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Abstract
The Kubernetes open source system is a "de facto" standard for automating deployment, scaling, and manage-
ment of containerized applications. However, its static approach to QoS classifications (Guaranteed, Burstable,
BestEffort) and default autoscalers (HPA, KPA) often fall short in large scale and high dynamic applications. Key
limitations include lack of application awareness, reliance on limited metrics, latency in scaling actions, and poor
handling of cold starts. Furthermore, incorrect configuration of resource requests and overcommitment can lead
to inefficient scaling and service degradation. These challenges highlight the need for adaptive, application-aware
autoscaling strategies and precise resource provisioning to ensure reliable QoS under resource contention. To
address these challenges, predictive autoscaling emerges as a promising direction—leveraging historical data
and machine learning techniques to anticipate workload patterns and proactively adjust resources before per-
formance issues arise. This work examines current limitations in Kubernetes autoscaling and outlines future
directions, emphasizing adaptive, application-aware, and predictive strategies for more efficient and reliable
resource provisioning under dynamic workloads and resource contention.
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1. Introduction

Kubernetes [1], commonly called K8s, is an open-source container orchestration platform that has
become the de facto standard for deploying, managing, and scaling containerized applications in edge-
cloud environments. It is suitable for on-premises, hybrid, or public cloud infrastructure and for a
wide range of workloads, from microservices and web applications to machine learning pipelines and
real-time data processing. In a Kubernetes environment, a Pod is the smallest (i.e., the fundmental)
unit for deploying and managing containerized applications. Each Pod contains a single application
instance and can hold one or more containers. Kubernetes manages Pods as part of a deployment and
can perform vertical or horizontal scaling as needed. In such a context, Quality of Service (QoS) is a
mechanism for prioritizing resource allocation among Pods based on their resource requirements and
usage. In real-world scenarios, the Pod workload varies based on the characteristics of each service [2].
To ensure performance isolation and efficient resource sharing, Kubernetes categorizes Pods into QoS
classes: Guaranteed, Burstable, and BestEffort, based on their resource requests and limits.

Autoscaling in Kubernetes, enabled by default components such as the Horizontal Pod Autoscaler
(HPA) and Kubernetes-based Event-Driven Autoscaler (KEDA), allows workloads to adjust to changing
demands. However, these mechanisms typically rely on basic metrics like CPU and memory usage and
operate without a deep understanding of application-specific performance goals. This can result in
suboptimal scaling behavior, especially in dynamic and latency-sensitive scenarios such as e-commerce

QualITA 2025: The Fourth Conference on System and Service Quality, June 25 and 27, 2025, Catania, Italy
*Corresponding author.
†
These authors contributed equally.
$ jiregnaabdissa.olana@unime.it (J. A. Olana); mgiacobbe@unime.it (M. Giacobbe); szanafi@unime.it (S. Zanafi);
apuliafito@unime.it (A. Puliafito)
� 0009-0002-2220-1359 (J. A. Olana); 0000-0001-6178-7132 (M. Giacobbe); 0000-0002-0126-7837 (S. Zanafi);
0000-0003-0385-2711 (A. Puliafito)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:jiregnaabdissa.olana@unime.it
mailto:mgiacobbe@unime.it
mailto:szanafi@unime.it
mailto:apuliafito@unime.it
https://orcid.org/0009-0002-2220-1359
https://orcid.org/0000-0001-6178-7132
https://orcid.org/0000-0002-0126-7837
https://orcid.org/0000-0003-0385-2711
https://creativecommons.org/licenses/by/4.0/deed.en


platforms during peak traffic, video streaming services under load, or edge computing applications with
constrained resources [3].

The weaknesses of reactive autoscaling techniques have been more evident in recent years, particularly
in systems where availability, throughput, or latency are crucial. Scaling-up is usually only initiated
by reactive ways after performance decline is identified, which frequently leads to delayed reaction.
Predictive autoscaling techniques [4], which change the paradigm from reaction to anticipation, have
gained popularity as a result. Predictive autoscaling allows systems to anticipate future demand and
make necessary resource adjustments using historical trends, real-time, and sophisticated forecasting
models. This change enhances the general effectiveness and stability of native cloud deployments
in addition to helping to meet strict service-level objectives (SLOs). Predictive techniques provide a
possible path for next-generation orchestration and resource management in edge-cloud systems, where
workloads might be bursty and delay-sensitive. It represent a really promising direction for the future.

