framework utilizes Retrieval-Augmented Generation
(RAG) to enhance SPARQL query generation, reducing semantic errors and improving robustness [22].

2.2. Large Language Models (LLMs) for Query Generation

The advent of pre-trained LLMs such as GPT-3 and GPT-4 has significantly reshaped the landscape of
semantic parsing and query synthesis. These models can translate natural-language queries into formal
queries like SPARQL with minimal annotated examples [23, 24]. Few-shot prompting techniques have
been shown to generalize query generation across diverse knowledge schemas, reducing the need for
extensive domain-specific annotations [24].

To address challenges like hallucinations and out-of-distribution errors in LLM-generated queries,
Sharma et al. introduced PGMR (Post-Generation Memory Retrieval), a modular framework that sepa-
rates query structure generation from knowledge retrieval. This approach significantly reduces the
incidence of hallucinated URIs in SPARQL query generation [25]. Frameworks like FRASE leverage
frame-semantic structured representations to improve generalization in SPARQL query generation,
particularly in scenarios involving naturally phrased, template-free questions [26]. Moreover, SPARKLE
integrates knowledge graph structures directly into the decoding process of LLMs, reducing the occur-
rence of inoperative query generations [27].

2.3. Embedding-Based Retrieval and Reranking

Embedding-based retrieval methods provide an effective complementary mechanism for structured
queries by representing entities and their relationships within vector spaces [11, 12]. These techniques
allow rapid approximate-nearest-neighbor search, exemplified by frameworks such as Facebook’s FAISS
library [28]. Embeddings have proven highly effective for entity retrieval and semantic search tasks
[13], enabling efficient retrieval of relevant entities even in the absence of explicit symbolic matches.

Hybrid approaches combining symbolic and neural methods have recently emerged, demonstrating
superior performance by reranking symbolic query results using embeddings [29, 30]. Graph-based
reranking methods have been explored to enhance the selection of optimal query graphs in Knowledge
Base Question Answering systems. Jia and Chen proposed a two-step approach involving initial
ranking followed by reranking of query graphs, leading to improved retrieval accuracy [31]. The KGR3
framework integrates retrieval, reasoning, and reranking components to enhance knowledge graph
completion tasks, using context-enriched modules to improve prediction accuracy [32]. Additionally,
ReranKGC introduces a cooperative retrieve-and-rerank framework for multi-hop knowledge graph
completion, improving accuracy and efficiency [33].

2.4. Positioning Our Work

Our research advances the state-of-the-art by integrating several successful strategies into a unified
pipeline tailored specifically for scholarly knowledge graphs. Specifically, our hybrid architecture
synthesizes:

+ Natural-language classification using RoOBERTa-Large, achieving near-perfect query-type identifi-
cation accuracy.

+ LLM-driven (GPT-40-mini) SPARQL generation augmented by few-shot examples, significantly
reducing reliance on manually annotated datasets.

« Embedding-based refinement (FAISS) employed both as a fallback mechanism and a reranking
technique to enhance retrieval accuracy.

« LLM-based summarization of the results as according to the user query

Our work represents the systematic effort to integrate LLM-based SPARQL generation with embedding-
based reranking specifically targeted at scholarly knowledge graphs, achieving expert-level retrieval
quality without extensive manual annotations or user SPARQL expertise.



3. Background

3.1. Scholarly Data Management: An Evolving Landscape

The past decade has witnessed substantial evolution in scholarly data management, marked by a shift
from isolated bibliographic databases to richly structured, interconnected knowledge graphs (KGs). Un-
like traditional relational databases, scholarly knowledge graphs utilize semantic web standards such as
RDF (Resource Description Framework) and OWL (Web Ontology Language) to integrate heterogeneous
academic metadata seamlessly [34, 35, 36]. These structured graphs empower researchers, libraries,
and institutions to discover relationships among authors, publications, conferences, and institutions
previously concealed in disparate databases [6]. By enabling queries that traverse multiple dimensions,
such as author affiliations, citation patterns, and co-authorship networks, scholarly knowledge graphs
have profoundly transformed the capabilities of bibliometric analysis and academic discovery [35].

Yet, the complexity inherent in these rich semantic structures introduces a notable barrier: tradi-
tional querying mechanisms, particularly SPARQL (the standardized language for querying RDF-based
knowledge graphs), are notoriously difficult to master without extensive training [7]. This limitation
confines scholarly graph utilization largely to data engineers or semantic web specialists, excluding the
broader academic community who stand to benefit most.

3.2. Towards Democratizing Access to Scholarly Knowledge

The growing recognition of this limitation has prompted efforts toward developing intuitive, user-
friendly query interfaces. Central to this vision is the concept of natural language querying, a paradigm
that seeks to leverage users’ inherent linguistic capabilities to interact with complex data structures
without explicit technical knowledge [37]. However, natural language interfaces introduce their own
set of challenges: ambiguity, variability in linguistic expression, and difficulty translating informal
questions into precise symbolic queries [2].

