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Abstract
Stochastic symmetric nets (SSN) represent a high-level Petri net formalism characterized by succinct annotations
that encapsulate behavioral symmetries. These symmetries are utilized to enhance the efficiency of analysis,
such as the construction of a symbolic reachability graph from which a lumped Markov chain is derived and the
execution of symbolic discrete-event simulations. In the last two decades, powerful structural analysis techniques
have also been developed for SSN. This article explores how these techniques can improve some performance
analysis techniques, highlighting potential uses and recent progress.
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1. Introduction

(Stochastic) Symmetric nets [1] are Colored Petri Nets with a specific syntax that allows us to exploit
the models’ symmetry in the analysis phase. SSN nodes (places and transitions) are associated with
domains constituted by Cartesian products of finite basic color classes. A color class may be partitioned
into static subclasses or, alternatively, circularly ordered. The colors within a subclass represent entities
with similar behavior. SSN edges, connecting places and transitions, are annotated with functions that
map transition domain instances to multisets within the place domain. These functions are composed
of tuples of base color functions, including projections and constants that map to static subclasses or
entire classes. Defining a symbolic initial marking and a symbolic firing mechanism, one can construct a
Symbolic Reachability Graph (usually much smaller than the ordinary Reachability Graph) from which
a lumped Markov chain is derived. Alternatively, symbolic discrete event simulations can be performed.

One distinctive feature of PNs is the possibility to derive some properties directly from their structure
without (or before) building the state space; the efficient extension to Colored PNs, without resorting
to unfolding, is not trivial. In the last 20 years, there has been an advance in the symbolic structural
analysis of SSNs. Theoretical foundations are rooted in [2], which defines a language, denoted as L,
as a slight extension of the SSN arc functions. The elements of L are similar to the SSN arc functions
but show expanded expressivity by using guards as prefixes (referred to as filters) and by allowing
intersections of base color functions within tuples. The findings reported in [2] demonstrate the closure
of L under a core set of functional operators (sum, difference, intersection, transpose, composition) used
in structural analysis. Employing these operators enables the algebraic computation of fundamental
structural relationships in SSNs, such as conflict, causality, and mutual exclusion, thereby obviating
the need for unfolding. For example, the structural conflict between transitions 𝑆𝐶(𝑡, 𝑡′) symbolically
represents the set of instances of 𝑡 that can disable a generic instance of 𝑡′. In [3] further structural
relations have been defined.
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The software tool SNexpression [4] (http://www.di.unito.it/~depierro/SNexpression/),
composed of a command-line interface (CLI) built on an expandable Java library, supports the application
of algebraic structural calculus to SSN models. SNexpression serves as a computer algebra tool that
simplifies arbitrary user-defined structural expressions into comprehensible normal forms within L.
An entire SSN, encoded according to a designated format, can be imported into the CLI, facilitating the
manipulation of its annotations. In the foreseeable future, the capability to verify symbolic (colored)
invariants will be introduced.

In the next sections, we outline a few potential applications of SSN structural analysis related to
performance evaluation: the novel results concern a complete formalization providing the basis for the
efficient computation of the transitions enabled in a given marking of an SSN, particularly effective
when the transition color domains are very large, and the definition of Symbolic Extended Conflict Sets,
required in the assignment of priorities and weights to immediate transitions, taking into account all
the mutual dependencies.

2. Symmetric Nets and Structural Relations

The SN formalism has been conceived to obtain a model representation whose intrinsic symmetries
could be easily exploited. The Symbolic Structural Calculus goal is to derive symbolic representations
of structural relations between net nodes: to this purpose, a language has been defined that resembles
and extends the SN arc functions syntax. The SN formalism is presented first, followed by the definition
of the language used to express the structural relations.

We assume that the reader is familiar with PN and HLPN, places, transitions, input, output, and
inhibitor arcs, and marking. Let us succinctly introduce the color structure of an SN focusing on color
classes, place and transition color domains, transition guards, and arc functions.

Definition 1 (Symmetric Net). A SN is a tuple:

N = (𝑃, 𝑇,Σ,D, 𝑣𝑎𝑟,Φ, 𝐼, 𝑂,𝐻, 𝜋,m0)

where 𝑃 is the set of places, 𝑇 is the set of transitions, Σ is the set of color classes, D assigns to each place
and transition its color domain, 𝐼,𝑂 and 𝐻 define the arcs connecting the net nodes, and the associated
arc functions, 𝜋 : 𝑇 → N is a function defining the priority of each transition; m0 is the initial marking,
assigning to each place 𝑝 ∈ 𝑃 a multiset of colors from its color domain D(𝑝).

• Color classes in Σ = {𝐶𝑖, 𝑖 = 1 . . . , 𝑛} are finite and disjoint sets of elements called colors,
each class 𝐶𝑖 may be partitioned into static subclasses {𝐶𝑖,𝑗}𝑗 or a circular order relation can be
defined on its elements;

• Place 𝑝 ∈ 𝑇 color domain D(𝑝) is defined as Cartesian products of color classes
⨂︀

𝐶𝑒𝑖
𝑖 , 𝑒𝑖 ≥

0, 𝑖 = 1, . . . , 𝑛; 𝑚(𝑝), the marking of place 𝑝, is a multiset of elements from its color domain
D(𝑝);

• Transition 𝑡 ∈ 𝑇 color domain D(𝑡) defines the colored instances of 𝑡: a set of typed variables
𝑣𝑎𝑟(𝑡) = {𝑣𝑗𝑖 : 𝑖 = 1 . . . 𝑛, 𝑗 = 1 . . . 𝑒𝑖} is associated with each transition 𝑡, where the variable
𝑣𝑗𝑖 type is the color class 𝐶𝑖 in Σ, and a binding 𝑐 assigning colors of appropriate type to 𝑡’s
variables defines a transition instance (that we denote (𝑡, 𝑐));

• Transition 𝑡 guard Φ(𝑡) is a Boolean function expressed through a standard predicate (defined
below) and evaluated on transition instances: the color domain D(𝑡) of a transition includes all
the instances of 𝑡 satisfying the guard.

• A function labeling an arc connecting place 𝑝 and transition 𝑡 has domain D(𝑡) and codomain
𝐵𝑎𝑔[D(𝑝)], the set of the possible multisets on D(𝑝). We use the notation ∙𝑡 / ∘𝑡 as a shorthand
notation for the set of places connected with transition 𝑡 through an input/inhibitor arc.
The general form of arc functions syntax is:

∑︀
𝑖 𝜆𝑖.𝑇𝑖[𝑔𝑖], 𝜆𝑖 ∈ N, where 𝑇𝑖 is a function-tuple

⟨𝑓1, . . . , 𝑓𝑘⟩, i.e, a Cartesian product of class functions 𝑓𝑖, and 𝑔𝑖 is a tuple-guard. Each class-
function 𝑓 is a linear function defined on a subset of variables of 𝑣𝑎𝑟(𝑡) of the same type. Let



𝑣𝑎𝑟𝐶𝑖(𝑡) be the subset of 𝑣𝑎𝑟(𝑡) of type 𝐶𝑖, and ̃︁𝐶𝑖 the set of static subclasses of 𝐶𝑖, then
𝑓 : D(𝑡) → 𝐵𝑎𝑔[𝐶𝑖] is defined as follows:

𝑓 =
∑︁

𝑣𝑘∈𝑣𝑎𝑟𝐶𝑖
(𝑡)

𝛼𝑘.𝑣𝑘 +
∑︁

𝑣𝑘∈𝑣𝑎𝑟𝐶𝑖
(𝑡)

𝛾𝑘.!𝑣𝑘 +
∑︁

𝑞∈{1,...,|̃︁𝐶𝑖|}

𝛽𝑞.𝐴𝑙𝑙𝑖,𝑞 + 𝜂.𝐴𝑙𝑙𝑖

where 𝛼𝑘, 𝛾𝑘, 𝛽𝑞, 𝜂 ∈ Z. Symbol ! denotes the successor operator mapping the value of 𝑣𝑘 to its
successor (the type of 𝑣𝑘 must be ordered). 𝐴𝑙𝑙𝑖,𝑞/𝐴𝑙𝑙𝑖 is a constant function mapping to the set
𝐶𝑖,𝑞/𝐶𝑖.
Boolean expressions 𝑔𝑖 (guards) on 𝑣𝑎𝑟(𝑡) may be associated with transitions (Φ(𝑡)) or individual
tuples; their terms are standard predicates checking whether two variables hold the same value
(𝑣𝑘1 = 𝑣𝑘2), or if a variable "belongs" to a given static subclass (𝑣𝑘 ∈ 𝐶𝑖,𝑗); if Φ(𝑡) is false for
a given instance of 𝑡, then that instance is not enabled, if a tuple-guard 𝑔𝑖 is false for a given
transition instance, the associated tuple evaluates to the empty-multiset. Class-functions must be
such that no negative coefficients can result from their evaluation for any color satisfying the
guard associated with the corresponding tuple/transition (if the guard is not explicit, then it is
𝑡𝑟𝑢𝑒).