This paper addresses the challenges in current Kubernetes autoscaling with respect to maintaining
QoS guarantees and highlights the need for adaptive, application-aware strategies that can better align
with service-level objectives and workload characteristics.

2. Related Works

The increasing proliferation of time-sensitive, large-scale applications and services needs scalable and
low-latency infrastructures capable of meeting stringent performance requirements. In hybrid edge-
cloud architectures [5], autoscaling has become a vital methodology for dynamic resource management
under varying workload conditions. The impact concerns also IoT networks because they need to
support dynamic scalability, thus to adapt the workload in real time to varying data volumes and
computational demands [6]. Traditional autoscaling approaches are predominantly reactive, initiating
scaling actions based on static thresholds of system metrics such as CPU utilization, memory usage, or
response latency. These methods often suffer from delayed reactions to workload changes, thus resulting
in two major issues: (i) under-provisioning, where insufficient resources lead to service degradation,
and (ii) over-provisioning, where excessive resource allocation causes unnecessary operational costs.
To mitigate these drawbacks, predictive autoscaling utilizes workload forecasting to enable proactive
and efficient scaling decisions.

In [7] a predictive Decision Tree Regression (DTR) policy is used for Kubernetes vertical pod au-
toscaling (VPA). Although the approach is a typical example of reactive method applied to a Kubernetes
architecture, it is useful to understand the importance of balancing VPA and HPA in a coordinated
manner to avoid over-provisioning and resource bottlenecks.

A cost-optimized predictive autoscaling model that integrates queuing theory and game theory to
enhance cloud resource management is presented in [8]. Using M / M / c and M / G / 1 queuing models,
the approach dynamically adjusts resource allocation based on workload variations and significantly
reduces over-provisioning costs by up to 30%, while maintaining a low request waiting time below 100
ms in peak scenarios.

A predictive autoscaling framework, leveraging ML techniques to anticipate and proactively adjust
the resources allocated to containerized applications, is discussed in [4]. Results highlight the framework
is a good starting point to maintain QoS within defined thresholds.

A novel graph-based proactive HPA strategy for microservices using long short-term memory (LSTM)
and graph neural network (GNN) based prediction methods, namely Graph-PHPA, is presented in
[9]. The proposed model is specifically designed to predict vCPU utilization, incorporating workload
characteristics as its main input attribute.

Moreover, it is also important to guarantee specific SLOs for the IoT applications running on the "fog"
micro datacenters (i.e., at the architectural layer between the edge and the cloud). The automatic scaling
of allocated resources by efficiently utilizing the available infrastructure capacity is mandatory for QoS.
A novel predictive autoscaling method for the microservice-based application hosted in a containerized
fog computing infrastructure is presented in [10]. The method uses a forecasted workload to identify



the number of containers required to serve the workload with minimal response time SLOs violations.
Specifically, the authors used two benchmark applications to emulate the CPU-bound workload: the fast
Fourier transform (FFT) application, and the ML application. A regression-based supervised machine
learning algorithm (SVR) has been implemented to predict the next time interval of temperature using
historical access logs collected from the sensors.

3. QoS-Aware Autoscaling: Background and Challenges

Autoscaling in Kubernetes faces several significant challenges that can impact the system’s overall
performance and efficiency. One of the primary concerns is latency in scaling decisions. Autoscalers
may not always react quickly enough to sudden spikes in workload, which can lead to a degradation in
performance. This delay in scaling actions makes it harder to maintain consistent service quality under
fluctuating demands.

Another issue that arises is resource over-provisioning or under-provisioning. Many scaling
decisions are based on narrow metrics such as CPU utilization or concurrency, which do not always
provide a complete picture of the system’s needs. This can result in either excessive resource allocation,
leading to wasted capacity [11], or insufficient resource allocation, which can cause performance
bottlenecks and inefficiencies.

Additionally, cold start latency is a significant factor. When scaling down to zero replicas, the need
to reinitialize Pods introduces startup delays. These delays can affect response times and, consequently,
user experience, especially during periods of sudden traffic.

