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Abstract

As hybrid quantum-classical models gain traction in machine learning, there is a growing need for tools that
assess their effectiveness beyond raw accuracy. We present QMetric, a Python package offering a suite of
interpretable metrics to evaluate quantum circuit expressibility, feature representations, and training dynamics.
QMetric quantifies key aspects, including circuit fidelity, entanglement entropy, barren plateau risk, and training
stability. The package integrates with Qiskit and PyTorch, and is demonstrated via a case study on binary MNIST
classification comparing classical and quantum-enhanced models. Code, plots, and a reproducible environment
are available on GitLab.
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1. Introduction

Hybrid quantum-classical neural networks (QNNs) [1, 2, 3] are playing a central role in the development
of algorithms for near-term quantum devices. By embedding parameterized quantum circuits within
classical training loops, these architectures aim to leverage quantum resources such as entanglement and
superposition while maintaining trainability through well-established classical optimizers. This hybrid
structure has enabled a broad spectrum of quantum machine learning (QML) [4, 5] models to flourish
across domains including classification [6, 7], generative modeling[8, 9], optimization [10, 11, 12],
benchmarking[13, 14], medicine[15, 16, 17, 18], and quantum chemistry[19, 20, 21].

Importantly, many canonical variational algorithms—originally developed for quantum simu-
lation—can be reframed as learning architectures. The Variational Quantum Eigensolver (VQE)
[22, 23, 24, 25] exemplifies this duality. Therein, a parameterized quantum ansatz is trained to mini-
mize an energy objective, similarly to a neural network minimizing a loss function. Over time, VQE
has evolved into a family of learning-based formulations, including State-Averaged Orbital-Optimized
VQE [26, 27], ADAPT-VQE [28], and Subspace-Search VQE [29], each introducing novel strategies for
parameterization, target state selection, and optimization flow.

Beyond simulation, hybrid QNNs are widely applied in supervised learning, typically in classification
or regression tasks[30]. Here, quantum circuits are used to encode classical data (via feature maps
[31, 32]), process it through a variational ansatz, and output probabilities or decision boundaries.
Such architectures are used in Quantum Neural Networks [33], Quantum Support Vector Machines [34],
and more recent paradigms like Quantum Kitchen Sinks [35] and Quantum Feature Spaces [36]. In
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unsupervised learning, models such as Quantum Circuit Born Machines [37], and Quantum Autoencoders
[38] extend the reach of QML into generative and latent-variable modeling.

Despite the growing variety and sophistication of QML models, there remains a lack of principled,
interpretable, and reproducible tools for evaluating their behavior. Traditional ML diagnostics—accuracy,
F1-score, or validation loss—do not capture key quantum characteristics such as circuit expressibility,
entanglement structure, barren plateaus, or the sensitivity of quantum feature maps. Without such
metrics, model design becomes largely heuristic, and comparisons between quantum and classical
architectures are often inconclusive or misleading.

To bridge this gap, we introduce QMetric, a modular and extensible Python framework for evalu-
ating hybrid quantum-classical models. QMetric computes interpretable scalar metrics across three
complementary dimensions (i) the structure and expressiveness of quantum circuits; (ii) the geometry
and compression of quantum feature spaces; and (iii) the stability, efficiency, and gradient flow during
training. These tools allow researchers to diagnose bottlenecks, compare architectures, and validate
empirical claims beyond raw accuracy.

Our package integrates with Qiskit ! and PyTorch ?, which we demonstrate through a binary
classification example on MNIST digits. Therein, we compare a classical neural network with a hybrid
QONN. All code, plots, and environment files are publicly available for reproducibility and further
experimentation.

2. Software Specifications

All experiments were conducted using the gmetric-env Conda ® environment *, configured for hybrid
quantum-classical machine learning. The system exploits GPU-accelerated libraries, supports Qiskit
primitives of version V1, and integrates PyTorch and scikit-learn® for classical model components and
preprocessing.

The environment is based on Python 3.10.13 with key libraries and versions listed in Table 1. Qiskit
version 1.4.3 was used in conjunction with Qiskit Aer 0.17.0 and Qiskit Machine Learning 0.8.2. PyTorch
version 2.7.0 and CUDA 12.9 toolchain were used for classical and hybrid model execution. Principal
component analysis and classical baseline training relied on scikit-learn version 1.6.1.