A transition instance (𝑡, 𝑐) is enabled in marking m if the following conditions are satisfied:

• Φ(𝑡)(𝑐) = true
• ∀𝑝 ∈ ∙𝑡, 𝐼(𝑡, 𝑝)(𝑐) ≤ m(𝑝)

• ∀𝑝 ∈ ∘𝑡,𝐻(𝑡, 𝑝)(𝑐) > m(𝑝)

• there isn’t any transition instance (𝑡′, 𝑐′) : 𝜋(𝑡′) > 𝜋(𝑡) enabled in m.

The enabling degree of an enabled transition instance (𝑡, 𝑐) is defined as follows:

𝑒𝑑(𝑡, 𝑐) = 𝑚𝑖𝑛𝑝∈ ∙𝑡:𝐼(𝑡,𝑝)(𝑐)̸=0,𝑑∈𝐼(𝑡,𝑝)(𝑐)

⌊︂
m(𝑝)(𝑑)

𝐼(𝑡, 𝑝)(𝑐)(𝑑)

⌋︂
The enabling degree of (𝑡, 𝑐) is not defined1 for (𝑡, 𝑐) if ∀𝑝 ∈ 𝑃, 𝐼(𝑡, 𝑝)(𝑐) = 0.

The Stochastic Symmetric Nets (SSN) formalism comprises timed and immediate transitions: the
former have priority level 0 and a random firing time (with negative exponential distribution) that
determines the occurrence time of the transition firing and solves the possible conflicts through a race,
the latter have priority level greater than 0, fire in zero time, and the conflicts between transitions at the
same priority level are solved through probabilities obtained by normalizing the weights of transitions
that are in a (direct or indirect) dependency relation. The appropriate specification of immediate transition
weights and priorities in GSPNs (e.g., in the net obtained by unfolding an SSN) has been studied and
discussed in [5, 6, 7] in order to allow a correct net level specification from which the underlying CTMC
could be automatically derived; further reflections on this line have been proposed in [8], where the
underlying stochastic model was instead a Markov Decision Process.

The language for structural relations The language for expressing structural relation has a syntax
very similar to that used for SN arc functions, with some extension, and a (non limiting) constraint
on the form of basic class functions. The resulting language is closed under a set of operators, namely
intersection, transpose, sum, difference, composition, required to define the symbolic structural relations.

Definition 2 (Language L). Let Σ = {𝐶1, 𝐶2, . . . , 𝐶𝑛} be the set of finite and disjoint basic color classes,
and let D be any color domain built as Cartesian product of classes in Σ, (D = 𝐶𝑒1

1 ×𝐶𝑒2
2 × ...×𝐶𝑒𝑛

𝑛 , 𝑒𝑘 ∈
N). Let 𝑇𝑖 : D → 𝐵𝑎𝑔(D′) and [𝑔′𝑖] and [𝑔𝑖] be standard predicates in D′ and D, respectively. The set of
expressions:

L =
{︁
𝐹 : 𝐹 =

∑︁
𝑖

𝜆𝑖.[𝑔
′
𝑖]𝑇𝑖[𝑔𝑖], 𝜆𝑖 ∈ N+

}︁
1Hereafter we shall consider models where the enabling degree is never undefined, considering such situation as a modeling
error which can be easily fixed to either prevent the enabling, or to force a fixed enabling degree in those cases.



Table 1
Computing structural properties in SN.

Structural Relation Formula

𝑆𝐶(𝑡, 𝑡′)
⋃︁

𝑝∈∙𝑡∩∙𝑡′

𝐼(𝑡, 𝑝)−𝑂(𝑡, 𝑝)
𝑡
∘ 𝐼(𝑡′, 𝑝) +

⋃︁
𝑝∈𝑡∙∩∘𝑡′

𝑂(𝑡, 𝑝)− 𝐼(𝑡, 𝑝)
𝑡
∘𝐻(𝑡′, 𝑝)

𝑆𝐶(𝑡) 𝑆𝐶(𝑡, 𝑡)− 1, where 1 is the identity on D(𝑡)

𝑆𝐶𝐶(𝑡, 𝑡′)
⋃︁

𝑝∈𝑡∙∩∙𝑡′

𝑂(𝑡, 𝑝)− 𝐼(𝑡, 𝑝)
𝑡
∘ 𝐼(𝑡′, 𝑝) +

⋃︁
𝑝∈∙𝑡∩∘𝑡′

𝐼(𝑡, 𝑝)−𝑂(𝑡, 𝑝)
𝑡
∘𝐻(𝑡′, 𝑝)

𝑆𝑀𝐸𝑠𝑖𝑚𝑝𝑙𝑒(𝑡, 𝑡
′)

⋃︁
𝑝∈∙𝑡∩∘𝑡′

𝐼(𝑡, 𝑝)
𝑡
∘𝐻(𝑡′, 𝑝) +

⋃︁
𝑝∈∘𝑡∩∙𝑡′

𝐻(𝑡, 𝑝)
𝑡
∘ 𝐼(𝑡′, 𝑝)

is the language used to express SN structural relations, where 𝑇𝑖 are function-tuples formed by class
functions 𝑓𝑗 , defined in turn as intersections of language elementary functions {𝑐, !𝑘𝑐, 𝐴𝑙𝑙𝐶 , 𝐴𝑙𝑙𝐶 −
𝑐, 𝐴𝑙𝑙𝐶−!𝑘𝑐, ∅𝐶} (projection, 𝑘𝑡ℎ successor, constant function corresponding to all elements of basic class 𝐶 ,
projection/successor complement and the empty function; where 𝐶 represents any class and 𝑐 any variable
of type 𝐶).

We can observe that, with respect to the arc function syntax, there may be a predicate left-composed
with a tuple (that we call filter), the set of allowed elementary class functions is a bit different, with the
complement 𝐴𝑙𝑙− 𝑣 among the elementary functions and the introduction of intersection of elementary
functions. Any arc function may be expressed through an equivalent expression of this language.

Conventions In the following, we use capital letters 𝐴,𝐵, . . . , 𝑍 to denote basic color classes in Σ
(the set of types) and the corresponding lowercase letters (possibly with a subscript) to denote variables
of the respective type: for example, if D(𝑡) = 𝑀2 ×𝑁 , then 𝑣𝑎𝑟(𝑡) = {𝑚1,𝑚2, 𝑛}. We use sans-serif
lowercase letters to denote the elements (colors) of a class, for instance if 𝑁 = {n1, n2, . . . , n𝑘} and
𝑀 = {m1,m2, . . . ,m𝑟}, then (m3,m7, n4) ∈ 𝑀2 ×𝑁 .

Symbolic structural relations A structural relation between the SN nodes 𝑛, 𝑛′ is symbolically
expressed as a function R(𝑛′, 𝑛) : D(𝑛) → 2D(𝑛′) and formalized using the language syntax ℒ. Its
semantics is that, given an instance 𝑐 of 𝑛, R(𝑛′, 𝑛)(𝑐) results in instances 𝑐′ of 𝑛′ such that 𝑐′ R 𝑐 in
the unfolding of the SN. We use the symbol R alone to denote a family of relations of the same type. We
say that R is symmetric if and only if R(𝑛′, 𝑛) ≡ R(𝑛, 𝑛′)𝑡 for each pair 𝑛, 𝑛′ on which R is defined. A
relation may be made symmetric.