The configuration of resource requests and limits plays a critical role in shaping autoscaling behavior.
When these configurations are suboptimal, several issues can arise. For instance, evictions occur when
Pods exceed their allocated resource limits, leading to terminations that affect service availability. Simi-
larly, inefficient resource utilization can happen when requests are overestimated, leading to wasted
resources, or when requests are underestimated, causing resource contention. These misconfigurations
also lead to scaling inefficiencies, as autoscalers may struggle to make timely and appropriate scaling
decisions.

Another significant challenge lies in the lack of application-specific insights in current autoscaling
strategies. Without understanding the application’s unique performance characteristics, scaling deci-
sions are often made based on generic metrics. This misalignment can result in suboptimal scaling
decisions, where autoscalers fail to account for nuances in the application’s behavior, thus failing to
meet its specific requirements. This can also lead to an inability to meet SLOs, as the autoscaling
mechanisms may not be aware of critical application requirements.

Finally, the practice of overcommitting resources—setting requests significantly lower than actual
usage—can have serious consequences. This often leads to resource contention, where multiple
Pods compete for the same insufficient resources, degrading overall system performance. Moreover,
frequent evictions may occur as the system struggles to handle resource pressure, and unpredictable
scaling becomes a norm, as overcommitment complicates the autoscaler’s ability to make accurate
predictions and plan resource allocation effectively.

4. Research Directions and Proposed Approach

Table 1 highlights the core differences between Kubernetes’ current static resource management
approach and a proposed dynamic, AI-enabled alternative. Static approach lacks flexibility and does
not account for dynamic workload behavior or application-specific requirements [12]. In contrast, the
proposed approach introduces intelligent autoscaling mechanisms that continuously adapt resource
allocations based on live metrics, predicted load, and SLOs. Techniques such as reinforcement learning
(RL)[13, 14, 15] and time-series forecasting [16, 17] can be employed to anticipate traffic patterns and
proactively scale applications before resource bottlenecks occur. In particular, RL adjusts resources by



learning from ongoing interactions with the application environment. Over time, decisions are refined
based on how well they meet SLOs while optimizing resource utilization.

Hybrid models [18] emerged to combine forecasting with RL by feeding predictive data into the learn-
ing agents. This combination improves both the precision and the consistency of autoscaling decisions,
leveraging forecasts for short-term accuracy and the adaptability of RL for long-term optimization. This
combination balances forecast accuracy with long-term optimization power of RL.

Moreover, integrating application-level or custom [19] metrics (e.g., latency, request rate, error rate)
enables more fine-grained and QoS-aligned scaling decisions. The shift from reactive, threshold-based
rules to adaptive and predictive policies represents a fundamental challenge in modern cloud-native
systems. By adopting AI-based models, Kubernetes can evolve into a more resilient and efficient
platform capable of meeting the demands of dynamic and complex workloads.

4.1. Ensuring QoS Through Predictive and Proactive Autoscaling

Maintaining Quality of Service (QoS) in cloud-native and latency-sensitive applications requires to pre-
vent SLA violations, especially under dynamic and unpredictable workloads. To address this limitation,
in our approach we integrate both predictive and proactive strategies. Although these terms are related,
they represent distinct components in an effective QoS-oriented architecture.

Predictive autoscaling involves the use of forecasting models (e.g., time series analysis, statistical
learning, or ML) to anticipate future resource demands based on historical and real-time telemetry data.
These models enable systems to estimate upcoming workload intensities or performance bottlenecks
with varying degrees of accuracy.

Proactive autoscaling, instead, refers to the system’s ability to act in advance of anticipated
changes. It translates predictive insights into timely resource provisioning actions. For example, if a
model predicts a significant increase in request traffic within the next interval, a proactive policy may
scale out the application pods before the traffic spike occurs, thereby preserving response time and
system stability.

The combination of predictive foresight with proactive execution is critical for QoS preservation.
Predictive models alone offer valuable insights, but without timely action, they do not mitigate perfor-
mance degradation. On the other side, without accurate forecasting, proactive actions risk unnecessary
resource allocation or delayed responses. Together, these mechanisms enable a more intelligent and
adaptive scaling behavior that minimizes latency, maintains throughput, and reduces the likelihood of
SLA violations.

Therefore, the joint application of predictive and proactive techniques constitutes a robust strategy
for QoS-aware autoscaling in modern cloud environments.