Table 1

Key Software Components
Library Version
Python 3.10.13
Qiskit 1.4.3
Qiskit Aer 0.17.0
Qiskit Machine Learning  0.8.2
PyTorch 2.7.0
CUDA Toolkit 12.9
cuDNN 9.10.1.4
scikit-learn 1.6.1
NumPy 2.2.6
Matplotlib 3.10.3
SymPy 1.14.0

The training experiments were run on a Linux system using conda’s gqmetric-env environment.
Hardware acceleration via CUDA and cuDNN was enabled to support efficient execution of neural net-

Thttps://www.ibm.com/quantum/qiskit

*https://pytorch.org/

*https://anaconda.org/anaconda/conda
*https://gitlab.com/illesova.silvie.scholar/qmetric/-/blob/main/environment.yml
Shttps://scikit-learn.org/stable/



work operations and gradient computation. Quantum simulations were executed using AerSimulator
in statevector mode.

Note that the Qiskit primitives interface used in the hybrid model, EstimatorQNN®, is marked
as deprecated in favor of V2 primitives. Future implementations of QMetric should migrate to the
StatevectorEstimator’ to ensure compatibility with upcoming Qiskit releases.

3. Metrics Categories

QMetric organizes its metrics into three complementary categories—quantum circuit behavior, quantum
feature space, and training dynamics—that together provide a comprehensive profile of a hybrid model’s
expressiveness, learnability, and robustness. These categories are summarized in Tab. 2.

3.1. Quantum Circuit Metrics

As the computational core of hybrid models, quantum circuits influence representational capacity and
noise resilience. QMetric evaluates circuit quality through metrics such as Quantum Circuit Expressibility,
which measures the diversity of quantum states produced under random parameters, and Quantum
Circuit Fidelity, estimating robustness to noise via state overlap.

To characterize circuit structure, the Quantum Locality Ratio captures the balance between local and
entangling gates. Entanglement-based metrics include Effective Entanglement Entropy and Quantum
Mutual Information, which quantify intra-circuit quantum correlations. These metrics are useful when
tuning ansétze for VQE, QAOA, or classification tasks, where poor ansatz expressibility or excessive
entanglement can hinder learning.

3.1.1. Quantum Circuit Expressibility

Quantum Circuit Expressibility (QCE) [39] quantifies a circuit’s ability to generate a diverse set of
quantum states across the Hilbert space. It measures how closely the distribution of states produced
by the parameterized circuit approximates the uniform (Haar) distribution [40]. High expressibility
corresponds to broader state coverage in Hilbert space and is conceptually linked to the Fubini-Study
distance [41]. It can be quantitatively related to the Kullback-Leibler divergence [42] between the
circuit’s output distribution and the Haar distribution. QCE implies that the circuit can reach a wide
variety of states, which is crucial for representing complex functions in quantum machine learning and
variational algorithms.
Formally, QCE is defined via the pairwise fidelity of randomly generated state vectors,
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where Nis the number of randomly sampled parameter sets used to generate the corresponding quantum
states, {i);}Y | are the quantum states obtained by randomly sampling parameters from the specified
ranges and applying them to the circuit. This expression captures the average overlap between states.
Lower overlap corresponds to greater expressibility. The QCE score lies in the range [0, 1], with values
closer to 1 indicating higher expressiveness.

In practice, QCE helps identify whether a variational circuit is too shallow (low expressibility) or
overly complex (potentially prone to barren plateaus). A well-designed circuit should maintain a
high QCE while preserving trainability and manageable entanglement. QMetric implements QCE by
sampling multiple parameter sets, evaluating state vector overlaps, and averaging across all pairwise
fidelities, making it an efficient diagnostic for early-stage ansatz evaluation.

Shttps://qiskit-community.github.io/qiskit-machine-learning/stubs/qiskit_machine_learning.neural_networks.Estima-
torQNN.html
"https://quantum.cloud.ibm.com/docs/en/api/qiskit/qiskit.primitives.SamplerPubResult



3.1.2. Quantum Circuit Fidelity

Quantum Circuit Fidelity (QCF) [43] quantifies the robustness of a quantum circuit to noise by measuring
how closely the output of the noisy circuit resembles that of the ideal (noise-free) version. Fidelity
serves as a key metric for assessing noise resilience in near-term quantum devices, where decoherence,
gate errors, and readout noise can significantly degrade quantum state quality.