Table 3.1 summarizes a set of useful structural relations commonly used in structural analysis with
the formulae for their calculation. The 𝑆𝐶 (structural conflict), SCC (structural causal connection)
and SME (structural mutual exclusion) are defined on a pair (𝑡, 𝑡′) ∈ 𝑇 × 𝑇 have domain D(𝑡′) and
codomain 2D(𝑡).

An illustrative example of a SSN model and structural relation Consider the SN in Fig. 1. The
transitions and places are 𝑇 = {𝑡1, 𝑡2, 𝑡3}, 𝑃 = {𝑃0, 𝑃1}. There is only one color class 𝐶 , that is,
Σ = {𝐶}. The color domains and variables of the three transitions are: D(𝑡1) = 𝐶, 𝑣𝑎𝑟(𝑡1) = {𝑐1},
D(𝑡2) = D(𝑡3) = 𝐶 × 𝐶 , 𝑣𝑎𝑟(𝑡2) = {𝑐1, 𝑐2}, 𝑣𝑎𝑟(𝑡3) = {𝑐1, 𝑐2}. The color domains of the places
are: D(𝑃1) = 𝐶 , and D(𝑃0) = 𝐶 . Let us describe the function 𝐼 for 𝑡2: 𝐼(𝑡2, 𝑃1) = ⟨𝑐2⟩[𝑐1 = 𝑐2].
𝐼(𝑡2, 𝑃1) : 𝐶 × 𝐶 → 2𝐵𝑎𝑔[𝐶]: transition instances of 𝑡2 with identical color components 𝑐1 and 𝑐2, say
a, consume one token of the same color, a, from place 𝑃1; the remaining instances do not consume
tokens from 𝑃1.

As an example of structural relation, consider the conflict of 𝑡1 and 𝑡2 on the tokens in the shared
place 𝑃0: 𝑆𝐶(𝑡1, 𝑡2) : D(𝑡2) → 2D(𝑡1). According to Table 3.1: 𝑆𝐶(𝑡1, 𝑡2) = 𝐼(𝑡1, 𝑃0)−𝑂(𝑡1, 𝑃0)

𝑡 ∘
𝐼(𝑡2, 𝑃0) = ⟨𝑐1⟩𝑡 ∘ ⟨𝑐1⟩[𝑐1 ̸= 𝑐2] = ⟨𝑐1⟩[𝑐1 ̸= 𝑐2]



Figure 1: Example of conflicting colored transition in SN.

The meaning is that if we consider an instance 𝑡2 : ⟨𝑎, 𝑏⟩ of 𝑡2 (where ⟨𝑎, 𝑏⟩ ∈ 𝐶 × 𝐶, 𝑎 ̸= 𝑏) then
the conflicting instance of 𝑡1 is 𝑡1 : ⟨𝑎⟩ obtained by applying 𝑆𝐶 to ⟨𝑎, 𝑏⟩: ⟨𝑐1⟩[𝑐1 ̸= 𝑐2](𝑎, 𝑏) = ⟨𝑎⟩;
this can also be easily verified on the SN unfolding. If we consider 𝑆𝐶(𝑡2, 𝑡1) : D(𝑡1) → 2D(𝑡2)

instead, we obtain (⟨𝑐1⟩[𝑐1 ̸= 𝑐2])
𝑡 ∘ ⟨𝑐1⟩ = [𝑐1 ̸= 𝑐2]⟨𝑐1, 𝐴𝑙𝑙⟩ ∘ ⟨𝑐1⟩ = ⟨𝑐1, 𝐴𝑙𝑙 − 𝑐1⟩ so that if we

take an instance 𝑡1 : ⟨𝑎⟩ the set of conflicting 𝑡2 instances is {𝑡2 : ⟨𝑎, 𝑏⟩, 𝑏 ∈ 𝐶∖𝑎}. In the same net,
we could also derive 𝑆𝐶(𝑡3, 𝑡3), that is, conflicting instances of the same transition 𝑡3 that result in
𝑆𝐶(𝑡3, 𝑡3) = ⟨𝐴𝑙𝑙 − 𝑐1, 𝑐2⟩ hence, given an instance 𝑡3 : ⟨𝑎, 𝑏⟩, the set of conflicting instances of the
same transition is {𝑡3 : ⟨𝑑, 𝑏⟩, 𝑑 ∈ 𝐶∖𝑎}. Finally, 𝑆𝐶(𝑡3, 𝑡2) = ⟨𝑆𝐶 , 𝑐1⟩[𝑐1 = 𝑐2].

3. Efficient transition enabling test

Finding transition instances that can fire in a given marking is the core operation in both state-space-
based approaches and discrete-event simulations. The effectiveness or lack thereof of this operation
significantly influences the overall methodology within which it is utilized.

Empirical findings using the package GreatSPN [9] have indicated that this operation becomes
onerous when the transition color domains are intricate or in the presence of free variable symbols,
which appear exclusively in the transition output arcs.

Drawing on the concept presented in [10], computational efficiency can be significantly improved
by formulating a concise representation that directly correlates with the potential set of instances
enabled in a certain marking. Using an example, we illustrate here an extension of the method, which
allows us to determine the exact set of enabled transition instances. A structural expression will offer
a symbolic representation of the enabled set for each transition; when this expression is applied to a
specific marking description, it yields a precise set of enabled transition instances.

Basic notation and definitions The fundamental operations used for the efficient transition enabling
test are [2] the transpose of an arc function, the support, and the intersection of symbolic expressions.
The support and intersection are straightforward functional extensions of the corresponding operations
on multisets. The definition of the transpose operator is recalled in the following.

Definition 3. The transpose of 𝑊 (𝑝, 𝑡) : D(𝑡) → 𝐵𝑎𝑔[D(𝑝)] is the function 𝑊 ′(𝑡, 𝑝) : D(𝑝) →
𝐵𝑎𝑔[D(𝑡)], characterized by ∀𝑐 ∈ D(𝑝), 𝑐′ ∈ D(𝑡) 𝑊 ′(𝑡, 𝑝)(𝑐)(𝑐′) = 𝑊 ′(𝑝, 𝑡)(𝑐′)(𝑐).

For example, when 𝑊 = 𝐼 , its transpose with respect to a given colored token within the domain of
𝑝 yields the multiset of instances of 𝑡 responsible for its withdrawal, where multiplicities correspond to
the number of tokens withdrawn. As indicated previously, the transpose is an operator in language L.

Multisets are extended to include the value ∞ in the set of scalars N, thus if 𝐵𝑎𝑔[𝐴] is the set of
multisets built over a set 𝐴 then 𝐵𝑎𝑔∞[𝐴] is an extension in which multiset elements may have ∞
multiplicity, for instance multiset 3.a1 + 4.a3 +∞.a2 ∈ 𝐵𝑎𝑔∞[𝐴]; Multiset operations are accordingly
extended in a straightforward way according to the scalar Algebra rules.

If m ∈ 𝐵𝑎𝑔[𝐴], with m =
∑︀

𝑖 𝑠𝑖.a𝑖, and 𝑟 ∈ N then the division of m by 𝑟 is defined as follows:

m

𝑟
=

∑︁
𝑖

⌊︁𝑠𝑖
𝑟

⌋︁
.a𝑖



Definition 4 (Simple Function). A function 𝐹 ∈ L, 𝐹 : 𝐷 → 𝐵𝑎𝑔[𝐷′] is said simple if:

∀𝑑 ∈ 𝐷, 𝑑′ ∈ 𝐷′ : 𝑓(𝑑)(𝑑′) ≤ 1

In other words, a simple function always results in multisets where elements are not repeated.

Definition 5 (Normal Form). A function 𝐹 ∈ L, 𝐹 : 𝐷 → 𝐵𝑎𝑔[𝐷′], such that 𝐹 :=
∑︀

𝑖 𝜆𝑖𝑇𝑖, is said to
be in Normal Form if

- ∀𝑖 𝑇𝑖 is simple, 𝜆𝑖 ∈ N+ and ∃𝑘𝑖 ∈ N+ : ∀𝑐 ∈ 𝐷, 𝑇𝑖(𝑐) ̸= 0 =⇒ |𝑇𝑖(𝑑)| = 𝑘𝑖
- ∀𝑖, 𝑗 𝑖 ̸= 𝑗 =⇒ 𝑇𝑖 ∩ 𝑇𝑗 = 0

Proposition 1. Any function 𝐹 ∈ L has a Normal Form. The Normal Form of 𝐹 is not unique in L.