Simultaneously, advancements in deep learning and natural language processing have opened path-
ways toward bridging this gap. Particularly transformative are pre-trained large language models
(LLMs), capable of generating structured queries such as SPARQL from plain-language user prompts,
thereby drastically simplifying user interactions with semantic web resources [38]. Nonetheless, the
effective application of LLMs to scholarly data introduces practical concerns, especially regarding accu-
racy, consistency, and the need for validation mechanisms ensuring generated queries yield meaningful,
high-quality results [38].

3.3. The Complementary Role of Embeddings

A parallel and complementary technological advancement has emerged through embedding-based
retrieval methods. Embeddings provide semantic vector-space representations of entities (authors,
papers, conferences, organizations), capturing subtle semantic relationships beyond direct symbolic
matches [35]. By transforming entities into continuous vector representations, embeddings facilitate
rapid approximate nearest-neighbor searches, thus enabling efficient retrieval of semantically similar
results without rigid symbolic constraints [28]. This technology, operationalized through libraries like
FAISS, has become essential in scenarios demanding real-time semantic retrieval at scale [28].

However, embedding-based approaches alone cannot fully leverage structured relationships explicitly
encoded in scholarly KGs. Thus, an ideal query mechanism combines symbolic querying (SPARQL) and
embedding-based semantic retrieval into a unified, hybrid framework that maximizes the strengths of
both paradigms: symbolic precision with embedding-driven semantic flexibility.

3.4. Research Gap and Motivation

Existing methods in scholarly KG querying predominantly focus either on precise symbolic querying
(via SPARQL) or purely semantic embedding-based retrieval, with relatively limited exploration of



how best to integrate these paradigms effectively in scholarly contexts. The complexity, diversity, and
specialized nature of scholarly metadata call for a bespoke hybrid solution specifically designed to
address domain-specific queries reliably and intuitively [36].

The necessity for a robust hybrid approach is driven by practical considerations: researchers require
both accurate and comprehensive query results that align closely with their semantic intent. This
demands a mechanism that dynamically utilizes the strengths of symbolic SPARQL querying for
structured precision, complemented by embeddings to maintain semantic coherence and manage cases
where symbolic retrieval falls short or returns inadequate results [37].

3.5. Our Approach: Bridging Symbolic and Semantic Retrieval

Responding to this pressing need, our work presents a tailored hybrid architecture explicitly designed
for scholarly knowledge graphs. We incorporate advanced machine learning methods, specifically
a RoBERTa-Large classifier for robust query categorization, GPT-40-mini for reliable generation of
SPARQL queries from natural language inputs, and FAISS-based embeddings for semantic refinement
and fallback retrieval. This synthesis uniquely positions our work, offering a comprehensive solution
that addresses existing gaps by seamlessly integrating symbolic query precision and embedding-based
semantic flexibility in scholarly knowledge graphs.

The subsequent sections of this paper detail this integration and empirically validate its effectiveness,
demonstrating that such a hybrid approach significantly enhances the accessibility and usability of
scholarly knowledge graphs for non-technical users.

4. Methodology

This study proposes a comprehensive methodology to introduce a natural language interface for
querying the scholarly knowledge graph. It employs natural language processing (NLP) techniques,
large language models (LLM), semantic embeddings, and symbolic query execution to constitute into a
GraphRAG system underlying the natural language query interface.
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Figure 1: Diagram illustrating the key components of the semantic search methodology

4.1. Knowledge Graph Preparation and Embeddings Generation
4.1.1. Dataset Acquisition and Graph Setup

We initiated the study by acquiring the ScholarlyData knowledge graph, a prominent RDF-based dataset
encompassing structured metadata on conferences, research papers, authors, and organizations. The



ScholarlyData graph was imported into a semantic graph database environment (e.g., Apache Jena,
GraphDB), enabling efficient storage, indexing, and SPARQL querying.

4.1.2. Semantic Embeddings Creation

To support embedding-based retrieval, we computed separate semantic embeddings for each of the four
primary entity categories within the scholarly knowledge graph:

« Conferences
 Authors

« Organizations
» Papers

Embeddings were generated using a pre-trained transformer-based language model, specifically
Sentence-BERT, to convert textual descriptions (e.g., titles, abstracts, names, organizational descriptions)
into continuous, dense vector representations capturing semantic meaning. These embeddings were
indexed using Facebook’s FAISS library, allowing efficient approximate nearest-neighbor retrieval at
query time.