Mathematically, QCF is defined as the fidelity between two quantum states,
2

F(p,0) = (Try/{pop) 2)

where p is the density matrix of the ideal output state and o represents the output state under a specified
noise model. In the special case of pure states (as in most simulation scenarios), the fidelity simplifies
to the squared absolute value of the inner product between the ideal and noisy state vectors.

In QMetric, QCF is computed by simulating both the ideal and noisy execution of a circuit using
Qiskit’s statevector simulator and a user-defined noise model. The resulting fidelity score ranges
from 0 to 1, with higher values indicating stronger fidelity. QCF is especially useful when benchmarking
circuits across different hardware targets or when optimizing ansatz designs for noisy intermediate-scale
quantum (NISQ) devices [44].

3.1.3. Quantum Locality Ratio

Quantum Locality Ratio (QLR) [45] quantifies the proportion of single-qubit operations relative to the
total number of gates in a quantum circuit. This metric captures the locality of interactions, offering
insight into how much a circuit relies on entangling operations. A high QLR implies that the circuit
uses mostly local, single-qubit gates, whereas a low value suggests strong reliance on multi-qubit
entanglement.

Formally, QLR is defined as

N;.
QLR = —% (3)
Motal

where Ny denotes the number of gates acting on a single qubit and Ny, is the total number of gates
in the circuit.

In QMetric, this ratio is computed by iterating over the circuit’s gate operations and counting how
many act on one qubit. QLR helps to assess the tradeoff between locality and entanglement. It returns
the ratio of single to multi-qubit gates, providing a fast and interpretable structural descriptor. QLR is
particularly useful during ansatz design, where excessive entanglement can introduce barren plateaus
or hardware noise sensitivity.

3.1.4. Effective Entanglement Entropy

Effective Entanglement Entropy (EEE) [46] evaluates the degree of quantum entanglement between a
subsystem of qubits and the rest of the circuit. It is based on the von Neumann entropy of the reduced
density matrix of the selected subsystem, capturing how mixed its state becomes due to entanglement
with its complement.

The metric is defined as

S(pa) = —Tr(palog pa), 4)

where p4 is the reduced density matrix obtained by tracing out all qubits missing from the chosen
subsystem.

QMetric computes EEE by generating a state vector from the circuit, selecting a target subset of qubits,
performing a partial trace, and evaluating the entropy. This metric is useful in tasks like entanglement
scaling analysis, where understanding subsystem correlations is essential for tuning circuit depth and

topology.



3.1.5. Quantum Mutual Information

Quantum Mutual Information (QMI) [47] measures the total correlations—both classical and quan-
tum—between two disjoint subsets of qubits in a quantum circuit. It extends the concept of mutual
information to the quantum domain, revealing how strongly two regions of a circuit are statistically

linked.

The metric is computed as

I(A = B) = S(pa) + S(pB) — S(paB): (5)

where p4, pg, and p,p are the reduced density matrices of subsystems A, B, and their union, respectively.

In QMetric, QMI is computed by preparing a full state vector, currently via analytical simulation,
computing partial traces for each subsystem and their union, and evaluating the entropies. This metric
is instrumental for analyzing modular architectures, verifying disentanglement, or diagnosing undesired
correlations in VQE, QAOA, or classification-oriented quantum circuits [48].

3.2. Quantum Feature Space Metrics

When encoding classical data into Hilbert space, the geometry of the resulting feature space directly
affects model performance. QMetric provides the Feature Map Compression Ratio (FMCR), assessing
how efficiently classical data are compressed via PCA, and the Effective Dimension (EDQFS), which
reflects variance spread in the quantum feature space.

The Quantum Layer Activation Diversity (QLAD) and Quantum Output Sensitivity (QOS) evaluate
output variability and robustness to perturbations. Low QLAD and high QOS signal collapsed or brittle
encodings. These metrics are critical in Parametrized Quantum Circuit (PQC)-based classifiers, quantum
kernel methods, and other models relying on quantum feature geometry.