The proposition states that an arc function can be rewritten as a weighted sum of pairwise disjoint
terms. Each term 𝑇𝑖 thus results, when evaluated on the domain values, in multisets that retain identical
cardinality 𝑘𝑖, and where all elements possess the same multiplicity of one, except for those arguments
rendering the term null. We call 𝑘𝑖 the size of the term 𝑇𝑖 and use the notation 𝑘𝑖 = |𝑇𝑖|.

Figure 2 illustrates an SN transition 𝑡 that encapsulates a sort of synchronization. Two color classes,
𝑁 and 𝑀 , are used to represent the processing nodes and the messages, respectively. The color domains
of the places are explicitly defined, while D(𝑡) = 𝑁 × 𝑀 corresponds to the variables (projection
functions) 𝑛 and 𝑚 present in the incident arcs. The enabling of 𝑡 depends on the marking of the places
𝑝1 (input) and 𝑝2 (input and inhibitor).

The function 𝐼(𝑝2, 𝑡) in Figure 2, left part, can be rewritten in normal form as shown in Figure 2,
right part: The two terms (function tuples) have cardinality |𝑁 | − 1 and 1, respectively.

An intuitive lemma, which follows directly from Proposition 1, establishes the final form of input
and inhibitor arc functions.

Corollary 1. Let 𝐼(𝑝, 𝑡) ̸≡ 0 and 𝐻(𝑝, 𝑡) ̸≡ 0. These functions can be expressed in a Normal Form,∑︀
𝑖 𝜆𝑖𝐼𝑖 and

∑︀
𝑗 𝛾𝑗𝐻𝑗 , respectively, such that 𝐼𝑖 ≡ 𝐻𝑗 ∨ 𝐼𝑖 ∩𝐻𝑗 = 0, ∀𝑖, 𝑗.

We will assume that the input and inhibitor arc functions are written in a normal form and meet the
Corollary 1. The function 𝐻(𝑝2, 𝑡) in Figure 2, left part, is accordingly rewritten as shown in Figure 2,
right part: the two different function tuples in 𝐻(𝑝2, 𝑡) and 𝐼(𝑝2, 𝑡) are disjoint. As discussed earlier,
we assume that there cannot be transition instances that make 𝐼(𝑡, 𝑝) = 0 for all input places of 𝑡: in
other words, the enabling condition of all instances must involve at least one input place.

The subsequent corollary arises directly from the definition of a transpose.

Corollary 2. Let 𝐹 :=
∑︀

𝑖 𝜆𝑖𝑇𝑖 be a normal form. Its transpose 𝐹 𝑡 =
∑︀

𝑖 𝜆𝑖𝑇
𝑡
𝑖 is in normal form.

Consider Figure 2, where
𝐼(𝑡, 𝑝2) = 2.⟨𝑛, 𝑛,𝑚⟩+ ⟨𝑛,𝐴𝑙𝑙 − 𝑛,𝑚⟩

𝐻(𝑡, 𝑝2) = 3.⟨𝑛, 𝑛,𝑚⟩+ 3.⟨𝑛, 𝑛,𝐴𝑙𝑙 −𝑚⟩
Let 𝑇1 = ⟨𝑛,𝐴𝑙𝑙 − 𝑛,𝑚⟩, 𝑇2 = ⟨𝑛, 𝑛,𝑚⟩, and 𝑇3 = ⟨𝑛, 𝑛,𝐴𝑙𝑙 −𝑚⟩, thus 𝐼(𝑡, 𝑝2) = 𝑇1 + 2 · 𝑇2 and
𝐻(𝑡, 𝑝2) = 3 ·𝑇2+3 ·𝑇3. The sizes of the terms involved are: |𝑇1| = 𝑁 −1, |𝑇2| = 1, and |𝑇3| = 𝑁 −1.
After transposing them, we obtain the following expression:

𝐼𝑡(𝑡, 𝑝2) =

𝑇 𝑡
1=⟨𝑛,𝐴𝑙𝑙−𝑛,𝑚⟩𝑡⏞  ⏟  

1.⟨𝑛1,𝑚⟩[𝑛1 ̸= 𝑛2] +

2.𝑇 𝑡
2=2.⟨𝑛,𝑛,𝑚⟩𝑡⏞  ⏟  

2.⟨𝑛1,𝑚⟩[𝑛1 = 𝑛2]

𝐻𝑡(𝑡, 𝑝2) =

3.𝑇 𝑡
2=3.⟨𝑛.𝑛.𝑚⟩𝑡⏞  ⏟  

3.⟨𝑛1,𝑚⟩[𝑛1 = 𝑛2] +

3.𝑇 𝑡
3=3.⟨𝑛,𝑛,𝐴𝑙𝑙−𝑚⟩𝑡⏞  ⏟  

3.⟨𝑛1, 𝐴𝑙𝑙 −𝑚⟩[𝑛1 = 𝑛2]

The normal form of the result allows us to write the enabling conditions locally to place 𝑝2 and inferable
from the transposes:

[1,∞) ⟨𝑛1,𝑚⟩[𝑛1 ̸= 𝑛2]⏟  ⏞  
𝑇 𝑡
1

, [2, 3) ⟨𝑛1,𝑚⟩[𝑛1 = 𝑛2]⏟  ⏞  
𝑇 𝑡
2

, [0, 3) ⟨𝑛1, 𝐴𝑙𝑙 −𝑚⟩[𝑛1 = 𝑛2]⏟  ⏞  
𝑇 𝑡
3



class𝑁 = {n1, . . . , n4} class𝑀 = {m1, . . . ,m𝐾} ∪ {ack} vars 𝑛 : 𝑁 𝑚 : 𝑀
D(𝑝1) = D(𝑝3) = 𝑁 ×𝑀 D(𝑝2) = 𝑁 ×𝑁 ×𝑀

Figure 2: Arc function rewriting for enabling test

The above expression conveys most of the information needed for the enabling test: for example, let
c ∈ m(𝑝2) and 𝑟 its multiplicity, then [2, 3)𝑇 𝑡

2(c) = 𝑇 𝑡
2(c) iff 2 ≤ 𝑟 < 3, otherwise [2, 3)𝑇 𝑡

2(c) = 0.
[2, 3)𝑇 𝑡

2(c) constitutes a superset of the enabled instances of 𝑡 when the color c is in the current marking
of 𝑝2. Obviously, for a given c, the terms 𝑇 𝑡

1(c), 𝑇
𝑡
2(c), and 𝑇 𝑡

3(c) are disjoint sets of instances.

Definition 6 (Enabled Super-Set Fragment). Assume 𝐼(𝑡, 𝑝) and 𝐻(𝑡, 𝑝) to be in normal form and term
𝑚.𝑇 to be in 𝐼(𝑡, 𝑝) or term 𝑛.𝑇 to be in 𝐻(𝑡, 𝑝), where 𝑚,𝑛 ∈ N. Then:

[𝜆, 𝛾)𝑇 𝑡

is a function 𝐵𝑎𝑔[D(𝑝)] → 𝐵𝑎𝑔[D(𝑡)] so defined:

𝜆 = 𝑚, and 𝛾 = ∞ iff 𝑛 = 0 otheriwise 𝛾 = 𝑛

and:

∀d ∈ m(𝑝), [𝜆, 𝛾)𝑇 𝑡(d) =
{︂

𝑇 𝑡(d) iff 𝜆 ≤ m(𝑝)(d) < 𝛾
∅ 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

[𝜆, 𝛾)𝑇 𝑡(m(𝑝)) =
∑︁

d∈m(𝑝)

[𝜆, 𝛾)𝑇 𝑡(d)

Intersecting all the Enabled Superset Fragments applied to markingm(𝑝2) further refines the resulting
superset of the enabled instances of 𝑡 locally to 𝑝2:⋂︁

𝑖

[𝜆𝑖, 𝛾𝑖)𝑇
𝑡
𝑖 (m(𝑝2))

Definition 7 (Enabled Super-Set). Given the Enabled Superset Fragments
{︀
[𝜆𝑖, 𝛾𝑖)𝑇

𝑡
𝑖

}︀
for pair (𝑡, 𝑝), the

function 𝐸𝑛(𝑡, 𝑝), which applies to a marking, is defined:

𝐸𝑛(𝑡, 𝑝) =
⋂︁
𝑖

[𝜆𝑖, 𝛾𝑖)𝑇
𝑡
𝑖

For the SN of the running example:

𝐸𝑛(𝑡, 𝑝2) = [1,∞) ⟨𝑛1,𝑚⟩[𝑛1 ̸= 𝑛2]⏟  ⏞  
𝑇 𝑡
1

∩[2, 3) ⟨𝑛1,𝑚⟩[𝑛1 = 𝑛2]⏟  ⏞  
𝑇 𝑡
2

∩[0, 3) ⟨𝑛1, 𝐴𝑙𝑙 −𝑚⟩[𝑛1 = 𝑛2]⏟  ⏞  
𝑇 𝑡
3



and similarly, but less complex:

𝐸𝑛(𝑡, 𝑝1) = [1,∞)⟨𝑛,𝑚⟩

In Def. 6 looking for tokens that in current marking m satisfy the constraint 𝜆 ≤ m(𝑝) < 𝛾, when
𝜆 = 0, is not practicable because it will lead us to evaluate 𝑇 𝑡 also for tokens that are not in the marking
(they have multiplicity 0 in m). Thus, when 𝜆 = 0 for some 𝑇 𝑡 we will compute the superset of the
enabled instances for that 𝑇 𝑡 via the complement of the disabled instances:

[0, 𝑛)]𝑇 𝑡 = ([𝑛,∞)𝑇 𝑡)∁

When 𝜆 ̸= 0, 𝐸𝑛(𝑡, 𝑝) is in general a proper superset of the enabled instances. We will use the
information conveyed by the cardinality 𝑘𝑖 of 𝑇𝑖 to calculate the actual set of enabled instances, as
well as their enabling degree: If, due to the application of term [𝜆, 𝛾)𝑇 𝑡 to the current marking of 𝑝,
(𝑡, c) is in 𝐸𝑛(𝑡, 𝑝)(m(𝑝)) then we know that this instance will require from 𝑝 a sub-multiset2 with |𝑇 |
distinct colors. We can compute how many of the tokens required by (𝑡, c) are actually in 𝑝 applying
[𝜆, 𝛾)𝑇 𝑡(m(𝑝)) and counting the scalar multiplicity of (𝑡, c), we will call this value the Connection
Degree of (𝑡, c) with regard to [𝜆, 𝛾)𝑇 𝑡, and in the current marking.

For example, consider a very simple net with a transition 𝑡 and place 𝑝 with D(𝑝) = 𝐶 = {a, b, c, d}
and 𝐼(𝑡, 𝑝) = ⟨𝐴𝑙𝑙 − 𝑐⟩. Then, 𝐼𝑡(𝑡, 𝑝) = ⟨𝐴𝑙𝑙 − 𝑐⟩, and the unique Enabled Super-Set Fragment is
[1,∞)⟨𝐴𝑙𝑙 − 𝑐⟩, thus

𝐸𝑛(𝑡, 𝑝) = [1,∞)⟨𝐴𝑙𝑙 − 𝑐⟩

Assume first that m1(𝑝) = 2.a + 2.b + 2.c + d. In this marking, it is straightforward to see that all
instances of 𝑡 are enabled, moreover the one of color 𝑐 = d has the enabling degree 2, while all the
others have the enabling degree 1. By Def. 6:

𝐸𝑛(𝑡, 𝑝)(m(𝑝)) = 3.a+ 3.b+ 3.c+ 3.d

Thus, the obtained Enabled Super-Set matches the actually enabled instances. Observe that in the above
expression, the scalar 3 points out that each instance will withdraw by marking m(𝑝) 3 tokens with a
distinct color (for example, instance (𝑡, a) will withdraw a multiset b+ c+ d). Now let us consider a
different marking: m2(𝑝) = a+ b+ c; in this case only instance (𝑡, d) is enabled, however

𝐸𝑛(𝑡, 𝑝)(m(𝑝)) = 2.a+ 2.b+ 2.c+ 3.d

In this case, the Enabled Super-Set is a proper superset of the actually enabled instances because
instances (𝑡, a), (𝑡, b), and (𝑡, c) are not enabled. However, the multiplicity 2 indicates that these
instances were derived from only two distinct colors in m(𝑝), while three are actually required; instead,
instance (𝑡, d) is derived from 3 = |𝐶| − 1 = |𝐴𝑙𝑙 − 𝑐| distinct colors in m(𝑝). We shall call this
multiplicity Connection Degree because, in a certain sense, it represents the number of connections from
a given instance to distinct token colors in m(𝑝). We will see later how to use this information to refine
the Enabled Super-Set function, but first let us formalize the above concepts.

Definition 8 (Connection Degree). Given the pair (𝑡, 𝑝), let [𝜆, 𝛾)𝑇 𝑡 be an Enabled Superset Fragment of
𝐸𝑛(𝑡, 𝑝), and m(𝑝) the marking of 𝑝. Let b ∈ 𝐵𝑎𝑔[D(𝑡)] such that 𝐸𝑛(𝑡, 𝑝)(m(𝑝)) = b. Let the value
𝑠 ∈ N be the multiplicity of the color instance c ∈ D(𝑡) in multiset b. Then, 𝑠 is said Connection Degree of
instance (𝑡, c) in m locally to place 𝑝 and Super-set [𝜆, 𝛾)𝑇 𝑡.

The Connection Degree 𝑠 provides us with how many distinct tokens, of those needed by a given
instance (𝑡, c) belonging to [𝜆, 𝛾)𝑇 𝑡(m(𝑝)), are actually in m(𝑝). If 𝑠 = |𝑇 |, then instance (𝑡, c) is
enabled locally to place 𝑝 and Superset Fragment[𝜆, 𝛾)𝑇 𝑡. When this holds, let 𝑟 be the minimum
multiplicity of the distinct tokens required by (𝑡, c) actually in m(𝑝):

𝑟 = 𝑚𝑖𝑛d∈𝑇 (𝑐){m(𝑝)(d)}
2This sub-multiset is part of the whole multiset 𝐼(𝑡, 𝑝)(c).



then ⌊𝑟/𝜆⌋ is the Enabling Degree of the instance (𝑡, c), relative to Fragment [𝜆, 𝛾)𝑇 𝑡. Referring to the
marking m1 of the previous example, it holds 𝑟 = 1 for all instances of 𝑡 except (𝑡, d) , due to the single
token of color d in place 𝑝; instead, for example (𝑡, d) it holds 𝑟 = 2 because each needed token has
multiplicity 2.

Again, if for all 𝑖 the Connection Degree 𝑠𝑖 is equal to 𝑘𝑖 = |𝑇𝑖|, then we can say that instance (𝑡, c) is
actually enabled in m(𝑝). The actual enabling degree is 𝑚𝑖𝑛𝑖{⌊𝑟𝑖/𝜆𝑖⌋}.

Definition 9 (Enabling Degree). Given 𝐸𝑛(𝑡, 𝑝), and a term 𝑇𝑖 appearing in the normal form of 𝐼(𝑡, 𝑝),
then 𝑒𝑑𝑖(𝑡, 𝑝) for marking m is a function mapping to a multiset of colors of 𝑡 so defined:

𝑒𝑑𝑖(𝑡, 𝑝)(m) =
∑︁

c∈𝐸𝑛(𝑡,𝑝)(m(𝑝))

𝑚𝑖𝑛d∈𝑇𝑖(𝑐){m(𝑝)(d)}
𝜆𝑖

.c

and 𝑒𝑑(𝑡, 𝑝) is a function so defined:

𝑒𝑑(𝑡, 𝑝)(m) = 𝑚𝑖𝑛𝑖{𝑒𝑑𝑖(𝑡, 𝑝,m)}

Definition 10. Given pair (𝑡, 𝑝), and 𝐸𝑛(𝑡, 𝑝) the Super-set function of the enabled instances. Then, the
actually enabled instances of 𝑡 locally to 𝑝 are given by the following function:

𝐸𝑁(𝑡, 𝑝) =
⋂︁

∀𝑖:𝜆𝑖 ̸=0

[𝜆𝑖, 𝛾𝑖)𝑇
𝑡
𝑖

𝑘𝑖

⋂︁
∀𝑖:𝜆𝑖=0

∞
(︀
[𝛾𝑖,∞)𝑇 𝑡

𝑖

)︀∁
where 𝑘𝑖 = |𝑇𝑖|.