4.2. Proposed AI-driven Predictive and Proactive Autoscaling System

A conceptual model on the integration of a predictive autoscaler based on AI/ML technologies is
shown in Figure 1. In particular, the AI/ML Predictive Autoscaler is designed as part of a hybrid
scenario in which proactive policies are deployed.

It represents the starting point for the evolution of the Kubernetes static QoS model to a dynamic
AI-driven proactive autoscaling system.

We expand on the previously presented system by categorizing application types according to
their requirements for autoscaling and connecting them to suitable prediction methods according to
operational objectives and application logic. Because it ignores workload unpredictability and temporal
shifts, current Kubernetes autoscaling, which is usually reactive and linked to static CPU/memory
thresholds, frequently fails in dynamic contexts. We suggest a versatile autoscaling technique that
makes use of prediction models derived from both historical and real-time data in order to get around
this. This makes proactive resource provisioning possible, predicting demand before performance
declines. In addition, the architecture supports particular performance objectives such as low latency,
fast throughput, and lower error rates. Two major problems with traditional autoscaling are that it



Table 1
From Static QoS to Dynamic, AI-Driven Autoscaling in Kubernetes

Aspect Static Approach (Current Kuber-
netes)

Dynamic/Intelligent Approach
(Proposed)

Main Challenge Static QoS and scaling policies do not
reflect dynamic service requirements

Evolve toward dynamic, intelligent
autoscaling systems that align re-
source allocation with real-time de-
mands

QoS Classification Three fixed QoS classes (Guaranteed,
Burstable, BestEffort) based on static
resource requests/limits

Fine-grained, context-aware QoS lev-
els inferred from real-time workload
and system metrics

Autoscaling Logic Threshold-based policies (e.g., CPU
> 80%) drive decisions with limited
adaptability

Predictive, AI-driven policies using
ML models (e.g., time series, RL) to
anticipate workload changes

Resource Awareness Blind to runtime behavior; resources
allocated statically at deployment
time

Continuously adjusted based on ob-
served usage patterns and workload
characteristics

Application Awareness Lacks integration with application-
specific metrics or SLOs

Incorporates custom application met-
rics (e.g., latency, errors, throughput)
to guide scaling

Cold Start and Scaling
Latency

No proactive scaling; user experience
impacted during traffic surges

AI-enabled pre-scaling and warm-up
strategies based on predicted load

Adaptivity Manual tuning; reactive to metric
breaches

Self-adaptive through feedback
loops; auto-tuning of scaling param-
eters over time

Figure 1: Evolution of the Kubernetes static QoS model to a predictive and proactive, AI-driven autoscaling
system.

cannot predict workload trends and only responds when predetermined thresholds are crossed. These
shortcomings are particularly critical in latency-sensitive systems, where even minimal delays can
adversely affect performance and violate Service Level Agreements (SLAs), ultimately degrading user
experience. In contrast, predictive autoscaling approaches, which employ forecasting models, enable
proactive resource allocation. By anticipating workload increases, these techniques facilitate smoother



system performance and ensure that additional resources are provisioned in advance of actual demand.
Different scaling needs characterize applications: Table 2 shows main categories according to their

scaling sensitivity and appropriate forecasting techniques. By categorizing applications based on their
behavior, it becomes possible to adapt autoscaling strategies accordingly to the performance needed.

Table 2
Autoscaling Needs by Application Type

Application Type Scaling Needs Recommended
Techniques

Reference

Latency-sensitive (e.g., video
streaming, gaming)

Rapid scaling with minimal
startup delay to prevent lag

Bi-LSTM forecasting
with trend/anomaly
detection

Dang-Quang & Yoo,
2022 [17]

Batch / ML workloads Optimize throughput un-
der deadlines while reducing
cost

RL-based or deadline-
aware scheduling

Garí et al., 2020 [15]

IoT / Edge computing Lightweight models that
handle sudden bursts on
resource-limited devices

Hybrid edge/cloud
forecasting with
heuristics

Pahlavanpour et al.,
2021 [18]

Microservices / API Quick, metric-driven adjust-
ments to meet fine-grained
SLOs

Adaptive
multi-metric
controllers with
thresholds

Nunes et al.,
2024 [19]

Maintaining Quality of Ser-
vice (QoS) in cloud-native
and latency-sensitive appli-
cations

Reduce latency, avoid SLOs
violations, minimize over-
provisioning, and improve
user satisfaction