3.2.1. Feature Map Compression Ratio

Feature Map Compression Ratio (FMCR) [49] quantifies how efficiently a quantum feature map com-
presses the input data. It compares the original classical dimensionality with the number of principal
components needed to capture most of the variance in the quantum-transformed space. A high FMCR
indicates strong compression, meaning fewer effective dimensions are required to retain the majority
of the encoded information.

Formally, FMCR is defined as

FMCR = 9n. (6)
deff
where d,, is the dimensionality of the classical input and dg is the number of principal components
explaining 95% of the variance in the quantum feature space.

QMetric implements FMCR by applying PCA to the quantum-transformed dataset, calculating the
cumulative explained variance, and identifying the number of components required to exceed the 95%
threshold. This metric is especially relevant when assessing whether a feature map leads to redundancy
or useful abstraction..

3.2.2. Effective Dimension of Quantum Feature Space

Effective Dimension of Quantum Feature Space (EDQFS) [50] measures how uniformly information is
distributed in the quantum feature space. It is based on the PCA eigenvalue spectrum and captures the
intrinsic dimensionality of the embedded data. A high EDQFS suggests a flat eigenvalue distribution
and a more balanced use of the available Hilbert space dimensions.

The effective dimension is calculated as

1)
dpg = (k) (7)
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where J; are the PCA eigenvalues of the quantum-encoded dataset that was encoded by the feature
map one used. The summation runs over all principal components, i.e.,i = 1,...,r, where r = min(n, d)
is the rank of the dataset with n samples and d features.

QMetric computes EDQFS by performing PCA on the quantum features and evaluating the above
formula. This metric complements FMCR by indicating how efficiently the encoded dimensions are
utilized, helping to diagnose over- or underspread feature distributions [51].

3.2.3. Quantum Layer Activation Diversity

Quantum Layer Activation Diversity (QLAD) [52] evaluates the diversity of measurement outcomes
across samples in the quantum feature space. It is based on the variance of probability distributions
obtained from quantum measurements, reflecting how varied the output activations are for different
inputs.
The metric is defined as 0
QLAD = % > Var(p), (8)
i=1
where p; is the measurement probability distribution for the i-th sample and n is the number of samples.
In QMetric, QLAD is computed by estimating the variance across each sample’s probability vector
and averaging the results. Low QLAD may signal that the circuit is collapsing inputs into narrow output
distributions, which could hinder expressivity and generalization capabilities of the model.

3.2.4. Quantum Output Sensitivity

Quantum Output Sensitivity (QOS) [53] measures how sensitive a quantum model’s output is to small
perturbations in the input. It captures robustness and smoothness of the mapping from classical data to
quantum measurements. A low QOS implies a stable, noise-tolerant model, while a high value may
indicate fragility or sharp decision boundaries.
The metric is calculated as
IfGx+e)— f(X)IIZ]

el

where f(x) and f(x+e€) are the quantum model outputs for the original and perturbed inputs, respectively.
Here, E denotes the empirical average over a batch of perturbation vectors ¢, typically sampled from a
zero-mean isotropic Gaussian distribution.

In QMetric, QOS is evaluated by generating perturbed versions of inputs, computing the model output
differences, and normalizing by the squared perturbation norms. This metric is useful for analyzing
encoding smoothness, adversarial stability, and overall model resilience.

QO0S =E

(©)

Table 2
Summary of QMetric Metrics
Category Metric Purpose
QCE, QCF Expressibility and noise robustness of circuits.
Quantum Circuit QLR Balance of local vs. entangling gates.
EEE, QMI Entanglement and intra-circuit correlation.
FMCR, EDQFS | Data compression and feature spread.
Feature Space QLAD Diversity of quantum activations.
QOS Sensitivity to small input changes.
TSI, TEI Stability and efficiency of convergence.
Training Dynamics | QGN, BPI Gradient health and barren plateau risk.
RQLSI, r-QTEI | Relative diagnostics vs classical models.




3.3. Training Dynamics

QMetric also tracks training behavior using the Training Stability Index (TSI), which compares variability
in training and validation losses, and the Training Efficiency Index (TEI), which measures epochs needed
to reach a target accuracy relative to model size.