We observe that in Def. 10 the division by 𝑘𝑖 puts to 0 the multiplicities of the instances in [𝜆𝑖, 𝛾𝑖)𝑇𝑖

such that the Connection Degree is less than 𝑘𝑖. The instances remaining in 𝐸𝑁(𝑡, 𝑝) will have
multiplicity 1.

The actual enabled instances are finally computed by intersecting the locally enabled instances in all
places.

Definition 11 (Enabled instances). Let 𝐸𝑁(𝑡) ∈ 𝐵𝑎𝑔[D(𝑡)] represent the instances of 𝑡 enabled in a
marking m. Then,

𝐸𝑁(𝑡,m) =
⋂︁

𝑝∈∙𝑡∪∘𝑡

𝐸𝑁(𝑡, 𝑝)(m(𝑝))

and the Enabling Degree function is:
𝑒𝑑(𝑡) =

⋂︁
𝑝

𝑒𝑑(𝑡, 𝑝)

For example, consider the following marking of the SN shown in Figure 2 (right part), where 𝑁 =
{n1, . . . , n4}, 𝑀 = {m1, . . . ,m𝐾} ∪ {ack}, 𝐾 > 1:

m(𝑝1) = 2⟨n1,m1⟩+ ⟨n2,m2⟩
m(𝑝2) = 4⟨n1, n2,m1⟩+ 2⟨n1, n3,m1⟩+ 3⟨n1, n4,m1⟩+ 2⟨n1, n1,m1⟩+ 3⟨n2, n2,m1⟩

+ 2⟨n2, n1,m2⟩+ 2⟨n2, n3,m2⟩+ 2⟨n2, n4,m2⟩+ 3⟨n3, n1,m2⟩+ 2⟨n3, n2,m2⟩

Let us compute 𝐸𝑁(𝑡, 𝑝2)(m(𝑝2)), the enabling function locally to place 𝑝2. Thus, we first compute
the Enabled Super-set Fragments [1,∞)𝑇 𝑡

1(m(𝑝2)),[2, 3)𝑇 𝑡
2(m(𝑝2)), and [0, 3)𝑇 𝑡

3(m(𝑝2)) (Def. 6). Let
us look at the term associated to 𝑇 𝑡

3 :

[0, 3) ⟨𝑛1, 𝐴𝑙𝑙 −𝑚⟩[𝑛1 = 𝑛2]⏟  ⏞  
𝑇 𝑡
3

, with 𝑛1, 𝑛2 ∈ 𝑁,𝑚 ∈ 𝑀



The transition instances belonging to this parametric set have no input from 𝑝2 but only inhibition.
Since 𝜆3 = 0 we will compute these instances using the complemented formula:

[3,∞)𝑇 𝑡
3(m(𝑝2))

∁

By applying the function [3,∞)𝑇 𝑡
3 to marking m, we obtain ⟨n2, 𝐴𝑙𝑙 −m1⟩, the result is due to the

only token ⟨n2, n2,m1⟩ ∈ m(𝑝2) such that the first and second components are equal (guard 𝑛1 = 𝑛2)
and whose multiplicity is at least 3 in m(𝑝2). This tuple identifies the instances of 𝑡 inhibited in the
current marking and therefore excluded from 𝐸𝑁(𝑡, 𝑝2). Complementing it provides the superset of
the instances we are looking for:

[3,∞)𝑇 𝑡
3(m(𝑝2))

∁ = ∞⟨𝐴𝑙𝑙 − n2, 𝐴𝑙𝑙⟩+∞⟨n2,m1⟩

As second Fragment to evaluate in m(𝑝2), let us consider the term associated with 𝑇 𝑡
1 :

[1,∞) ⟨𝑛1,𝑚⟩[𝑛1 ̸= 𝑛2]⏟  ⏞  
𝑇 𝑡
1

with 𝑛1 ∈ 𝑁,𝑛2 ∈ 𝑁,𝑚 ∈ 𝑀

This parametric set represents a group of instances of 𝑡 consuming tokens from 𝑝2 but not inhibited
(upper range ∞). All of these instances need at least one instance of the consumed colors. The evaluation
in the current marking results in (see Def. 10):

[1,∞)⟨𝑛1,𝑚⟩[𝑛1 ̸= 𝑛2](m(𝑝2)) = ⟨n1,m1⟩+ ⟨n2,m2⟩

In detail follows the calculus that leads to this result. The representation below highlights in the
underbrace the instances of 𝑡 each color in m2 maps to, consistently with the multiplicity of the color
in the marking:

m(𝑝2) = 4⟨n1, n2,m1⟩⏟  ⏞  
since 4≥𝜆1 then

[1,∞)𝑇 𝑡
1(n1,n2,m1)=⟨n1,m1⟩

+ 2⟨n1, n3,m1⟩⏟  ⏞  
since 2≥𝜆1 then

[1,∞)𝑇 𝑡
1(n1,n3,m1)=⟨n1,m1⟩

+ 3⟨n1, n4,m1⟩⏟  ⏞  
since 3≥𝜆1 then

[1,∞)𝑇 𝑡
1(n1,n4,m1)=⟨n1,m1⟩⏟  ⏞  

[1,∞)𝑇 𝑡
1

(︀
⟨n1,n2,m1⟩+⟨n1,n3,m1⟩+⟨n1,n4,m1⟩

)︀
=3⟨n1,m1⟩

+

+ 2⟨n1, n1,m1⟩+ 3⟨n2, n2,m1⟩⏟  ⏞  
since 𝑛1=𝑛2 then

[1,∞)𝑇 𝑡
1(⟨n1,n1,m1⟩+⟨n2,n2,m1⟩)=0

+

+ 2⟨n2, n1,m2⟩+ 2⟨n2, n3,m2⟩+ 2⟨n2, n4,m2⟩⏟  ⏞  
3⟨n2,m2⟩

+3⟨n3, n1,m2⟩+ 2⟨n3, n2,m2⟩⏟  ⏞  
2⟨n3,m2⟩

There exist two instances, namely ⟨n1,m1⟩ and ⟨n2,m2⟩, whose Connection Degree is |𝑇1| = 3; both
instances have enabling degree 2, since those are the minimal multiplicities common to the involved
tokens present in m(𝑝2): respectively to the first three tokens in m(𝑝2) above, 𝑒𝑑1(𝑡, 𝑝2)(⟨n1,m1⟩) =
𝑚𝑖𝑛{4, 2, 3}, and respectively to the tokens from 6th to 8th in m(𝑝2) above, 𝑒𝑑1(𝑡, 𝑝2)(⟨n2,m2⟩) =
𝑚𝑖𝑛{2, 2, 2}. There are instead only 2 tokens in m(𝑝2) (the last two), resulting in instance ⟨n3,m2⟩,
thus its Connection Degree is lower than |𝑇1|. Consequently, this term of 𝐸𝑁(𝑡, 𝑝2) leads to the result
⟨n1,m1⟩+ ⟨n2,m2⟩.

The last Fragmentto evaluate is the one associated with 𝑇 𝑡
2 , namely

[2, 3)⟨𝑛1,𝑚⟩[𝑛1 = 𝑛2](m(𝑝2))

Let us show below only the tokens in m(𝑝2) that do not map to the empty multiset:

m(𝑝2) = 2⟨n1, n1,m1⟩⏟  ⏞  
[2,3)𝑇 𝑡

2(⟨n1,n1,m1⟩)=⟨n1,m1⟩ since 𝜆2≤2<𝛾2

+ 3⟨n2, n2,m1⟩⏟  ⏞  
[2,3)𝑇 𝑡

2(⟨n2,n2,m1⟩)=0 since 3≥𝛾2



Table 2
Summary of the functions needed to obtain the set of enabled instances of 𝑡.

[𝜆, 𝛾)𝑇𝑖𝑡

where 𝑇𝑖 is a term
of the normal form of
𝐼(𝑡, 𝑝) and/or 𝐻(𝑡, 𝑝)

Enabled Superset Chunk Def 6: expresses the range of token multiplicity
used to select a superset of potentially enabled
instances of a given transition 𝑡 based on themark-
ing of a given input/inhibitor place 𝑝

𝐸𝑛(𝑡, 𝑝) Enabled Superset of 𝑡 in-
stances, relative to input or
inhibitor place 𝑝

Def. 7: intersection of Enabled Superset Chunks
derived from the Input/Inhibitor arcs connecting
𝑝 and 𝑡. When applied to a marking of 𝑝 provides
a superset of enabled instances of 𝑡 relative to 𝑝.