4.2. Query Type Classification using RoBERTa-Large

To determine the category of entities targeted by user-submitted natural-language queries, we finetuned
a supervised classification method based on RoBERTa-Large, a robust transformer-based language
model optimized for text classification tasks.

4.2.1. Automated Federated Dataset Construction

Training data for query-type classification was auto generated using GPT-4. We created a federated
training/evaluation dataset containing diverse natural-language query examples synthetically paired
with their corresponding entity types (conference, author, organization, or paper). This automated
process ensured extensive linguistic coverage without manual annotation efforts. Following is the
distribution of the dataset:

Model Training Samples Test Samples
RoBERTa-large (fine-tuned) 772 100

Table 1
Dataset size for fine-tuning RoBERTa-large on query type classification.

4.2.2. Fine-Tuning RoBERTa-Large Classifier

The RoBERTa-Large model was fine-tuned on the generated dataset using a supervised training approach,
employing standard hyperparameters (learning rate: 2 x 10>, batch size: 16, maximum token length:
128). RoBERTa-Large was chosen for its strong performance on a wide range of natural language
understanding tasks, particularly in scenarios requiring nuanced contextual representations, making it
well-suited for accurately interpreting diverse scholarly queries. This resulted in a high-performance
model capable of reliably classifying user queries into the defined entity types, facilitating targeted
downstream retrieval.

4.3. SPARQL Query Generation via GPT-40-mini

Following query-type identification, the natural-language queries were transformed into executable
SPARQL queries using the GPT-40-mini language model.



4.3.1. Few-Shot Prompt Engineering

To guide GPT-40-mini in generating accurate SPARQL queries, we implemented a few-shot learning
approach tailored for each query type. Specifically, we provided carefully curated examples of natural-
language queries paired with correctly structured SPARQL queries corresponding to scholarly KG
schemas. These prompts ensured GPT-40-mini could effectively generalize from limited examples,
generating syntactically valid and semantically accurate SPARQL queries.

4.3.2. Query Execution

The SPARQL queries generated by GPT-40-mini were directly executed against the semantic knowledge
graph database. The results retrieved from these symbolic queries formed the primary candidate set for
answering user queries.

4.4. Hybrid Retrieval and Reranking Approach

To ensure semantic relevance and retrieval quality, we incorporated a hybrid retrieval and rerank-
ing strategy that dynamically integrated symbolic SPARQL results with embedding-based semantic
similarity computations.

4.4.1. Embedding-based Result Reranking

When SPARQL queries returned a sufficient number of results (> 5), the retrieved entities were seman-
tically reranked using cosine similarity scores calculated between their embeddings and the embedding
of the user’s natural-language query. This step enhanced semantic coherence and reduced ambiguity
inherent in purely symbolic query results.

4.4.2. Embedding-only Retrieval (Fallback Mechanism)

If SPARQL queries returned insufficient results (< 5) or no results, indicating either semantic mismatches
or query complexity, our system defaulted directly to embedding-based retrieval. Specifically, we queried
the FAISS-indexed embeddings of the identified entity type using the original natural-language query,
retrieving the top-k nearest entities based on semantic similarity scores.

4.4.3. GraphRAG-based Answer Generation

Following the reranking and retrieval of the final results, the conclusive step of the GraphRAG was
triggered. The top-k embedding results and the original natural-language query were provided back into
GPT-40-mini. Leveraging Retrieval-Augmented Generation, GPT-40-mini synthesized these retrieved
entities into a coherent, contextually relevant, natural-language summary that directly addressed the
user’s query.

5. Evaluation

To validate the effectiveness and accuracy of our proposed hybrid query system, we designed a com-
prehensive evaluation involving rigorous experimental setups, comparative analyses against manually
constructed ground-truth queries, and a detailed assessment of results across multiple dimensions.

5.1. Experimental Setup

5.1.1. Dataset and Gold-Standard Queries

We prepared a dataset comprising 92 manually crafted natural-language queries, each paired with
expertly constructed corresponding SPARQL queries, hereafter referred to as the gold-standard queries.



These queries were selected to reflect realistic academic information needs and were distributed across
four distinct categories:

« Conferences (22 queries)

+ Authors (25 queries)

+ Organizations (20 queries)
« Papers (25 queries)

The diversity and representativeness of the queries ensured robust coverage of typical scenarios
encountered in scholarly querying tasks.

5.1.2. Evaluation Metrics

To quantitatively measure retrieval effectiveness, we employed the following metrics:
Overlap Percentage: Defined as the intersection of retrieved entities by our automated pipeline and
the manually retrieved entities (gold-standard), normalized by the size of the gold-standard result set:

R nR
Overlap = Rauto 0 Rmanuall x 100%

|Rmanual |

Threshold Accuracy: We established a performance threshold at 70% overlap, considering queries
achieving this threshold as successfully answered. This threshold was selected to balance recall and
precision while remaining practically useful for typical scholarly use cases.