Hybrid predic-
tive/proactive
approach

This Work

5. Case Study: Machine Learning Inference Services Necessitating
Low-Latency Autoscaling

Contemporary applications utilizing Artificial Intelligence and the Internet of Things within the AIoT
paradigm increasingly depend on real-time inference from implemented machine learning models,
hence providing dynamic user experiences. Services must meet strict SLOs, especially for latency and
availability. Moreover, reactive threshold-based scaling or static provisioning frequently results in over-
provisioning during idle times or under-provisioning during demand surges. Traditional Kubernetes
autoscalers introduce latency between traffic increase and scaling response, resulting in: (i) cold-start
penalties for containerized inference runtimes (e.g., TensorFlow Serving, TorchServe), (ii) latency
violations when inference requests queue up, and (iii) inefficient use of GPU/CPU resources when
demand prediction is misaligned with scale actions.

By using a learned forecasting model to estimate load and proactively modify the number of inference
service replicas, our AI-based predictive autoscaling method overcomes these drawbacks. Our predictive
approach reduces tail latency (P95, P99) violations during peak periods and allows the proactive
distribution of replicas to handle anticipated load spikes with little cold-start delay. The time limits below
which 95% and 99% of all requests are fulfilled are denoted by the P95 and P99 latencies, respectively.
P99 represents high tail delay, whereas P95 represents the usual worst-case latency encountered by
customers. These metrics are essential for comprehending and improving a system’s responsiveness
and dependability under load. Monitoring tail latencies helps ensure end-to-end QoS, especially for
time-sensitive tasks like health monitoring or industrial automation.



Table 3
Software Testbed Configuration

Component Details / Version
Container Orchestration Minikube 1.35.0
Container Runtime Docker 28.3.1
Kubernetes CLI Kubectl 1.32.0
Scripting Environment Python 3.12.7
Package Manager Helm 3.18.2
Metrics Collection kubectl logs for Replica Count and Tail Latencies (P95, P99)

5.1. Design and Configuration of the Software Testbed

To evaluate the behavior and performance of the autoscaling policies under realistic workload con-
ditions, a controlled and reproducible testbed environment was configured using widely adopted,
production-relevant tools and platforms. The selected stack ensures compatibility with modern cloud-
native practices while maintaining lightweight and deterministic deployment characteristics for local
experimentation.

5.1.1. Minikube 1.35.0 for Container Orchestration

Minikube was selected due to its ease of use and capacity to replicate a fully functional Kubernetes
environment on a single local computer. Version 1.35.0 provides compatibility with recent Kubernetes
features, including autoscaling APIs and metrics server support, while avoiding the complexity of
managing a multi-node cluster. When creating unique autoscaling logic, this configuration facilitates
quick iteration and debugging.

5.1.2. Container Runtime: Docker 28.3.1

Minikube’s underlying container runtime, Docker, allows for standardized application workload ex-
ecution and packaging. It is indicated for modeling real-world deployments and container behavior,
including resource isolation and cold start latency impacts, due to its maturity, reliability, and wide
ecosystem support.

5.1.3. Kubernetes CLI - Kubectl 1.32.0

Kubectl was used to interface with the cluster, install services, monitor resources, and extract important
telemetry. In order to prevent compatibility problems and guarantee accurate diagnostics during testing,
version 1.32.0 guarantees alignment with the Kubernetes API level supported by Minikube 1.35.0.

5.1.4. Scripting Environment: Python 3.12.7

The latency modeling logic and autoscaling simulation were implemented in Python. Python’s versatility
made it ideal for quickly prototyping both heuristic and predictive scaling methods, and the 3.12.7
version boasts recent performance and syntactic enhancements. Additionally, thorough analysis and
visualization of system behavior were made possible by Python’s scientific libraries, such as NumPy
and Matplotlib.

5.1.5. Helm 3.18.2 Package Manager

Helm was used to package and administer Kubernetes deployments, guaranteeing uniformity between
runs and streamlining configuration modifications. Repeatable experiments required modular defini-
tions of services, metrics collectors, and scaling setups, which were made possible by its templating
capabilities.