𝐸𝑁(𝑡, 𝑝) Connection Degree and en-
abled instances of 𝑡 relative
to 𝑝.

Def. 8 and 10: The Connection Degree is themulti-
plicity of transition 𝑡 instances in the multiset ob-
tained from the application of 𝐸𝑛(𝑡, 𝑝) to a given
marking of 𝑝. For the instances obtained from
the chunk [𝜆, 𝛾)𝑇𝑖𝑡, the multiplicity is compared
with 𝑘𝑖 = |𝑇𝑖|: if it is less than 𝑘𝑖 the instance is
discarded, otherwise it is kept.

𝐸𝑁(𝑡,m) Enabled instances Def. 11: the set of enabled instances of 𝑡 in mark-
ingm: obtained combining the result of 𝐸𝑁(𝑡, 𝑝)
for all input places of 𝑡.

𝑒𝑑(𝑡, 𝑝) / 𝑒𝑑(𝑡) Enabling Degree relative to
input place 𝑝 / to all input
places of 𝑡.

Def. 9: A function of the marking that provides
the enabling degree of the enabled instances of 𝑡
with respect to the marking of 𝑝 / to the marking
of all input places of 𝑡.

Thus, [2, 3)𝑇 𝑡
2(m(𝑝2)) = ⟨n1,m1⟩ and 𝑒𝑑2(𝑡, 𝑝1)(⟨n1,m1⟩) = 2/𝜆2 = 1.

Intersecting the three Fragments (Def. 10) yields the final result:

𝐸𝑁(𝑡, 𝑝2)(m(𝑝2)) = ⟨n1,m1⟩

with 𝑒𝑑(𝑡, 𝑝2)(⟨n1,m1⟩) = 𝑚𝑖𝑛{2, 1,∞} = 1.
Similarly, it can be computed that 𝐸𝑁(𝑡, 𝑝1)(m(𝑝2)) = 2⟨n1,m1⟩+ 1⟨n2,m2⟩ with the respective

enabling degree equal to 2 and 1. In conclusion, 𝐸𝑁(𝑡,m) = ⟨n1,m1⟩ with enabling degree 1.
Throughout various stages of computation, we have implicitly applied certain operators of structural

calculus, including composition, difference, and intersection. These operators enable us to manipulate
symbolic representations efficiently.

3.1. Efficient state space generation

The approach just described may be integrated using a traditional method based on a proficient update
of the set of enabled transition instances. Structural relations inherently encapsulate all potential
dependencies that are locally induced by the firing of a transition instance. Such an instance has the
capability to disable instances with which it is in (structural) conflict and to enable those to which it
is (structurally) causally connected. Hence, exploiting the transpose of structural conflicts and causal
connections (see Table ) computed on the net structure it is possible to incrementally update the set of
enabled instances after the state change due to enabled transition instances.

4. Extended Conflict Sets

The most recent version of SNexpression [11], grounded in the theoretical framework of [12], equips
modelers with advanced capabilities to perform calculations specified by the user across the entire
SSN, rather than limit calculations to pairs of nodes. A net relationship 𝑅 between nodes within an
SN is represented by a two-dimensional matrix, where each element 𝑅[𝑖, 𝑗] matches the associated
relationship between the color instances of nodes 𝑖-th and 𝑗-th. The fundamental algebraic operations



Table 3
SD*

𝑒𝑞 relation for the Utility Control Room model.

SD*
𝑒𝑞 assignSameZone assignNearZone assignFar assignMunicipality

assign ⟨𝑆𝐶 , 𝑧1⟩ · · ·
SameZone

assign ⟨𝑐1, 𝑧1, 𝑧2⟩+ ⟨𝑆𝐶 , 𝑆𝑍2
, 𝑧2⟩[𝑔1]

NearZone
·

+⟨𝑆𝐶 , 𝑆𝑍3 , 𝑧2⟩[𝑔2]
· ·

assign
· ·

(︀
⟨𝑆𝐶 , 𝑆𝑍4 , 𝑆𝑍1 ⟩+ ⟨𝑆𝐶 , 𝑆𝑍4 , 𝑆𝑍1 ⟩+

Far · ⟨𝑆𝐶 , 𝑆𝑍1 , 𝑆𝑍4 ⟩
)︀
[𝑔3] + ⟨𝑐1, 𝑧1, 𝑧2⟩ +⟨𝑆𝐶 , 𝑆𝑍1 , 𝑆𝑍4 ⟩

assign ⟨𝑆𝐶 , 𝑆𝑍⟩[𝑔3] ⟨𝑆𝐶 , 𝑆𝑍⟩
Municipality

· ·

𝑔1 = [𝑧1∈𝑍2, 𝑧2∈𝑍3], 𝑔2 = [𝑧1∈𝑍3, 𝑧2∈𝑍2], 𝑔3 = [𝑧1∈𝑍1, 𝑧2∈𝑍4 + 𝑧1∈𝑍4, 𝑧2∈𝑍1], 𝑆 = 𝐴𝑙𝑙

available in previous versions (such as sum, difference, transpose, and composition) remain accessible at
the matrix level, supplemented by some newly introduced operations typical of the matrix framework,
including the transitive closure.

In conjunction with the established symbols representing matrices for net adjacency lists and funda-
mental relationships, namely Structural Conflict, Structural Causal Connection, and Structural Mutual
Exclusion, a novel symbol is introduced to denote a more comprehensive and intricate form of depen-
dency between transitions, termed Structural Dependency (SD). SD was first introduced for GSPN in
[7] and extended to SSN in [12]: said briefly, two transition instances are mutually dependent if their
firing order may influence the future behavior (different reachable states or different probability to
reach the states). Detecting SD is even more crucial in SSN models that feature immediate transitions
with priorities, because partitioning the set of transitions according to their priority can lead to having
indirect forms of dependency.

An immediate application of the SD relation is in the calculation of the well-known ECS (Extended
Conflict Sets) [13]. In fact, ECS, in their original definition, are independent classes of dependent immediate
transition instances. Therefore, they can be calculated using SD as the basic dependence relation. In
order to compute the equivalence classes of dependent transition instances, the SD relation is closed
transitively SD+, and made reflexive: SD*=SD+ + 1; and then restricted to pairs of transitions with the
same priority level leading to SD*

𝑒𝑞 .
The algorithm for computing the ECS in SN, as equivalence classes of the SD*

𝑒𝑞 relationship, has been
presented in [12] and is currently being developed in the SNexpression suite.

SCS enables the consistent assignment of probabilistic weights to immediate transition instances.
Furthermore, it may be leveraged to construct the ordinary or symbolic reachability graph of an SSN
with enhanced efficiency and efficacy by minimizing the interleaving of immediate transitions, since
instances pertaining to two independent sets can be executed in arbitrary sequence.

Computing ECS in SSN: an application example We illustrate the derivation of the Symbolic ECS
(SCS) by applying the method to an SSN inspired by a model of the Model Checking Contest3. This SSN
models a Utility Control Room [14]. The model represents a system where the customers of a utility can
call a customer support center in case of need (see Figure 3 in the appendix). A pool of technicians is
available to provide the required service. Customers are spread over a certain number of zones. When a
customer calls, the system looks for available technicians and finally it assigns one of them trying to
minimize his travel time: it assigns with higher priority a technician who is already in the customer’s
zone and then, in decreasing priority order, a technician in a nearby zone or, finally, in a far zone. The
color classes in this model are 𝐶 , to identify the customers and 𝑍 to represent the zones; class 𝑍 is
partitioned into four static subclasses used to distinguish zones that are near of far to each other. The

3https://mcc.lip6.fr/

https://mcc.lip6.fr/


analysis in this case is concentrated on four immediate transitions: assignMunicipality (priority
1) indicating where the customer is located, and assignSameZone (priority 3), assignNearZone
(priority 2), and assignFar (priority 1).