Quantum-specific diagnostics include the Quantum Gradient Norm (QGN) and Barren Plateau Indicator
(BPI), both of which expose vanishing gradients linked to deep or poorly initialized circuits. To compare
hybrid and classical models, QMetric implements relative metrics, such as RQLSI and r-QTEIL to quantify
differences in training efficiency and stability under aligned conditions. Together, these metrics can
support targeted diagnosis of underperformance, guide ansatz design, and enable meaningful evaluation
across model types.

3.3.1. Training Stability Index

Training Stability Index (TSI) [54] quantifies the variability in training and validation losses near
convergence. It measures how consistently the model performs in the final training phase by comparing
the standard deviation of losses over the last 10% of epochs. This percentage will be up to the user in
future versions of QMetric.

The metric is defined as o

TSI = —val | (10)
Otrain
where 0y,in and oy, denote the standard deviations of training and validation losses, respectively. Here,
"losses” refer to the recorded values of the loss function (e.g., cross-entropy or MSE) over training and
validation batches during training.

A low TSI indicates stable and consistent generalization, while a high value may reveal overfitting or
noisy training dynamics. In QMetric, TSI is computed by evaluating standard deviations over the tail
segment of the loss curves, i.e., we take into account the standard deviation of the last n outputs of the
loss function.

3.3.2. Training Efficiency Index

Training Efficiency Index (TEI) [55] measures how quickly a model reaches a high level of performance
relative to its size. It is defined as the ratio between the epoch at which validation accuracy first reaches
a minimum ¢ = 90% and the number of trainable parameters. While the value 90% is usually used, this
threshold will be up to the user in future versions of QMetric.

Formally,

epochaccmlzt
TEl = ————, (11)

params
where epochaccvalz is the earliest epoch in which accuracy reaches desired threshold t and Njarams is
the total parameter count.
Lower TEI values indicate faster convergence per parameter, making this metric a useful tool for
evaluating training efficiency across differently sized architectures.

3.3.3. Quantum Gradient Norm

Quantum Gradient Norm (QGN) [56] measures the magnitude of gradients associated with quantum
circuit parameters. It reflects the overall strength of parameter updates and can signal the presence of
vanishing or exploding gradients.
The metric is defined as
oon -1, o

where 0, denotes the quantum parameters and & is the training loss, i.e., the value of the loss function
on the training dataset.



In QMetric, gradients are extracted from the backpropagation step and concatenated for L2 norm
calculation

0% 0F A
vZl, = “[ ]

8_01, 8_02,...,6_0’1

where Z is the loss function and {0}/, are the trainable parameters of the hybrid quantum-classical
model.
Low QGN may indicate a barren plateau or excessively deep circuits [57].

(13)
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3.3.4. Barren Plateau Indicator

Barren Plateau Indicator (BPI) [58] estimates whether a model suffers from barren plateaus by evaluating
the average squared magnitude of quantum gradients. This captures the extent of vanishing gradients
during optimization.
It is defined as )
BPI = E [vaqgu ] (14)

where E is the same as in eq. (9) and the rest of the parameters are as in eq. (12).

Values near zero suggest that gradients are vanishing, which can hinder effective training. In QMetric,
BPI is computed over the flattened list of quantum gradients and averaged into a final value, making it
an efficient early diagnostic tool during model tuning [59].

3.3.5. Relative Quantum Layer Stability Index

Relative Quantum Layer Stability Index (RQLSI) [60] compares the training stability of hybrid quantum-

classical models to that of purely classical ones using the TSI metric. It helps quantify whether

introducing quantum layers improves or worsens loss stability.
Formally,

TSIhybrid

TSI assical ,

where TSl,yprig and TSI agsical are the training stability indices for the hybrid and classical models,
respectively.

A value less than 1 suggests that the quantum-enhanced model is more stable during training. This
metric can support empirical comparison between model types under matched conditions.

RQLSI = (15)

3.3.6. Relative Quantum Training Efficiency Index

Relative Quantum Training Efficiency Index (r-QTEI) [61] evaluates whether a hybrid model trains
more efficiently than a classical counterpart by comparing their respective TEI scores.

It is defined as
TEIhybrid

r-QTEI = (16)

TEI Jassical ’

where TEIp,iq and TEI jagica are the training efficiency indices.
A value below 1 means the hybrid model reaches target performance faster relative to its parameter

size. This metric can support head-to-head benchmarking of model variants in practical scenarios.