5.1.6. Metrics Collection – kubectl logs for Replica Count and Tail Latencies (P95, P99)

Kubectl logs were used to gather system metrics, and application-level output was parsed to retrieve tail
latency statistics and replica counts, with an initial focus on P95 latency. The simplicity, low overhead,
and capacity to offer fine-grained understanding of temporal system behavior without the need for an
external telemetry stack made this approach the preferred choice. The P95 metric is commonly used as a
useful performance indicator in mild tail situations, since it measures the latency 95% of the experience
of requests. It was chosen as the starting point for comparison because it provides statistically reliable
insights even in the presence of fluctuating traffic. However, the testbed was later expanded to collect
P99 latency as well in order to gain a better understanding of extreme tail behavior. P99 is essential
in latency-sensitive applications, especially in IoT or edge computing scenarios where even a small
percentage of delayed requests can affect control loops or sensor-actuator responsiveness, even though
it is more sensitive to outliers and usually requires larger datasets for statistical significance.

5.2. Experimental Setup and Evaluation Procedure

Algorithm 1 Predictive and Reactive Autoscaling Algorithm
Require: Request rate trace 𝑄𝑃𝑆[0..𝑇 − 1], threshold 𝜃, lookahead 𝐿, window 𝑊
Ensure: Replica counts 𝑅𝐻𝑃𝐴[0..𝑇 − 1], 𝑅𝑃𝑟𝑒𝑑[0..𝑇 − 1]

0: Initialize 𝑅𝑃𝑟𝑒𝑑[0]← 1, 𝑅𝐻𝑃𝐴[0]← 1
0: for 𝑡 = 0 to 𝑇 − 1 do
0: // Reactive HPA
0: 𝑎𝑣𝑔 ← mean(𝑄𝑃𝑆[max(0, 𝑡−𝑊 )..𝑡])
0: for 𝑛 = 1 to 𝑛𝑚𝑎𝑥 do
0: 𝑙𝑎𝑡← EstimateLatency(𝑎𝑣𝑔, 𝑛)
0: if 𝑙𝑎𝑡 ≤ 𝜃 then
0: 𝑅𝐻𝑃𝐴[𝑡]← 𝑛
0: break
0: end if
0: end for
0: // Predictive Scaling
0: 𝑓𝑢𝑡𝑢𝑟𝑒← mean(𝑄𝑃𝑆[𝑡+ 1..𝑡+ 𝐿])
0: for 𝑛 = 1 to 𝑛𝑚𝑎𝑥 do
0: 𝑙𝑎𝑡𝑐𝑢𝑟𝑟 ← EstimateLatency(𝑄𝑃𝑆[𝑡], 𝑛)
0: 𝑙𝑎𝑡𝑓𝑢𝑡𝑢𝑟𝑒 ← EstimateLatency(𝑓𝑢𝑡𝑢𝑟𝑒, 𝑛)
0: if 𝑙𝑎𝑡𝑐𝑢𝑟𝑟 ≤ 𝜃 and 𝑙𝑎𝑡𝑓𝑢𝑡𝑢𝑟𝑒 ≤ 𝜃 then
0: 𝑡𝑎𝑟𝑔𝑒𝑡← 𝑛
0: break
0: end if
0: end for
0: // Apply hysteresis
0: 𝑅𝑃𝑟𝑒𝑑[𝑡]← min(𝑅𝑃𝑟𝑒𝑑[𝑡−1]+1,max(𝑅𝑃𝑟𝑒𝑑[𝑡−1]−1, 𝑡𝑎𝑟𝑔𝑒𝑡))
0: end for=0

As demonstrated in the Algorithm 1, we constructed and contrasted reactive HPA and a lookahead-
based predictive scaler to assess autoscaling behavior under various workload scenarios. Figure 2
schema of the testbed.

By scaling the number of copies according to a brief history of request rate measurements (such as
a 3-minute average), the reactive method mimics conventional HPA activity. Using a simple queuing
model that incorporates cold-start latency, per-replica processing capacity, and overload penalty, the
scaler repeatedly calculates the estimated latency for a specified number of replicas. Choose the fewest
replicas necessary to keep the estimated latency below a predetermined threshold.



Figure 2: Experimental testbed architecture for predictive and reactive autoscaling evaluation.

By adding a short-term forecast based on a set lookahead window, the predictive strategy expands
on this methodology. It determines the anticipated request rate for the near future for every timestep
and makes sure that the predicted and actual latency values stay below the threshold before scaling.
Through proactive capacity provisioning prior to increases, this helps avoid threshold violations. By
restricting the number of clones that can be eliminated in a single step, a hysteresis mechanism is used
to avoid frequent scale-downs.