SD*
𝑒𝑞 for this net is a block matrix 𝑀 (see Tab. 3) composed of three blocks, 𝑀1,𝑀2 and 𝑀3, since

there are three priority levels. Transitions in different priority groups are in different SCS. The derivation
of SCS for the groups 𝑀1 and 𝑀2 is easier because they are both composed by a single colored transition.
Let us illustrate the computation of the SCS for transition instances in the three groups.

SCS for transitions in 𝑀1: matrix block 𝑀1 is composed of transition assignSameZone only,
instances of this transition can still be partitioned in several SCS. To compute them, consider the
parametric instance assignSameZone(𝑐, 𝑧1), where {𝑐, 𝑧1} = 𝑉 𝑎𝑟(assignSameZone) and start
checking which other instances of the same transition are in the same class using the dependency relation
in 𝑀1. Thus, symbolically instantiating SD*

𝑒𝑞(assignSameZone, assignSameZone) = ⟨𝐴𝑙𝑙𝐶 , 𝑧1⟩ on
such a color parameter ⟨𝐴𝑙𝑙𝐶 , 𝑧1⟩(𝑐, 𝑧1) allows obtaining the requested dependent instances, thus
belonging to the same SCS: ⟨𝐴𝑙𝑙𝐶 , 𝑧1⟩(𝑐, 𝑧1) = ⟨𝐶, 𝑧1⟩. SECS is updated as follows:

SCS(𝑐, 𝑧1) = {assignSameZone(𝑐, 𝑧1), assignSameZone(𝐶, 𝑧1) : 𝑐 ∈ 𝐶, 𝑧1 ∈ 𝑍}

and after simplification (in fact SD*
𝑒𝑞 is reflexive then the first instance is contained in the second group

of instances)
SCS(𝑧1) = {assignSameZone(𝐶, 𝑧1), 𝑧1 ∈ 𝑍}

This symbolic expression for the SCS covers all the instances of assignSameZone, that is all instances
are assigned to one SCS. To check this condition, we can apply again the symbolic calculus:∑︁

𝑧1∈𝑍
⟨𝐶, 𝑧1⟩ → ⟨𝐴𝑙𝑙𝐶 , 𝑧1⟩ ∘ ⟨𝐴𝑙𝑙𝑍⟩ = ⟨𝐴𝑙𝑙𝐶 , 𝐴𝑙𝑙𝑍⟩⏟  ⏞  

equivalent calculus
performed in functional form

→ ⟨𝐶,𝑍⟩

SCS for the transition assignNearZone in 𝑀2: as for 𝑀1, one can compute SCS instantiating the
function in 𝑀2 on the colors of the parametric instance assignNearZone(𝑐, 𝑧1, 𝑧2), which results in
two SCSs due to mutually exclusive guards [𝑔1] and [𝑔2]:

SCS(𝑐, 𝑧1, 𝑧2) = {assignNearZone(⟨𝐶,𝑍2, 𝑧2⟩), 𝑐 ∈ 𝐶, 𝑧1 ∈ 𝑍2, 𝑧2 ∈ 𝑍3}
it simplifies−→

SCS(𝑧2) = {assignNearZone(⟨𝐶,𝑍2, 𝑧2⟩), 𝑧2 ∈ 𝑍3}

and

SCS(𝑐, 𝑧1, 𝑧2) = {assignNearZone(⟨𝐶,𝑍3, 𝑧2⟩), 𝑐 ∈ 𝐶, 𝑧1 ∈ 𝑍3, 𝑧2 ∈ 𝑍2}
it simplifies−→

SCS(𝑧2) = {assignNearZone(⟨𝐶,𝑍3, 𝑧2⟩), 𝑧2 ∈ 𝑍2}

SCS for the transitions in 𝑀3: 𝑀3 is made up of transitions {assignFar, assignMunicipality}.
The method first categorizes all the instances of assignFar iterating on the functions in the first
column of 𝑀3; we obtain the instances respectively of assignFar and assignMunicipality in
some SCS with assignFar(𝑐, 𝑧1, 𝑧2). Due to the guard [𝑔3] on the function in 𝑀3[1, 1], a first SCS
is determined according to the parameter values satisfying 𝑔3. Thus, instantiating 𝑀3[1, 1], and then
𝑀3[2, 1] the following SCS is determined:

SCS(𝑐, 𝑧1, 𝑧2) = {assignFar(𝑐, 𝑧1, 𝑧2), assignFar(⟨𝐶,𝑍4, 𝑍1⟩+ ⟨𝐶,𝑍1, 𝑍4⟩),
assignMunicipality(⟨𝐶,𝑍⟩), 𝑐 ∈ 𝐶, 𝑔}

and after some simplification:

SCS = {assignFar(⟨𝐶,𝑍4, 𝑍1⟩+ ⟨𝐶,𝑍1, 𝑍4⟩), assignMunicipality(⟨𝐶,𝑍⟩)}



Each remaining instance of assignFar(𝑐, 𝑧1, 𝑧2), whose color does not satisfy 𝑔3, is in its own
separate SCS. It remains to classify the instances of assignMunicipality not classified in the previous
step, and in relation only with itself, because due to the symmetric nature of 𝑀3 assignFar instances
in some SCS with assignMunicipality were considered in the previous step. However, in this
particular case all the instances of assignMunicipality have already been classified because the
previous calculated assignMunicipality(⟨𝐶,𝑍⟩) contain all.

5. Conclusions and future work

The symbolic structural relation calculus for (Stochastic) Symmetric Nets developed in the last two
decades and implemented in the SNexpression tool is the basis for enabling several tasks that can be
useful when analyzing an SSN model. In this paper, we have presented a novel method exploiting
the operators of the structural calculus to derive the transition instances enabled in a given marking,
applying functions derived from the structure directly to the marking, instead of enumerating all
possible color instances and testing their enabling conditions: this is a useful feature which is common
to state space construction and discrete event simulation of SSN. We have also illustrated the operators
recently introduced in SNexpression and operating on matrices of functions derived from the model
that, in particular, can express in a symbolic form the dependency relations between transitions, useful
to support the definition of the probabilities to be used for conflict resolution between immediate
transitions. Among the other features implemented in SNexpression and not discussed in this paper,
we recall the automatic generation of a system of Symbolic Ordinary Differential Equations (SODE),
which can provide approximate average results in systems that have very large state spaces. Using the
symmetry of the model, a reduced number of equations is generated, usually much smaller than the
total number of place instances. The adaptation of the method to the parametric size of color classes is
ongoing. Another useful feature is the ability to verify that a given P-invariant holds, which is also
required to verify the applicability of a SODE-based solution.

Future work will integrate additional features into the tool to improve it in several directions: (1)
expanding the calculus to include general composition (of functions mapping on multisets), (2) improving
the rules for the simplification of the resulting formulas, and (3) achieving a seamless integration with
other tools, in particular with GreatSPN.

Declaration on Generative AI

The author(s) have not employed any Generative AI tools.
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A. Online Resources

The SNexpression tool can be downloaded from http://www.di.unito.it/~depierro/SNexpression/. Two
releases are currently available: the latest, integrating the calculation of structural properties on a whole
SN using a matrix calculus, and the previous one, implementing the structural properties computation
for specific pairs of nodes in the net, specified by the user. Several example models illustrated in the
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(https://github.com/greatspn) to the SNexpression format (.sn) can be downloaded from the home page.
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B. The utility control room SSN

The Utility Control Room model used in Section 4 is depicted in Figure 3: the SCS computation concerns
the subnet of immediate transitions in the frame.

class 𝐶 = {𝑐𝑙𝑖1 . . . 𝑐𝑙𝑖𝑘}, class 𝑍 = {𝑧𝑜𝑛𝑒1} is 𝑍1,{𝑧𝑜𝑛𝑒2} is 𝑍2, {𝑧𝑜𝑛𝑒3} is 𝑍3, {𝑧𝑜𝑛𝑒4} is 𝑍4

Guards:
Φ(assignNearZone) = [𝑧1 ∈ 𝑍2, 𝑧2 ∈ 𝑍3 + 𝑧1 ∈ 𝑍3, 𝑧2 ∈ 𝑍2]
Φ(assignFar) = [𝑧1 ∈ 𝑍1, 𝑧2 ∈ 𝑍4 + 𝑧1 ∈ 𝑍4, 𝑧2 ∈ 𝑍1]

Figure 3: The SSN model of the Utility Control Room
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