4. Case Study: Hybrid vs Classical on MNIST

To illustrate the diagnostic capabilities of QMetric, we evaluate a hybrid quantum-classical neural
network against a classical baseline using a binary classification task on the MNIST dataset [62]. This
case study provides a practical scenario where quantum neural networks are tested under realistic
constraints. We describe the model architectures, data pipeline, training configuration, and metric-
driven analysis.



4.1. Hybrid Model and its Training Parameters

The hybrid model connects a parameterized quantum circuit with a classical output layer to perform
binary classification. The quantum component is implemented using Qiskit’s EstimatorQNN and is
connected to PyTorch via the TorchConnector, allowing seamless integration with PyTorch’s autograd
system.

The quantum circuit is composed of a feature map and an ansatz. The feature map is a ZZFeatureMap
with one repetition that encodes classical inputs into quantum states. The ansatz is a RealAmplitudes
circuit that introduces trainable parameters and entanglement. The latter is repeated three times.
RealAmplitudes circuits are composed into a single parameterized circuit, which is then used to define
the quantum neural network. The quantum component outputs a single expectation value, which is
passed through a trainable classical linear layer followed by a sigmoid activation. The full model maps
input vector x to output o(W - QNN(x) + b) where W and b are trainable classical parameters.

To match the number of qubits in the circuit, the MNIST images are projected into a lower-dimensional
space using principal component analysis. The original 784-dimensional vectors are reduced to three
components. This projection ensures compatibility with a three-qubit quantum circuit while preserving
as much variance as possible.

The dataset is constructed by filtering the MNIST training set to include only samples corresponding
to digits 0 and 1. From this filtered subset, the first 500 examples are selected to simulate a small-data
regime. The images are flattened into vectors, normalized, and then transformed using Principal
Component Analysis (PCA) to produce a dataset suitable for quantum encoding.

The hybrid model is trained for 30 epochs using the Adam optimizer with a learning rate of 0.01.
Binary cross-entropy is used as the loss function. Training and validation losses are tracked at each
epoch along with validation accuracy. Additionally, gradients concerning the quantum parameters
are collected to enable computation of metrics such as the quantum gradient norm and barren plateau
indicator.

After training, the quantum outputs are evaluated using QMetric. Metrics such as the feature map
compression ratio, effective dimension of the quantum feature space, layer activation diversity, and
output sensitivity are computed from the post-quantum activations. Quantum circuit diagnostics such
as expressibility, locality ratio, entanglement entropy, mutual information, and noise robustness are
also evaluated. This model provides a complete use case for applying QMetric during model selection,
architectural tuning, and training analysis.

4.2. Classical Baseline

The classical baseline model is a fully connected neural network designed to match the input dimen-
sionality and output behavior of the hybrid model. It takes as input the same three-dimensional data
produced by PCA and outputs a binary classification probability using a sigmoid activation.

The architecture consists of an input layer with three neurons, a hidden layer with ten neurons using
the ReLU activation function, and an output layer with one neuron followed by a sigmoid activation.
The network approximates a function f(x) = o(W, - ReLU(W;x + b;) + by) where x is the PCA-reduced
input vector and Wy, W,, by, and b, are trainable parameters.

The model is trained using the same subset of the MNIST dataset as the hybrid model. The inputs
are 500 grayscale images corresponding to digits 0 and 1, flattened and reduced to three principal
components. The preprocessing pipeline is identical, ensuring a fair comparison in terms of input
dimensionality and task complexity.

The training procedure mirrors that of the hybrid model. The optimizer is Adam with a learning
rate of 0.01, the loss function is binary cross-entropy, and the number of training epochs is set to 30.
At each epoch, training loss, validation loss, and validation accuracy are recorded to allow for direct
comparison of convergence dynamics, generalization performance, and learning stability.

This classical model serves as a baseline for interpreting the added value or limitations of quantum
components under identical data, dimensionality, and optimization conditions. It enables a controlled
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Figure 1: Hybrid quantum-classical model architecture. Classical inputs are encoded into quantum states via a
feature map and processed by a parameterized circuit. The classical output from the quantum component is
passed to a classical linear layer and sigmoid activation for binary classification.

analysis of the effects of quantum layers on expressivity, robustness, and trainability using QMetric’s
evaluation framework.
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Figure 2: Architecture of the baseline classical neural network. A fully connected feedforward model processes
PCA-reduced MNIST inputs to perform binary classification between digits 0 and 1.