5.1.3. Comparative Baselines
For thoroughness, our automated approach was compared primarily against:

« Manually constructed SPARQL queries.
+ A pure embedding-based retrieval baseline using FAISS without symbolic query generation.

This allowed us to highlight the advantages of our hybrid model in both structured and semantic
contexts.

5.2. Results and Analysis
5.2.1. Overall Performance
Out of the 92 queries evaluated, our hybrid retrieval system achieved the following outcomes:

« Successful Retrieval (=70% overlap): 89 queries (96%)
« Mean Overlap Percentage (all queries): 92.5%

These results indicate that the vast majority of automated queries closely approximated expert-level
query quality.

5.2.2. Performance by Entity Type

We further analyzed performance separately for each query category to assess consistency across
different scholarly query contexts.

These breakdowns illustrate particularly robust consistency in conference, author, and organization
queries, with only slightly lower performance on paper-related queries, possibly due to higher semantic
complexity inherent in publication metadata.



Table 2
Performance by Query Type

Entity Type Queries =70% Overlap Accuracy (%) Mean Overlap (%)

Conferences 22 22 100% 95.2%
Authors 25 25 100% 94.8%
Organizations 20 20 100% 96.0%
Papers 25 22 88% 88.4%
Overall 92 89 96% 92.5%

Prediction Accuracy by Query Type

I Correct (=70% Overlap)
Incorrect (<70% Overlap)

Number of Queries

Conferences Authors Organizations Papers Overall

Figure 2: Diagram reflecting the accuracy of the methodology

5.2.3. Query Type Classification Accuracy

The RoBERTa-Large classifier demonstrated exceptional effectiveness, achieving an accuracy of 99%
in predicting query categories on the federated validation set. This high classification accuracy was
instrumental in routing each query to the correct generation and retrieval pipeline.

5.3. Comparative Analysis: Symbolic vs. Embedding-only Retrieval

To better understand the benefit of our hybrid strategy, we compared it with a baseline using FAISS
embeddings only (no symbolic query generation):

Table 3

Hybrid vs. Embedding-only Retrieval
Retrieval Method Queries =70% Overlap
Embedding-only retrieval 62 /92 (67%)
Hybrid (Ours) 89 /92 (96%)

Our hybrid approach significantly outperformed the pure embedding baseline, underscoring the value
of combining symbolic SPARQL generation with embedding-based reranking and fallback mechanisms.



5.4. Discussion and Interpretation

The results clearly demonstrate that our hybrid retrieval method effectively bridges the gap between
SPARQL expertise and user-friendly natural-language interfaces. Key findings include:

» Robust query-type classification: The 99% classification accuracy ensured precise identification
of query intent, enabling targeted downstream processing.

+ Balanced hybrid strategy: The integration of symbolic querying with embedding-based rerank-
ing delivered consistent results, addressing weaknesses of either method alone.

« Semantic flexibility: Embedding-based reranking improved semantic coherence and compen-
sated for variability in query phrasing.

5.5. Limitations and Error Analysis

Despite the strong overall performance, several limitations were observed:

+ The number of test dataset was short, it comprised of 92 manually curated examples.
o The federated dataset created for the training of RobertaLarge might contain some bias or lack of
proper generalization when tested over a huge number of queries.

Future work will include having a larger evaluation dataset curated by experts, improving entity
embeddings, expanding few-shot prompt coverage for LLMs and explore other finetuned llms to
generate SPARQL query, and exploring advanced reranking strategies to further enhance the accuracy
and robustness of results across all entity types.

6. Conclusion

In this study, we presented a robust hybrid framework that enables natural-language querying of
scholarly knowledge graphs by combining the precision of symbolic SPARQL generation with the
flexibility of embedding-based retrieval. Our system leverages a fine-tuned RoBERTa-Large classifier
for query type prediction, GPT-40-mini for SPARQL generation guided by few-shot prompting, and
FAISS-indexed semantic embeddings for result reranking and fallback retrieval. This architecture
bridges the gap between expert-level structured querying and accessible, intuitive user interfaces.

Through extensive evaluation against a curated set of 92 gold-standard SPARQL queries, our approach
achieved a 96% success rate in matching expert results, with a mean overlap of 92.5%, demonstrating
its effectiveness in replicating expert performance. The integration of GraphRAG further ensured
meaningful answers even in cases where symbolic retrieval alone was insufficient.

Our findings highlight the practical potential of combining LLM-driven query generation with
embedding-based semantic reasoning to improve the accessibility and usability of scholarly knowledge
graphs for non-expert users. Future work will explore multilingual query support, dynamic schema
adaptation, user feedback integration, and expansion to other domains beyond scholarly metadata.
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