A simulated workload trace with two separate traffic peaks and Gaussian noise was used to test the
technique. The predictive scaler’s efficacy was evaluated using metrics like P95 and P99 delay, violation
counts, and relative improvement over the reactive baseline.

5.3. Experimental Results

Figure 3 illustrates the QPS input pattern, the corresponding latency measurements, and replica provi-
sioning dynamics for both HPA and predictive strategies. These results demonstrate that anticipatory
autoscaling using lightweight predictive logic can substantially improve SLOs adherence under dynamic
workloads without over-provisioning resources.

Table 4
Tail-latency violation comparison between HPA and predictive autoscaling.

Metric HPA Predictive (Improved)

P95 Violations 7 0
P95 Latency (ms) 330.73 192.51 (41.79%)
P99 Latency (ms) 427.49 196.68 (53.99%)

The comparative results between the baseline HPA strategy and the improved predictive autoscaler
are summarized in Table 4. The predictive policy reduced the number of latency violations of P95



Figure 3: Simulation of QPS load, tail latency, and replica count over 30 minutes. The predictive autoscaler
anticipates demand and reduces latency violations.

from 7 to 0. Furthermore, the latency of P95 and P99 was, respectively, reduced by 41.79% and 53.99%,
demonstrating improved robustness under peak load. The latency is now below the threshold of 200 ms.

The improvements are particularly critical in IoT environments, where responsiveness and pre-
dictability are essential. By minimizing tail latencies, the predictive autoscaler ensures consistent QoS
even during traffic bursts, which is vital for time-sensitive applications such as real-time monitoring,
anomaly detection, or actuation in smart systems. Furthermore, the elimination of latency violations
supports the enforcement of strict SLOs commonly required in IoT deployments. The use of P95 and
P99 metrics allows for fine-grained control and visibility over system performance, helping to guarantee
reliable communication and low-latency feedback loops across distributed devices and edge-cloud
architectures.

These results strongly suggest that edge processing, when coupled with an intelligent and predictive
autoscaling strategy, is more effective in meeting stringent latency requirements, especially in IoT
scenarios. For edge and IoT workloads, where delayed responses can deteriorate system behavior, zero
P95 violations under the predictive strategy translates into dependable real-time performance. The
system’s ability to manage worst-case spikes, which frequently occur unexpectedly in edge contexts
(such as motion sensors or alarms), is demonstrated by the remarkable reduction in P99 latency (53.99%).
Because the autoscaler is predictive and anticipates load rather than reacting slowly like HPA, the
improvement is achieved without excessive over-provisioning.



6. Conclusions and Future Work

This paper introduced a dynamic and intelligent approach aimed at enhancing QoS in Kubernetes-based
environments. We proposed a conceptual framework that emphasizes the need for greater awareness
of applications and resources, adaptive scaling behavior, and proactive handling of challenges such
as cold starts and scaling latency. Our model highlights the importance of transitioning from static
threshold-based autoscaling to more context-aware and predictive mechanisms. These findings imply
that reactive scaling (HPA) in a cloud-only architecture might not be adequate for use cases that are
sensitive to latency. A hybrid or edge-first strategy with predictive autoscaling can provide noticeably
reduced and more stable tail latencies, guaranteeing QoS compliance even under erratic or bursty loads
that are common in IoT systems.

Looking ahead, future work will focus on the exploration and implementation of new AI-driven
autoscaling strategies. In particular, the integration of machine learning (ML) and reinforcement
learning (RL) techniques holds significant promise in addressing the limitations of current approaches.
These intelligent methods can leverage real-time and historical performance data to predict workload
trends and optimize resource provisioning decisions accordingly. By enabling proactive scaling actions,
such models have the potential to maintain application QoS even under highly dynamic workload
conditions. Furthermore, ongoing research should investigate the design of feedback control loops,
continuous learning mechanisms, and multi-metric optimization strategies to ensure that autoscaling
policies align not only with system-level metrics but also with service-level objectives (SLOs). Finally,
experimentation in real-world Kubernetes deployments and benchmarking against existing reactive
solutions will be essential to validate the effectiveness and reuse of the proposed approach.
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