4.3. Quantum Circuit Metrics

Table 3 summarizes the metrics that characterize the structure, expressibility, and robustness of the
quantum circuit used in the hybrid model.

The quantum circuit demonstrates high expressibility (QCE = 0.939), suggesting that it explores
a diverse set of quantum states across the Hilbert space. The fidelity score (QCF = 1.000) confirms



Table 3
Quantum Circuit Metrics

Metric Value Interpretation

Quantum Circuit Expressibility (QCE)  0.939 High expressibility, close to Haar-random.
Quantum Volume Contribution (QVC) 0.1905 Moderate depth, penalizing expressive capacity.
Quantum Circuit Fidelity (QCF) 1.000 Perfect fidelity under simulation noise.
Quantum Locality Ratio (QLR) 0.6364 Balanced mix of local and entangling gates.

Effective Entanglement Entropy (EEE)  0.8345 High entanglement across qubit partitions.
Quantum Mutual Information (QMI) 1.6691  Strong total correlations between subsystems.

robustness to noise under simulation with a basic noise model. The locality ratio of 0.6364 indicates
a well-balanced design between local and entangling operations. Entanglement is both substantial
and well-structured, as shown by high values of EEE = 0.8345 and QMI = 1.6691, supporting rich
correlations necessary for quantum information processing,.

4.4. Feature Space Metrics

The geometry and structure of the quantum feature space are assessed through the metrics in Table 4,
which evaluate compression, variance distribution, activation diversity, and sensitivity to perturbations.

Table 4

Quantum Feature Space Metrics
Metric Value Interpretation
Feature Map Compression Ratio (FMCR) 3.000  Strong compression from 3D input to 1D effective space.
Effective Dimension (EDQFS) 1.000 Variance concentrated in a single direction.
Quantum Layer Activation Diversity (QLAD)  0.000 Collapsed outputs, no diversity in activation patterns.
Quantum Output Sensitivity (QOS) 9.644 Highly sensitive to small input perturbations.

The feature map achieves perfect compression (FMCR = 3.0), indicating that all input variance
is concentrated in one effective principal component. However, the effective dimension (EDQFS =
1.0) confirms that the quantum feature space lacks spread. Activation diversity is absent (QLAD =
0.000), signaling possible circuit over-regularization or symmetry that collapses measurement outputs.
Meanwhile, the high sensitivity (QOS = 9.644) indicates the model reacts sharply to small perturbations,
suggesting brittle or sharp decision boundaries.

4.5. Training Dynamics

Training dynamics of the hybrid and classical models are evaluated in Table 5. These metrics reflect
convergence behavior, parameter efficiency, gradient stability, and vanishing gradient issues.

Table 5

Training Dynamics Metrics
Metric Hybrid Classical Interpretation
Training Stability Index (TSI) 0.0025 0.0144 Hybrid is more stable near convergence.
Training Efficiency Index (TEI) x 0.0000 Hybrid never reached 90% accuracy.
Quantum Gradient Norm (QGN)  0.458 — Moderate gradient magnitude in last epoch.
Barren Plateau Indicator (BPI) 0.0175 — Small but non-vanishing gradients.
Relative Stability (RQLSI) 0.1772 — The Hybrid model shows lower variance.
Relative Efficiency (r-QTEI) 00 — Classical model is significantly faster to train.

The hybrid model exhibits lower validation loss variability in late training (TSI = 0.0025), indicating



consistent behavior, whereas the classical model converges quickly but shows slightly more fluctuation
(TSI = 0.0144)

5. Outlook

QMetric provides a structured approach for diagnosing hybrid quantum-classical models beyond
conventional performance metrics. It highlights key aspects such as training behavior, encoding
robustness, and circuit design quality. Future developments will include migration to Qiskit’s Estimator
v28, support for additional platforms like PennyLane, and expanded metric coverage for multi-class
tasks and generative models.

6. Availability

All source code, examples, metric definitions, and plotting utilities are available at
https://gitlab.com/illesova.silvie.scholar/qmetric. The repository includes a Conda

environment file to reproduce the case study.
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